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The Markovian approximation of quantum dissipation has been reconsidered in the model 
of Caldeira and Leggett [Physica A 121 (1983) 587]. Their high temperature master equation 
has been generalized to medium temperatures, Two additional damping terms in the master 
equation have been derived and shown to assure the Lindblad form of the equation. A 
transient term in the density matrix has been found and expressed in a simple form. 

1. Introduction 

Several years ago, Caldeira and Leggett  [1] (CL) constructed an exactly 
soluble model  for quantum dissipation. They assumed a simple quan tum 
system coupled to a bosonic reservoir,  i .e.,  to an infinite number  of  quan tum 
oscillators at thermal  equilibrium. A similar model  was considered later by 

Unruh  and Zurek  [2]. The reduced dynamics of the simple quantum system 
turned out to be dissipative due to the interaction with the reservoir.  The  
statistical opera tor  p of the damped  particle satisfies a generalized mas ter  
equat ion of the form 

p(t)  = S(t) p ( 0 ) ,  t > 0 ,  (1) 

where S is the evolution superoperator preserving positivity and normalizat ion 
of p. For high temperatures ,  CL approximated eq. (1) by the Markovian  
master  equation 

IJ(t) = L( t )  p(t)  , (2) 
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where L is the Liouville superoperator, also given by CL. 
In our paper, we try to generalize the Markovian approximation for m e d i u m  

temperatures, too. We recalculate the Liouville operator L from the exact CL 
evolution operator S. Our result differs from CL's one by additional damping 
terms known from Dekker's earlier phenomenological calculations [3]. Our L 
is of the Lindblad [4,5] form, which assures its mathematical consistency, 
while, on the other hand, the CL master equation would violate the positivity 
of the statistical operator p, see refs. [6,7]. 

2. The generalized master equation 

Assume a certain quantum particle with Heisenberg canonical operators q(t)  
and p(t) .  For concreteness, we think of a quantum oscillator, so that canonical 
equations are the following: 

Cl = ( 1 / M ) p  , p = - M o ) 2 q  . (3) 

The quantum state will be represented by the statistical operator p. 
Consider, on the other hand, a certain bosonic reservoir and single out a 

certain harmonic coordinate Q(t) of it. Let  us introduce the auto-correlation 
function of Q(t) ,  

1 
a(t)  = ~ (Q( t )  Q(0)) T, (4) 

where symbols ( . . . ) r  stand for equilibrium expectation values at temperature 
T. 

At  t = 0, let us couple the reservoir and the particle together, by switching 
on the interaction Hamiltonian 

H I = q Q .  ( 5 )  

Having solved the coupled dynamic equations and then having traced over 
reservoir states, one obtains a generalized master equation of the form (1). If 
at t = 0 the particle and the reservoir were uncorrelated (to the opposite case 
see, e.g., ref. [8]) then the evolution superoperator S is given the following 
exact form: 

Il i i  S(t) : 1" exp - ~  d~- ds (i[q+(z) - q_('r)]oti('r - s) [q+(s) + q_(s)] 
o o 

+ [q+ (~'1 - q_ ('r)]O~R(7" - -  S) [q+ (S) -- q_(s)]}) ,  (6) 
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where O~R, a I are the real and imaginary parts, respectively, of the correlation 
function (4). Now is the time to explain the superoperator notation applied 
above. A usual operator, say q, becomes superoperator when it is appended by 
a + / -  index, indicating q is to be applied to the statistical operator p from the 
left/right, respectively. Furthermore, symbol J~ prescribes time-ordering for 
q+(t) while anti-time-ordering for q_(t), cf. ref. [9]. 

In their pioneering work [1] CL derived and presented formula (6) in 
path-integral formalism (see their equation (3.9)), which is equivalent to our 
T-product formalism. For brevity, we introduce the standard notations [9] 

q A = q + - - q _ ,  q¢ ~(q+ +q- - ) '  (7) 

hence eq. (6) reads 

( l i i  S(t) = T exp - ~  dr ds [2iqa(, ) a,(~" - s) q~(s) 
0 0 

+ q~(r) aR(,  -- S) q~(s)l) • (8) 

The CL model of reservoir and the choice of coupling led to the following 
correlation functions (cf. eqs. (3.10), (3.11) and (3.23) of ref. [1]): 

/2 

aR(~- ) = 77 f to coth (hto/2kT)  cos(to~') dto 
Ti" 

0 

(9a) 

0 

Ot i (,./.) n f = - - -  to sin (tot) dto 
'IT 

0 

(9b) 

where the coupling constant ~7 plays the role of viscosity coefficient, the cutoff 
12 is the maximum frequency of reservoir oscillators. 

Eq. (6), applied to eq. (1), gives the exact solution for the dynamics of the 
quantum particle's damped motion. Remember that q±(~-), q+_(s) are the 
solutions of the particle Heisenberg equations of motion (3). 

3. Markovian approximation, medium and high temperatures 

From now on, we consider high and medium temperatures satisfying the 
condition 

k T  >~ h i2 .  (10) 
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It is rather straightforward to see that the correlation function (4) falls for large 
time separations, 

a(~-) ~ 0 if I~-I > ~-c. (11) 

For the CL reservoir (9a,b), the characteristic time of the memory ~'c of the 
reservoir can be chosen as 

= l / O ,  (12) 

provided condition (10) is fulfilled. 
To prepare the Markovian approximation, write the correlation functions 

(9a,b) in the following forms: 

271k T ~ T  
O~R('/') = T  g(T) -- g"(T) + . . . .  (13a) 

O/I (T) = "0g'("/') , ( 1 3 b )  

where the ellipse stands for the third (and higher) powers of the inverse 
temperature 1 /T times the fourth (and higher) time derivatives of the function 
g. This latter is defined by 

g(~.) _--- __1 f dto cos(to~') 
T~ (14) 

i.e. it is a smoothed delta-function of a width of about  ~'c = 1/O and of height 

g(0) = O/'rr. (15) 

(The expansion (13a) has its counterpart  in eq. (3.19) of ref. [1].) 
We are now prepared to summarize the concrete rules of the Markovian 

approximation, which will be applied in the forthcoming section. (i) Following 
ref. [1], we take g(z)~6(T)  but, whenever g(0) enters explicitly, we shall 
retain its regularized value (15). (ii) Opposite to ref. [1], we shall retain the 
first two terms on the rhs of eq. (13a) and then neglect the higher order ones. 

Step (i) assumes that non-stationary features of the particle dynamics, if finer 
than the reservoir memory %, will not be described. This approximation is still 
useful provided 

to ~ 1/re,  (16a) 

i.e. the dynamic acceleration (cf. eq. (3)) of the damped particle is small at the 



L. Di6si / Caldeira-Leggett master equation and medium temperatures 521 

time scale of the reservoir's memory. A similar condition must be satisfied for 
the frictional deceleration. The corresponding mathematical condition is 

7 ~ / 2 M ~ 1 / ~  (16b) 

though this fact can only be justified later, in section 4. 
In brief, we point out that the fulfillment of condition (16a) justifies step (ii) 

as well. It can be shown that the neglected higher order terms in eq. (13a) are 
proportional to increasing powers of the ratio to/T. The smallness of these 
terms is assured by condition (16a) combined with condition (10). 

4. Calculation of the Liouville operator and the initial slip 

We are going to calculate the Markovian approximation of the exact 
evolution superoperator S(t). Let us write eq. (8) into the form 

S(t) = Texp[~(t)]  (17) 

and assume the time lapse is much greater than the reservoir memory: 

t>>%--- l /g2.  (18) 

We have to calculate the superoperator 2~(t), i.e. the double integral on the rhs 
of eq. (8). We substitute eqs. (13a) and (13b) into it. Then we apply the 
Markovian approximation explained in the preceding section. 

The first term contributes as 

l T 

~(~)(t)-- 2vkT f f h2 dr ds qa(r) g('r - s) qa(s) 
0 0 

i h2 dr  [qa(r)] 2 
0 

(19) 

The second term yields 

l 'r 

= 6---k--T dr  ds qA(r) g"(T --S) qa(s) 
0 0 

n --~-[qA(O)] - - -  dr qa(r) (la(r)--~ dr [qa(r)] 2 , "~ 6--~ ~r 
0 0 (20) 
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where we have ignored a term ( ~ / 6 k T )  [qaqa]o." ' Its contribution is small as 
compared to the second integral on the rhs, due to condition (18). 

The imaginary part (13b) yields the following contribution: 

~ l l ) ( t )  ~- -2-h- dr  ds qA(Z) g ' (T--S) qc(S) 
0 0 

0 0 
(21) 

At the conditions of Markovian approximation (cf., in particular, conditions 
(10) and (16a)) one has thus obtained the following result: 

~(t)  = . ~ ) ( t )  + .~ ~)(t) + i~(~l)(t), t>>.r c . (22) 

The main advantage we have achieved is that double time-integrals repre- 
senting the exact form of ~(t)  have been approximated by single integrals. 
Consequently, we can use the following ansatz: 

~(t )  ~ ~tr -I- i dT L(T) ,  
0 

t >> ~'c, (23) 

where ~tr is a certain transient term, and L is the Liouville superoperator,  as 
we shall see below. But first, let us concretize their forms. By comparing eq. 
(23) with eqs. (19)-(22) ,  we get the transient te rm ~tr in the form 

2tr = - 6 k T  [q+ (0) - q_ (0)] 2 . (24) 

The Liouville superoperator takes the Dekker  form [3] 

i i 
L = - - ~ ( n ~  - H ' ) - - ~ y ( q +  - q _ ) ( p +  + p _ )  

1 
h2 [Dpp( q + - q_)2 + D qq(p + _ p _ ) 2  + 2Dpq( q + - q_ ) ( p  + - p _ ) ] ,  

(25) 

where, for brevity, we have suppressed notations of time arguments in /,(t), 
q(t)  and p(t) .  The latter stands, of course, for q(t) times the mass M. 

The reservoir has renormalized the particle Hamiltonian by adding the 
inverse harmonic oscillator potential [1] to it, 
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H '  = - ~/__~O q2. (26a) 
'It 

The four damping constants of Dekker's phenomenology turn out to take the 
following values: 

" (26b) Y = 2 M '  

Dpp =~kT, (26c) 

~Th 2 
Dqq- 12M2kT, (26d) 

,0.Oh 2 
D p q -  12arMkT" (26e) 

(Eqs. (26a,b) correspond to ref. [1], eqs. (3.37), (3.36), respectively, while the 
coefficient (26c) appears first in eq. (5.1) of ref. [1].) 

It remains to interpret the transient t e r m  .a~tr and to prove that L of eq. (23) 
plays the role of a Liouville operator indeed. Let us substitute eq. (23) into eq. 
(17): 

¢S(t)~-(T exp i d~" L(~')) exp(.~tr ) , 
o 

t>>%. (27) 

It is worthwhile to recall the effect of T-ordering: the transient factor gets to 
the very right. Invoking the generalized master equation (1), we are going to 
interpret the effect of the evolution superoperator (27). The coupling to the 
reservoir at t = 0 changes the quantum state of the particle after a transient 
period t -~ %: 

p(0)----~ exp(,~tr) f l (0 )  ~ e x p ( - 6 - ~ T [ q  + (0) - q_ (0)] 2) p(0).  (28) 

In the spirit of the recent paper by Suarez et al. [10], this initial slippage 
destroys non-Markovian non-stationary features built in the initial state. After 
this transient period the statistical operator satisfies the stationary Markovian 
master equation (2) with the Liouville superoperator (25): 
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i i 
t5 = Lp ~ --~[H' ,  p] -~3"[q,  {p, p}] 

1 
hE (Dpp[q, [q, p]] + Dqq[p, [p, p]] + 2Dqp[q, [p, p]]) .  (29) 

Hence, the main result of the paper has been presented by eqs. (28), (29) 
together with eqs. (26a-e). In particular, the master equation (29) is expected 
to be valid for medium and high temperatures (10), and for small dynamic and 
frictional accelerations. Consider the quantum expectation value v =-tr(pp)/M 
of the velocity. The master equation (29) together with the Heisenberg 
equation (3) lead to the well-known classical equation of motion 

2 
O = - - (DRq  -- 23"v, (30) 

where w~=(D2-4yl2/~r (cf. eq. (3.37) of ref. [1]). Thus the dynamic 
acceleration is characterized by the renormalized frequency [1] (DR, while the 
frictional deceleration is characterized by the relaxation constant 3'. In sum- 
mary, the master equation (29) is valid for 

(DR, 3' ~ ~-~ ~ kT/h, (31) 

although we cannot exclude the possibility that further restrictions are neces- 
sary. 

5. D i scuss ion  

Master equation must preserve normalization and positivity of the statistical 
operator. If the 2 × 2 matrix of Dekker's coefficients is positive, i.e. 

Dqq Dqp + ½ihT~ 
Dqp - ½ihy Opp ] > O, (32) 

then the master equation (29) belongs to the Lindblad class [4,5], which 
guarantees mathematical consistency including positivity of the statistical 
operator p. 

~(1) depending on q, the only Had we ignored in section 4 the terms "-~R,I 
nonzero coefficient would be Dpp. This is the simplest Markovian approxi- 
mation. It yields a mathematically consistent master equation which, however, 
does not take into account energy dissipation. The CL master equation [1] 
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~(1) 
(1) while it retains ,,~ . It describes dissipation but it violates the ignores ~R 

positivity condition (32) because Dpp = 0 (and Dqp = 0 )  in it while 3' ~ 0. 
Let us turn back to our master equation (29) with the complete set (26a-e) 

of nonvanishing Dekker coefficients. Let us calculate the determinant of the 
matrix (32): 

[ 1 (h/~'~ 21 
DppDqq - DZpq - h 2 y 2 / 4 = c o n s t .  x 1 - ~ w  2 k k T  / J " (33) 

It is definitely positive in the medium and high temperature regime (10) and, 
therefore, our master equation (29) belongs to the Lindblad class. 

What can be done with initial slippage (28). Let us write it in coordinate 
representation, 

x - y  2 
(34) 

where 

(35) 

The transient process (34) performs a fast diagonalization of the particle 
density operator, in accordance with the results of Hu et al. [11]. In the high 
temperature limit kT>>hO, the initial slip (28), (34) can be ignored as 
compared with the similar and quicker effect of the term Dpp[q, [q, p]] in the 
master equation (29). This is completely in agreement with the result of Hu et 
al., who have observed the absence of the initial jolt in the exact time 
dependent coefficient Dpp in the high temperature limit. 

Presumably the coherence length, i.e. the characteristic length scale at which 
(xlply) is "diagonal", will never be increased by the stationary process (29) 
either. Hence O'm, x (35) is an absolute bound, valid at any not too low 
temperature (i.e. when T >~ hl2/k) for the coherent extension of the particle. 

6. Outlook 

Very recently, stochastic wave function models have been proposed to 
describe the evolution of various damped quantum systems (see e.g. ref [12]). 
The new model is physically equivalent to the master equation, advantageous 
in numeric simulations and represents a concurrent tool to the Wigner 
functions in investigating the quantum-classical correspondence. Theoretical 
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grounds  of  the new m e t h o d  have a l ready been  k n o w n  earlier. E v e r y  Marko-  

vian mas te r  equa t ion  allows us a unique  jump  [13] or,  al ternatively,  a un ique  

Gauss ian  process  [14] to use for  describing the evolut ion o f  the wave  funct ion,  

p rov ided  the mas ter  equa t ion  is o f  L indblad  type.  The  Lindblad  mas te r  

equa t ion  of  the C L  mode l  (first publ ished in ref. [7]) opens  the way  to  

construct  the cor responding  stochastic wave funct ion equa t ion  and to grasp the  

fruits of  the q u a n t u m  state d i f fus ion  [15] method .  
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