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Summary. - -  By simple arguments, we have shown that K~rolyh~zy's model 
overestimates the quantum uncertainty of the space-time geometry and leads to 
absurd physical consequences. The given model can thus not account for gradual 
violation of quantum coherence and cannot predict tiny experimental effects either. 

PACS 03.65.Bz - Foundations, theory of measurement, miscellaneous theories. 

In a pioneering paper[i],  it was suggested that the quantum mechanics of 
macroscopic objects ought to be modified due to a certain eventual unsharpness of 
space-time geometry. Later on, the possibility of experimental verification of the 
model, too, has been developed [2, 3]. The idea went as follows. 

By combining Heisenberg's uncertainty principle with gravitation, the following 
relation has been obtained for the minimum uncertainty As of a single (timelike) 
geodesic: 

(1) As 2 = a4/3 s2/a, 

where s is the length of the geodesic and a is the Planck length (cf. eq. (3.1) of 
ref. [1]). Then this uncertainty is believed to be a universal lower bound, and so must 
appear in the space-time in an objective way. This way. This was done via random 
,,gravitational waves)~. 

The present authors [4] re-analysed the concept leading to eq. (1). A result is that 
in ref. [1] and [2] the value M of the mass realizing the least uncertainty along the 
given geodesic takes irrealistically high values - ( h / c ) a - 4 / 8 s l / 3 .  For example, a 
geodesic of length s = 1 lightsecond would require a mass M N 1010g to be ,,realized>). 
In other words, the optimum mass of a clock to measure a period of ls would weight 
ten thousand metric tons. 
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This result does not directly invalidate the concept of ref. [1] and [2]. Namely, the 
argumentation needs only the existence of a certain lower absolute bound for the 
uncertainty; it does not involve real clocks directly. However, the high-mass problem 
is intimately connected with another problem as will immediately be seen. 

The original paper [1] as well as the further ones [2, 3] propose that the space-time 
uncertainties be represented by random gravitational waves. These gravitational 
waves ), satisfy the linearized vacuum Einstein equations: 

(2) Dy = 0 

- -see  eq. (3.2) of ref. [1]. Adopting all the time the conservative notations of ref. [1], 
the gravitational wave y(x, y, z, t) is expanded as a superposition of plane waves: 

(3) y = ~ ck cos (k~x) cos (kyy) cos (k~z) cos (kct) + . . . .  
k 

The random coefficients ck are uncorrelated. Their average is zero, while the spreads 
are given by 

(4) L 3 c  2 - ~ 4 / 3 k - 5 / 3  , 

where L is the normalization volume (cf. eqs. (3.4) and (3.5) of ref. [1]). The above 
equation is the only one which is conform to the uncertainty relation (1). 

According to the intentions implicit in ref. [1] and [2], the space-time geometries 
defined by eqs. (2) and (3) must be approximate solutions of the Einstein equations. 
However, it turns out that they will not. Though they satisfy, by construction, the 
linearized vacuum Einstein equations (2), the conditions for the linear approximation 
will seriously fail. We are going to test two rather trivial conditions. The first will 
hold but the second will not. 

Let us calculate the mean-squared deviation of the metric tensor from its 
Minkowski value. Squaring both sides of the eq. (3) and taking stochastic averages of 
the coefficients ck, one obtains 

(5) ~2 E C~ - -  a~4/3L  -3  • k -5/3 _ (~r , 
k k 

One needs a finite cut-off on k otherwise the amplitude of the random waves would 
diverge. IZArolyh~izy suggests km~ = 1013  c m  - 1  and this assures that ~, is much smaller 
than unity. This was the first condition for applying the linear form (2) of the Einstein 
equations. 

As for the second condition, let us first invoke the expansion of the scalar 
curvature R up to the second order in ], (cf. ref. [5]): 

1 1 1 1 
(6) R = - -  [ 'Ty i  i - Y i j ~ J Y i j  + Y i j ,  k Y i j ,  k + ( Y i j ,  k --  Y ik ,  j ) ( Y i j ,  k - -  Y ik ,  j )  + 2 . . . .  

Now, by substituting the waves (3) into this equation, the first-order term indeed 
vanishes. The magnitude of the average of the remaining terms can be estimated by 
invoking eq. (4); one obtains 

(7) ~ - -  ~ 4 / 3  ~ 10/3 
�9 ~max �9 

This curvature is extremely high. Using the previous cut-off we are led to 



K/kROLYH)~ZY'S Q U A N T U M  S P A C E - T I M E  G E N E R A T E S  N E U T R O N  STAR D E N S I T Y  IN V A C U U M  1421 

- 1 cm -2 . So the corresponding fluctuating metric is not at all the ,(extremely small 
smearing, [1] of the flat space-time, as thought before. 

According to the exact Einstein equation R = (8=~2/hc)T. Hence the curvature 
(7) would assume an average energy density in the order of 

(8) ~ _ ~ -2/3 ~ 10/8 
o~v~ , viTla X �9 

Observe the dramatic change: in the energy density the Planck length appears with 
inverse (two-thirds) power. Therefore the interplay of two small length scales may 
result in anything. The original cut-off km~x = 10 is cm -1 would yield 

(9) c- ~ - 1026 g/cm a , 

i.e. i i  orders of magnitude above neutron star density. 
In ref. [i] the details of the cut-off were thought of no importance. We have, 

however, pointed out that the original cut-off would imply absurd results for 
cosmological mass density. Since the cut-off km~ is the only free parameter in the 
model, one may hope to save the theory by choosing a lower value for it. 
Unfortunately, the choice kmax = 106 cm -1 familiar from, e.g., the model of Ghirardi et 
al. [6], yields still-water density. Further decrease of kmax is needed. Then, however, 
there would be only macroscopic wavelengths I / k  and the gravitational fluctuations 
(3) would not play a role in the quantum-classical transition anymore. The trace (9) in 
itself could be removed by means of an incredibly high cosmological constant A, but in 
the Robertson-Walker-universe geometries two non-trivial components of the 
Einstein equations survive, and one cannot remove the problem from both. 

Obviously, the K~ro]yh~zy mode] [i] has shown to overestimate something in the 
assumed quantum smearing of the space-time. The spectrum (4) of gravitational 
fluctuations is certainly wrong whatever cut-off is chosen. The proposals outlined in 
ref. [2, 3] derive extremely fine effects to be observed experimentally. In the light of 
the cosmological absurdity of the model we wonder if such tiny effects would have to 
be taken seriously. 

The necessity and timeliness to perform the present research were recognized in a 
discussion with Prof. P. Gniidig of the EStvSs University. This work was supported 
by the Hungarian Scientific Research Fund under Grant No. 1822/1991. 
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