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Abstract. - The reduced dynamics of a Brownian particle is discussed in single collision 
approach valid typically in dilute-gas environments. Our main purpose is a consistent account of 
quantum friction caused by local environmental interactions. We derive a Lindblad master 
equation whose generators are calculated from the differential cross-section of single collisions 
between the Brownian and the gas particles, respectively. The existence of thermal equilibrium 
for the Brownian particle's state p is proved. Master equations proposed earlier are shown to be 
particular cases of our one. 

In this letter we discuss the quantum counterpart of the classical Brownian motion. 
Instead of standard weak-interaction approach [ 11, a single collision mechanism will be 
assumed. 

In the classical phenomenological theory, the momentum distribution p(p) of a Brownian 
particle of mass M satisfies the Fokker-Planck equation [2] 

where D, is the coefficient of momentum diffusion and 7 is the friction constant. In  
particular, D,, = kB TT if the environment is in equilibrium at  temperature T.  A naive 
quantum counterpart would be the following master equation [3]: 

where q, p denote the position and, respectively, the momentum operators in interaction 
picture. Equation (2), however, does not belong to the Lindblad class [41 and, consequently, 
may violate the positivity of the density operator F [ 5 ] .  A complete dynamic analysis of the 
quantum Brownian motion in gas environment is thus needed. 

Let us first consider a simple (frictionless) classical kinetic model. The momentum 
distribution of a Brownian particle, interacting with the particles of the environment, 
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satisfies the following kinetic equation: 

where no is the density of environmental particles, ,g" is their momentum distribution; do 
denotes the differential cross-section of their scattering on the Brownian particle, while k f i  = 
= kf - ki is the difference between the final and initial momenta of the scattered particle. 
Further symbols are used in a standard way and need no special explanation. Equation (3) is 
valid provided that: the typical scattering time is much smaller than the average period 
between subsequent collisions, the mass M of the Brownian particle is much bigger than the 
mass m of the environment particles, their interaction is spin independent, and the influence 
of the Brownian particle on the environment's momentum distribution F' can be ignored. 

Looking for a master equation for the density operator ,c, note that the classical 
equation (3) would govern the evolution of p's diagonal elements according to the substitution 
p(p) = (p Ip ( p ) .  For the off-diagonal part of F ,  however, we have no evolution rule (cf. Pauli's 
master equation [6]). A natural extension [7] of the *<Pauli,, evolution equation (3) would be 

To understand friction, assume that the environment is in thermal equilibrium so that 
p '"(k) is a symmetric function. If the Brownian particle moves with velocity p/M then, in its 
eo-moving system, it perceives an asymmetric distribution ,c "(k - mp/M) generating 
damping force. 

We start from the unitary dynamics of the density operator ,pp + " corresponding to the 
Brownian particle (9) plus the environment (8 )  coupled to each other. In  an interaction 
picture, a single collision between the Brownian and an environmental particle transforms 
the initial state pp+" into the final one ,cy+"'via the unitary scattering operator S: 

Let us introduce the transition operator T by S = 1 + iT .  From the unitarity of S, we obtain 
T ' T  = i(TT - T ) .  Then eq. ( 5 )  yields [81 

The change Ap of the Brownian particle's density operator is given by the trace of eq. (6) over 
the environmental degrees of freedom. We shall approximate dpldt by 

where A t ,  considered longer than the typical collision time, is the period spanned by the initial 
and final states according to eq. (5). 

Consider the standard form of the transition operator for the (spin-independent) 
scattering of the environmental particle on the Brownian one, with initial laboratory 
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momenta ki and pi, respectively: 

This equation is valid in the laboratory system though c.m.s. quantities (marked by stars) 
appear in it: M *  = M + m, m* = mM/M*, kT = (M/M*)ki  - (m/M*)p i ,  and ka = kf - 
- (m/M*)(ki  +pi). The c.m.s. scattering amplitude has been denoted by f. 

Let us assume now the form p i € 3 p p ” ,  for p Y f 8 .  Let the environment’s state p” be 
stationary, representing no uncorrelated identical particles per unite volume, with the same 
momentum distribution p “ ( k )  for each. (Assume Boltzmann statistics, for simplicity.) Let us 
substitute eq. (8) into eq. (6) and single out the second term on the r.h.s.: 

tr,.(Tpi@p””Tt) = dpidp[dkidkfpC”(ki). 

Observe that the coherent uncertainties of the gas particles’ c.m.s. momenta are much less 
than the coherent uncertainty of the Brownian particle’s momentum, since IkT’ - kT I = 
= I kf*’ - k? I = (m/M*)  Ipf - pi I , If (m/M*)  Ip[ - pi I is small the following substitution on 
the r.h.s. of eq. (9) allows a good approximation: 

with kf kT + (m/M)(pi + k?). Now, let us change the integration variables dki, dkf for 
dkT , dkf* , respectively. Then, apply an approximation again: let the momenta kT’ , k,*’ be 
identified with kT, k f * ,  respectively. One obtains 

.[J(Ekj -Etc7)l2v=vml~i -k ,*) (p i )pJpf) (p l  -k,*J.  (11) 

This approximation is justified, similarly to the former step (lo), if (m/M*)  Ipf - p i  1 is small 
enough (cf. footnote(1)). One can rewrite eq. (11) in operator form: 

where ki = kT + (m/M)(p  + k?). Taking the usual approximation d ( E )  I E = - A t / 2 x ,  eq. (12) 

(I) To formulate the correct conditions, let us introduce the quantum uncertainty Ap of the 
Brownian particle’s momentum: let ( p ’ l p l p )  = 0 if Ip’ - p i  >>Ap. The steps (lo), (11) are justified 
approximations provided Ik = (m/M) A p  is so small that the variations of both the distribution p 8  and 
the scattering amplitude f can be ignored when their arguments are varied by - Ak. 
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(14) 

By now, all preparations have been done for calculating the rate d,c/dt which we shall 
approximate by Alc/.l\t (7). Consider the r.h.s. of eq. (6). The contribution of its first term will 
be neglected (that can be justified in dilute gases), the contribution of the second one has 
been given by eq. (13), and the third term's yield would also be given by a properly altered 
form of eq. (13). Invoking eq. (7), too, all these lead to the following equation: 

1 m 
M 

V k * f k r  = {,?"(kT + -(p +kt) exp[- ik$q] .  

An equivalent equation can be given in terms of the c.m.s. differential cross-section ds/dn = 
= l f I 2  as follows: 

This is the central result of our letter: a quantum master equation of Lindblad form [4] 
with Lindblad generators v k ;  k:  , describing the fluctuational-frictional evolution of the 
Brownian particle's density operator p, valid a t  time scales longer than the typical collision 
time. We shall prove the existence of thermal equilibrium for the stationary solutions. 

The master equation (16) preserves translation invariance: density operators which are 
diagonal in momentum representation will remain diagonal. Equation (16) implies the 
following closed equation for translation-invariant states: 

where, as before, the normalized distribution ,c(p) is defined by p ( p )  = const(p 1,s Ip). At the 
same time, this equation can be considered the extension of the classical kinetic equation (3) 
including friction this time. To find the stationary solution of the quantum master 
equation (16) is easy. Since it must be translation invariant, its diagonal will be subjected to 
the classical equation (17). Invoking the symmetry of d5 for kT , k? interchanged, the 
condition for d(c/dt = 0 can be the following: 

,? W i )  ,?(pi) = ,c "(kf) ,c(pf) , ( 18) 
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i.e. one obtains the detailed balance condition. It has very important consequences. Assume 
that the environment is in thermal equilibrium at  temperature T, with Boltzmann distribution 
p"(k) = const exp [ -/?El, where /3 l /kB T. Then eq. (18) implies that the stationary state p 
of the Brownian particle will be the thermal-equilibrium state const exp [ - pp' /2Ml in both 
classical and quantum cases. 

As an important special case, we consider a heavy Brownian particle in dilute Boltzmann 
gas. In this limiting case m / M  + 0 but mp/Mk is finite. Then eq. (16) yields 

The Lindblad generators (14) will reduce to the form 

found phenomenologically by Gallis [9]. 
Also Dekker's proposal[lO] is recovered by our eqs. (19), (20) in the limit when the 

coherent extension of the Brownian particle and/or the transferred momentum I kf i  I in single 
collisions are small enough. Then exp [ - ikfiq] on the r.h.s. of eq. (20) is approximated by 
1 - ikfiq and, neglecting terms of order of q 2 p 2 ,  eq. (19) can be written as follows: 

with = 3Dpp and with diffusion parameters expressed as 

6 
,e "( ki) sin' - , dd6 ,  E )  

d Q f  2 

Our result differs from the naive quantum master equation (2) by the additional term of 
position diffusion which is absent in the classical Fokker-Planck equation (l), nonetheless 
without which no mathematically consistent (i.e. Lindblad) quantum master equation would 
be written down (cf. ref. [ll]). 
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