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We have considered the dynamics of simple measuring devices coupled to quantized relativistic
Heisenberg fields. We have defined localized observables and derived covariant equations for the
joint probability distribution of the measured outcomes. The proposed formalism is based on stan-
dard field-theoretical terms. We have shown that our formalism yields the expected anticoincidence
when two devices detect two wave packets of a single electron. Applications in the measurement

theory of vacuum fluctuations have been suggested.

I. INTRODUCTION

The famous dichotomy of quantum dynamics on the
one hand, and of quantum measurement on the other, has
had a lasting effect on physicists’ approach to locality and
causality of quantum theory. Usually we are content
with quantum dynamics because it has a relativistically
invariant formulation in terms of local quantum field
theories. The theory of quantum measurements has,
however, remained in rather primitive form. It works
with an instantaneous ‘“‘collapse” of the wave function.
This collapse is most believed to be unremovable from
the theory and permanently obstructs the manifest co-
variance of measurement theory.

Nevertheless it may well be that the wave function is
not the best frame in which to express the history of the
dynamical evolution.! We should not use the wave func-
tion to describe the history; we need a covariant frame in-
stead. In fact, we have had such a frame for a long time.
In quantum field theory the Heisenberg operators of the
fields carry all dynamical information in covariant form,;
moreover, they also respect causality, while the only role
of the Heisenberg state (i.e., of the wave function) is to
specify initial conditions. Thus in the Heisenberg opera-
tors we have the ingredients of a covariant formalism for
quantum measurements.

In Sec. IT we will define local observations of relativis-
tic Heisenberg fields, with the help of von Neumann’s
measuring devices.? In Sec. III the device dynamics will
be integrated out and then, as a result, the net (phenome-
nological) theory of multiple local quantum measure-
ments will be presented in covariant form in Sec. IV. In
Sec. V, the theory will be applied to two separate devices
detecting two wave packets of a single electron. Section
VI will discuss future applications to the measurement
theory of free-field vacuum fluctuations. The conclusion
and final remarks will be presented in Sec. VII.

II. HEISENBERG DYANMICS
OF COUPLED FIELDS AND DEVICES

Consider a system whose dynamics is described by a
given number of quantized local Heisenberg fields. Let us
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assume there are N localized observables 4, 4,,..., Ay
to be measured, each having the form
4,= [ g,(x)¢,(x)dx , (1)

where each g, is a normalized weight function with com-
pact support. Sometimes we shall refer to this support as
that of the localized observable (1). The ¢,’s are local
Hermitian bosonic fields, composite or primary ones, not
necessarily differing from each other.

The simplest device capable of measuring A4, is de-
scribed by the pair g,,p, of Heisenberg operators of
canonical coordinate and momentum, respectively. The
Hamiltonian H, is assumed to vanish. The N devices are,
of course, coupled to the fields, expressed by the Lagrang-
ian density

N
Lx)=— 3 g,(x)p,(x)q, . (2a)

n=1

The corresponding interaction Hamiltonian takes the
form

N
Hi=3 [g,(t,x)¢,(t,x)dxq, . (2b)
n=1

It should be admitted that Eq. (2b) assumes the intro-
duction of time coordinates. Actually, any local time
would be used for each device. However, the choice of
time coordinates, as we shall see, does not affect the
statistics of measurements, nor the covariance of our final
results.

Having specified the coupled Heisenberg dynamics of
the fields and of the devices, we also have to prescribe the
initial conditions. As is known, they have to be expressed
by the Heisenberg state vector. We assume the following
form for the state of the fields and devices:

Y@ D) =9, )8 |D)&|D,)e ---®|Dy), 3)

where |1;,) is the field theory’s Heisenberg state and the
|D) stand for the Heisenberg states of each device, re-
spectively.

In the simplest case, each device is prepared in a stand-
ing Gaussian state whose wave function in momentum
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representation reads
(p,|D,)=(2m0%) " V*exp( —p2/40?),
n=12,...,N. 4
Consequently, the collective wave function of the N de-

vices takes the following form:

N
— 3 pl/do? (5)

n=1

<P1,P2,- . -)PN|D>:Cexp

with the constant C=[[Y_,(2ma2) " /4

Now let us see how the Heisenberg dynamics works.
The interaction (2) will, of course, modify the original
field equations and thus the observables 4,(1) as well.
These changes are merely those unavoidable perturba-
tions caused by any measuring device to the measured
quantum system and always implicit in quantum mea-
surements. It turns out that the quantities measured, in
fact, are the Heisenberg operators (1) of the coupled dy-
namics of the fields and the devices.

The interaction Hamiltonian (2b) sets the dynamics of
the devices in motion. Consider the Heisenberg equa-
tions of motion:

qnzl[H’qn]:O ’ (6a)
pnzi[H)pn]:fgn(t?x)¢n(t’x)dx ’ (6b)

for n=1,2,...,N. Although the Heisenberg operators of
the positions remain constants, the momentum operators
vary during the period of the coupling. It is crucial to
recognize that the excesses of the momenta are of covari-
ant forms:

p/=pi+4,, n=12,... N 7

as is easily seen from Egs. (1) and (6b). (p},p/ stand for
the Heisenberg momenta ‘“before” and ‘“‘after” the cou-
pling, respectively. Figure 1 shows the invariant space-

P

FIG. 1. Invariant past and future of localized observations.
S denotes the support of a given localized observable. In the
space-time region P, the measurement has not yet started (‘“be-
fore” measurement). In the space-time region F, the measure-
ment is already over (“after” measurement) and the outcome is
available everywhere in it.

time regions where the p,’s are still constants and, re-
spectively, where the p;’s will not change anymore, i.e.,
are available for readout.)

Canonical momenta always commute with each other;
thus, according to the principles of quantum mechanics,
the final momentum operators (7) can be simultaneously
measured, and the outcomes [ﬁ{,ﬁ {,. . .,ﬁ@} have a
definite joint probability distribution w(F{,54,...,p %)
Although p/ is not equal to 4, in the strong sense [see
Eq. (7)], in a weak sense it is. From Eq. (4), it follows
that (p/)=0 and Ap)=o0,, hence one can make the
reservation that, up to a precision o, the measured value
P/ yields the measured value 4, of the local observable
A4,.
One can thus have the desired joint probability distri-
bution of the outcomes of measuring the N local observ-
ables (1), in the following form:

w(Ad,, 4,,...
=(8(A,—p{)8(A,—p%)---8(Ay—pl)), (8

where quantum averaging { ) stands for the expectation
value in the Heisenberg state (3). This expression is in-
variant for the change of space-time coordinates. We re-
call the invariance of Eq. (7) that the invariance of Eq. (8)
relies on.

III. ELIMINATION OF DEVICE VARIABLES

The simple form of the devices’ Heisenberg states (4)
and (5) allows us to perform a partial quantum averaging
on the right-hand side (rhs) of Eq. (8). As a result, we
shall obtain the simultaneous distribution of the measure-
ment outcomes solely in terms of the field variables.

We solve the task in the interaction picture. The field
operators satisfy their original field equations as if they
were not coupled to the devices and, vice versa, the de-
vice variables g,,p, are constant operators again. The
quantum state will, however, evolve according to the in-
teraction Lagrangian (Hamiltonian) (2).

Fortunately, we only need the final asymptotic quan-
tum state, since the momentum operators p; on the rhs of
Eq. (8) can be taken equally well at the asymptotic future.
Hence, using the interaction Lagrangian (2a), we con-
struct the S matrix, which transforms the initial state (3)
into the final one:

S=Texp ifi(x)dx]
N
=Texp |—i > A4,q, | - 9)
n=1

The symbol T denotes time ordering of the local field
operators. Time ordering is a covariant operation, since
local field operators commute at spacelike separations.

Recall that we are in the interaction picture; hence all
operators but the g,’s have changed their values as com-
pared to the preceding section. They remain identical
“before” the couplings are activated (see Fig. 1).



43 COVARIANT FORMULATION OF MULTIPLE LOCALIZED . .. 19

We rewrite the rhs of Eq. (8) in the following way:
each Heisenberg operator p/ has to be replaced by p,
(which is always constant) while the state (3) is multiplied
by the S matrix (9):

(S18(A,—p)8(A,—p,) - 8(Ay—py)S) .  (10)

Since the wave function (5) of the devices’ initial state
is known, we can evaluate the effect of the S matrix (9):

where T denotes anti-time-ordering.

IV. MULTIPLE LOCALIZED QUANTUM
OBSERVATIONS IN SPACE TIME

It seems worthwhile to reconsider the various pictures
that have so far occurred in the present paper. We
defined the von Neumann measurement of localized ob-
servables in the Heisenberg picture of the coupled dy-
namics of fields plus devices (Sec. IT). In Sec. III we used
the interaction picture, and the coupling between the
fields and devices played the role of the interaction. Since
we have succeeded in eliminating the device variables, we
are henceforth going to consider only the fields of the sys-
tem in question, whose Heisenberg fields will then be
identical to the interaction-picture fields of Sec. I1I.

Now let us summarize the net results of the preceding
section, expressed by Eq. (12). Given a relativistic field
theory by its Heisenberg fields and by its Heisenberg state
[4,,7, we assume N localized observables

4,= [g,(x)¢,(x)dx, n=12,...,N (13)

of compact supports [c.f. Eq. (1)], with measuring accura-
cies o,, respectively. The random outcomes of the mea-
surements are denoted by A,, 4,,. .., Ay. The measure-
ments will perturb the system. The perturbation is taken
into account by the nonunitary evolution of the state vec-
tor. The unnormalized final state vector has the follow-
ing form:

Texp[—(Ay— Ay /403 1T expl—(Ay_;— Ay_,)* /405 1]

(p1,P2s- - »PN|SID's)=CTexp |— 3 5
n=1 4Un

N (pn—A,nz}

(11)

By substituting this result into the expression (10), the
device variables p, (n=1,2,...,N) can be integrated out
and we obtain Eq. (8) in terms of the field variables:

N
Texp |— 3 (4,—A4,)/40? ¢m>, (12)
n=1
I
lp(ﬁnal;Z],Zz,. . .,ZN)
N (4,—4,)
=Texp|— 3 —— |l¥) . (14
n=1 40n

The simultaneous probability distribution of the measure-
ment outcomes is proportional to the squared norm of
this final-state vector [cf. Eq. (12)]:

w(Ad,4,,...,Ay)=C?|(final; 4,, 4,,. .., dy)|?,

(15)
where C=[[Y_,2mwc2)~ /4,

Each measurement outcome A, can be communicated
through the future cone of the localized observable 4,
(see Fig. 1). Hence they are allowed to influence the
Heisenberg fields and also the other devices. For exam-
ple, 4,, may depend on 4, if the support of 4,, is locat-
ed “after” the A,’s support.

Thus we have formulated the central result of our
work. Equations (13)-(15) can also be recovered as a spe-
cial case of continuous measurement of fields, in the re-
cent phenomenological theory of Ref. 3. In Sec. III we
have shown that this phenomenology follows from the
von Neumann measurement of the Heisenberg fields, in-
troduced in Sec. II. (We emphasize that, in contrast, e.g.,
to Ref. 3 or 4, the present work is not intended to develop
a general covariant theory of state reduction.)

One can see that the time ordering T on the rhs of Eq.
(14) is responsible for the causality of all perturbations
that the measurements could cause each other. For ex-
ample, assume the simplest case when the support of the
localized observable A4,  is entirely in the future cone of
the observable 4,, for each n <N. Then the rhs of Eq.
(14) can be rewritten in factorized form:

X« Texp[—(4,— A4,)*/402]|¢,) . (16)

If the supports of the two observables, say of 4, and of A4, ,;, respectively, become spacelike separated from each oth-
er, then the k’th and the (k£ +1)'th factors of the above product become commutative. When the two supports in ques-
tion overlap, their T factors will lose their factorizability and their contribution on the rhs of Eq. (14) will keep the un-
factorized form

Texp[—(4d;— A, /405 —(Ay 4 — Ap 1) /402 1] . 17)
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Finally we note that if in case of interacting fields the interaction picture is to be used then Egs. (13-15) can remain

unchanged while Eq. (14) should be replaced by

— J— — N —
Y(final; A, 4,,. .., Ay)=T exp if,Limdx— S (4,— A, /40k 1Y) (18)

n=1

where .L;,(x) is the interaction Lagrangian density of the
fields.

V. MEASUREMENTS ON THE STATE
OF TWO WAVE PACKETS

We are going to illustrate how the machinery of Egs.
(13)=(15) works in the case when |¢;,) is a one-electron
state,

) =v172|1)+V'1/2]2) , (19)

such that state |1) corresponds to the electron going
along a certain world tube “1” (world tube is a smeared
world line) while state |2) represents it moving along
another well-separated world tube “2.”

A, =2, [g,(x)j(x)dx (n=1,2), (20)

where j(x) is the electromagnetic current-vector opera-
tor, and A, and A, are coupling constants, tuning the sen-
sitivity of the devices. Of course, the weight functions
g1,8, also become Lorentz vectors. The supports of
A, A, are disjoint and overlap the world tubes “1” and
“2,” respectively. We shall say that the nth device has
detected the electron whenever the absolute value | 4, | of
the outcome is much greater than the accuracy o, of the
measurement, which we shall set by o,=0,=0c =1, for
simplicity’s sake. Of course, the two devices are not ex-

J

pected to detect simultaneously if they (i.e., the supports
of A, A,) are spacelike separated. Let us see whether
our theory will respect this claim. '

If the supports of 4; and A4, are spacelike separated,
then, invoking Egs. (19) and (20), we obtain Eq. (14) in
the following form:

Yfinal; 4, 4,)=1/ 1T exp[ — (4, — 4,)*/4]
X T exp[—(A,— A,)2/4](]1)+[2)) .
1)

Note that the two T factors commute due to the spacelike
separation of the supports of 4, and 4,.

To make our example even simpler, we may reduce the
problem to the level of one-electron states, by ignoring all
“radiative corrections.” In this approximation, j(x)|1;,)
vanishes everywhere but at the world tubes of the elec-
tron propagation. In accordance with this and with Egs.
(20), we have the following trivial equations:

TeXp[_(Zz'—Az)z/“']]l)=CXP(_Z%/4’)“> ’

Texp[—(A,— A,)*/4]12) =exp(— 4 3/4)[2) .

These relations simplify reducing the rhs of Eq. (21) as
follows:

Y(final; 4,, 4,)=1/Lexp(— 4 3/4)T exp[ — (A, — A)?/4]|1) +1/Lexp(— 4 }/4)T exp[ —(4,— 4,2 /4]]2) . (23)

By invoking Eq. (15), we obtain the following joint probability distribution of the outcomes 4, 4, in the two measure-

ments:

w(A,, 4,)=12m) lexp(— 43 /2)|| T exp[ — (4, — 4,)*/4]|1)|]?

+1(27) lexp(— A4 3/2)|| T exp[ — (4, — A4

where we have applied Eqgs. (22) again, and used the com-
mutativity between the first T factor and the second anti-
T factor (and vice versa), along with the obvious ortho-
gonality relation {1]2)=0.

The two terms on the rhs of Eq. (24) describe two
peaks, each of the norm % The first peak is centered
around 4,=(1|A4,|1), 4,=0 while the other peak is at
A,=0,4,=(2| 4,|2). The first peak enhances the first
term on the rhs of Eq. (23), while the second peak
enhances the second term. These peaks separate well if
the quantum expectation values (1| 4,[1),(2]| 4,[2) are
much greater than the measurement accuracies, i.e., if
the devices’ sensitivities and accuracies are high enough.

D241, (24)

Hence Eqgs. (23) and (24) provide the following statis-
tics for the outcome of the measurements. In most cases
only one of the two devices will detect the electron, each
with a probability about 1. If the first device detects (i.e.,
| 4,]>>1), then the final state of the electron is nearly
equal to

constX T exp[ — (4, — 4,)*/4]|1) . (25a)
If the second device detects, the final state is much closer
to

const X T exp[ —( A, — A4,)2/4]]2) , (25b)
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which is orthogonal to the previous state (25a).

There may also occur detections in coincidence. Their
rate depends on the sensitivities and on the accuracies of
the devices: the more reliable the measurements are, the
lower the rate of false coincidences is.

VI. MULTIPLE MEASUREMENTS OF FREE FIELDS

The theory of multiple local measurements, given by
Eqgs. (13)-(15) in Sec. IV, is calculable rather well when
the observed fields ¢, of Eq. (13) are free bosonic fields,
not necessarily different ones, and the initial quantum
state |¢;,) is coherent.

In particular, when |4,,) is the vacuum state, we guess
that Eq. (15) yields a Gaussian form for the outcomes of
the measurements:

w(Ad,,4,5,...,4y)

=constXexp [ —1 C 4,|, @6

1
1

mn m

3
TI;:MZ

where the coefficients C,,, are calculable in a finite num-
ber of steps.

Thus we have a relativistic formalism to investigate
vacuum fluctuations as experienced by several local ob-
servers located arbitrarily in space time. A delicate task
would be, at the same time, to test Bell-type inequalities
between various joint distributions (26). Another possible
application would be to consider devices moving relative

to each other.

VII. CONCLUSIONS AND FURTHER REMARKS

The local quantum field theories on the one hand, and
the dynamics of simple measuring devices on the other
hand, coupled together, have led to the covariant formal-
ism [Egs. (13)-(15)] of multiple local observations. The
observables are localized expressions of the Heisenberg
fields. The formalism needs no quantum states (wave
functions) but the initial Heisenberg-state |, ).

It is worthwhile to note that the introduction of the
final state (14) could have been completely ignored. Any
kind of physical information is available by using Eq.
(12); the interpretation [(14) and (15)] is a matter of con-
venience. The final state (14) would be relevant in a simi-
lar covariant formalism of the weak measurement theory®
on preselected and postselected ensembles.

The field-theoretical technique that our formalism is
based on could pave the way for standard relativistic cal-
culations in the theory of measurements. The proposed
language of localized observations may anticipate a
language of local “beables,”®8 still spoken in outmoded
quantum theorists’ jargon.
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