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The notions of coarse graining and decoherence, introduced recently by Gell-Mann and Hal-tie for quantum cosmology, have 
been reformulated in usual terms of the formal von Neumann measurement theory. The formalism of continuous measurement 
has shown to be equivalent to coarse graining, with the soft version of decoherence. 

The so-called quantum measurement problem cul- 
minates in quantum cosmology [ 1 ]. After a long- 
standing (though often metaphysical) discontent with 
the quantum measurement theory of  von Neumann 
[2],  it seems inevitable to generalize the quantum 
theory itself, as done most recently by, e.g., Gell-Mann 
and Hartle ( G M H )  [3] applying the concept of  
coarse graining and decoherence. 

There have, however, been a great deal of  similar 
attempts from the part o f  measurement theorists too, 
motivated by the aforementioned (and incrimi- 
nated) sort of  discontent. In particular, modified 
quantum theories [4 -9 ]  have been based on gener- 
alizations of  the notion of  the yon Neumann mea- 
surement, concluding to a concept of  continuous 
spontaneous measurement [ 10-14 ]. 

One nearly does not dare use the term "measure- 
ment"  because o f  its anthropocentric look. All over 
this paper, however, measurement is only a historic 
term to denote the mathematically well defined col- 
lapse of  the quantum state. Furthermore, the fre- 
quently blamed "measurement  problem" is a his- 
toric term for the longstanding pseudoproblem which 
has finally been crystallized into a definite physical 
problem in quantum cosmology, as emphasized in ref. 
[1].  

G M H  [ 3 ] do not use the notion of  measurement 
and of  collapse either. They, nevertheless, use a com- 
plete t ime-dependent set {P,~( t ) ;a= 1, 2 .. . .  } of  or- 
thogonal hermitian projectors. Consider an increas- 

ing sequence t~, /2 ,  . . . ,  t~v. A certain coarse grained 
history h is defined by a given sequence h = (a l ,  a2, 
.... aN). Then G M H  introduce the corresponding his- 
tory-dependent coarse grained quantum state as 
follows: 

~(  h ) =PaN(IN) ...P,2( t2)P,~, ( t, ) ~"o 

- r ( n O l  e,~o(tn) ) ~o,  (1) 

here ~o is the original (fine grained) Heisenberg state 
and T denotes time ordering of  the operators. To a 
given history one assigns the probability 

w(h)  = D ( h l h )  = II ~(h)II 2. (2) 

Such probabilities are compatible with each other 
provided all pairs of  considered histories decohere. 
Two (nonidentical) histories h and h' are said to de- 
cohere if their decoherence functional D vanishes, i.e., 

D ( h ' l h )  = kU+(h')~U(h)=0, h ' # h .  (3) 

Eqs. ( 1 ) -  (3) represent G M H ' s  proposal [ 3 ], per- 
haps not in its most general version, for the quantum 
theory of  decohering coarse grained histories. 

No doubt, the above model is a radical generaliza- 
tion of  the standard quantum theory. One can, never- 
theless, translate it into the familiar language of  the 
von Neumann measurements. It deserves to perform 
the translation because the standard language makes 
elementary discussions easier. 
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Consider the time dependent observable 

Q(t) = Z aP4(t)  (4) 
4 

composed of GMH's  projectors. Observe that coarse 
graining (1), (2) is mathematically equivalent to N 
subsequent measurements of  Q(tl), Q(t2) ..... Q(tu) to 
perform ~ la yon Neumann. The history h is given by 
the sequence (al,  a2 ..... aN) of the individual mea- 
surement outcomes. The history-dependent state ( 1 ) 
turns out to be the resulting state after the N mea- 
surements and, furthermore, the probability (2) of 
the corresponding history can be recognized as the 
standard probability of the N subsequent wavefunc- 
tion collapses. 

We owe to translate the crucial decoherence crite- 
rion (3) as well. Let us consider the most simple case 
by taking N =  2, and consider decoherence between 
histories h=  (a , ,  Ot2) and h ' =  (fl,, f12), respectively. 
Invoking eq. (3), the decoherence functional 

D( h'l h ) - D(fl, , f12 l a l ,  Or2) 

= ~J~Ppl(tl)Pp2(t2)P42(t2)P4,(tl)TUo (5) 

must vanish for nonidentical histories: 

D(fl l , f l21a~,az)=O, i f a l ~ f l ~ o r a 2 ~ f l 2 .  (6) 

It is now straightforward to prove the following state- 
ment: if eq. (6) is satisfied then the expectation value 
of Q(t2) in a yon Neumann measurement at t2 will 
be independent of whether Q(tl)  was earlier (at 
t~ < t2) measured or was not measured at all. Let us 
see the proof. 

I fQ(f i  ) was not measured at all then the yon Neu- 
mann theory yields the following expectation value 
for the measurement of Q(t2) at tz: 

( Q ( t 2 ) )  = ~ug Q(t2) ~o • (7) 

On the other hand, if Q(t~ ) was measured then, ac- 
cording to von Neumann, 

(e( t2) )o~, , )  . . . . . . .  d 

= ~, ~P~P4,(tl)O(t2)P4,(tl)~Po, (8) 

where the spectral expansion (4) has been applied to 
Q(tl) .  Inserting the similar spectral expansion of 
Q(t2) as well, and invoking the definition (5) of the 
decoherence functional, the RHS of eq. (8) reads 

~ P4, ( t, )O( t2)P., ( t, ) ~o 
o~1 

= ~ ~ o~2D(a,, 0~2 [al, a2) • (9) 
Or2 41 

Now, from the decoherence condition (6) follows the 
identity: 

~ o~2D(oLI , a2 [ a l  , a2)  
4 2  41 

= E E E a2D(a , ,  a2 Jill, 0~2) . (10) 
4 2  ,~1 O/I 

Considering again eq. (5) as well as invoking the 
completeness and idempotentness of the projectors 
{P4(t)}, the RHS ofeq. (10) reads 

Z E Z °12D(al,a2lfll,a2) 
4 2  [31 4 1  

= ~ 0~2 ~ - P a 2 ( t 2 ) ~ o .  (11)  
4 2  

Eq. (4) shows the RHS of eq. (11) is equal to 
~ -  Q (t2) ~o. Hence, collecting eqs. ( 7 ) -  ( 11 ) one 
obtains the identity which was to be verified: 

( 0 ( t 2 ) )  = (0 (12) )OU, )  . . . . . . .  d. (12) 

Certainly we can generalize the above result as fol- 
lows. The decoherence condition (3) is equivalent to 
require that the yon Neumann measurements Q(t~), 
Q(tz) ..... Q(tN) do not disturb each other in a sense of  
eq. (12). 

Since the translation of the quantum theory of de- 
cohering coarse grained histories [ 3 ] into von Neu- 
mann terms has been successfully performed, one can 
discuss it on the language of the standard measure- 
ment theory [2 ]. In particular, the decoherence con- 
dition (3) will provoke some doubts when con- 
fronted with conventions of measurement theory. 
Namely, we think that constructing a sequence of 
nondisturbing observables is not a trivial task at all. 
On the contrary, it has been the central subject of the 
historical measurement problem in quantum me- 
chanics. And it is still open. Nevertheless, a special 
progress has been achieved. 

The concept of nondisturbing measurements seems 
hopeless restrictive; we have to soften it. In particu- 
lar, we can specify fuzzy measurements instead ofvon 
Neumann's  ones. As a reward, the concept of  (time-) 
continuous measurement (i.e., of permanent coarse 
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graining) can be introduced, cf. refs. [ 10-14]. Let us 
summarize it in short. 

I fa  certain quantized variable Q(t) is to be coarse 
grained, a formal continuous measurement will be 
assumed for it. The c-number function Q(t)  of mea- 
surement outcomes will represent the measured his- 
tory, according to GMH's philosophy. We shall write 
(~ for history, instead ofh. The history dependent state 
is then equal to 

~ ( Q ) = T e x p ( - ½ ,  I [Q(t)-Q(t)]2dt)~o, (13) 

where 7 characterizes the strength of the continuous 
measurement, i.e., the strength of continuous coarse 
graining. 

One may observe that expression (13) is a 
smoothed time-continuous version of GMH's one 
( 1 ). For completeness, let us write down the counter- 
part of GMH's equation (2) for the probability of a 
given history: 

w(Q_) ~o(ola)  = PI ~(Q)II 2 (14) 

It is shown [ 13 ] that eqs. ( 12 ) and ( 13 ) of continu- 
ous measurement theory can be cast into stochastic 
differential equations which offer very flexible math- 
ematical tools for explicit calculations, cf. refs. 
[8,9,15-18]. 

The properly softened version of GMH's decoher- 
ence criterion (3) will be the following: 

D(Q'IQ) = ~+ (Q') ~(O)-~ 0 ,  (15) 

if Q' and Q differ "much". The fulfillment of such a 
criterion follows from the very nature of continuous 
measurement. Exact results are obtained, e.g., for a 
free particle subjected to continuous position mea- 
surement [ 13,18 ]. 

We claim that quantum theories with spontaneous 
continuous measurement are quantum theories with 
(continuous) coarse graining and vice versa. 

The concept of continuous measurement has a few 
formal results in quantum cosmology cf., e.g., refs. 
[ 19-21 ]. Of course, one expect more applications in 
the future. Still, we mention a nonrelativistic carica- 
ture of the quantum cosmology with coarse graining 
(or, in alternative terminology, with formal contin- 
uous measurement). 

According to the author's recent proposal [ 8,14], 
the coarse grained (i.e. spontaneously measured) 

history variable Q (4) is, by assumption, the newton- 
ian gravitational field strength. The strength param- 
eter of coarse graining (13) is chosen to be inverse 
proportional to the product of Planck's and New- 
ton's constants: y = const./hG. Then eqs. ( 13 ), (14) 
leads to a generalized (coarse grained, if you like) 
quantum mechanics in stochastic differential equa- 
tion form. 

Perhaps the general lesson of the present paper is 
that the mathematical and logical machinery of the 
von Neumann measurement theory cannot be ig- 
nored by any generalization of the standard quantum 
theory. Even if one make a radical trial of a new for- 
mulation, the elements of the von Neumann mea- 
surements will be, nolens volens, recognizable in it. 
This is probably valid also for the most recent for- 
mulation of coarse grained histories [ 22 ] which ap- 
peared during the completion of the present work. 

The author is grateful to Nordita and to the Niels 
Bohr Institute for support and hospitality. This work 
was partly supported by the Hungarian Scientific Re- 
search Found under Grant No 1822 / 1991. 
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