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We demonstrate a close connection between the decoherent histories approach to quantum mechanics
and the quantum state diffusion picture, for open quantum systems described by a master equation of
Lindblad form. The (physically unique) set of variables that localize in the quantum state diffusion
picture also define an approximately decoherent set of histories in the decoherent histories approach.
The degree of localization is related to the degree of decoherence, and the probabilities for histories

prescribed by each approach are essentially the same.
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A number of recent and proposed experimental develop-
ments (quantum jump experiments, single electron gates,
quantum dots for quantum computation) together with re-
cent theoretical interest in quantum cosmology have led
to the development of alternative approaches to quantum
mechanics capable of overcoming the practical difficul-
ties of describing individual systems. This Letter is con-
cerned with demonstrating the connections between two
such approaches: the decoherent (or “consistent”) histo-
ries approach [1,2] and the quantum state diffusion picture
[3-5] (see Ref. [6] for an early guess at the relation be-
tween these two approaches).

We will be concerned with a quantum system consist-
ing of a subsystem coupled to its environment. The sub-
system is then frequently referred to as an open quantum
system, and we shall do so here. Conventionally, an open
system is described by a reduced density operator p,
evolving according to a master equation, derived by trac-
ing over the environment. Under the assumption that
the evolution is Markovian, the master equation takes the
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Lindblad form [7],

. n
Z—f = ‘é[H,p] - %Z({L;L.z’».ﬂ} ~2L;pL)). (1)
j=1

Here, H is the Hamiltonian of the open system in the
absence of the environment (sometimes modified by terms
depending on the L;) and the n operators L; model
the effects of the environment. (See also Ref. [8] for a
discussion of the derivation of master equations.) The
conditions under which Eq. (1) is a good approximation
to the exact master equation are often realized in quantum
optics [9] and in studies of decoherence [10,11], and this
master equation is therefore often used in these contexts.
For example, in the much-studied quantum Brownian
motion model [12—-14] the master equation is (1) with a
single Lindblad operator L = (2D)~2[% + 2(i/h)yDp],
with D = #2/8mykT (where y is the dissipation and
T is the temperature of the environment), and H =
Hg + %'y{fc,f?}, where Hy is the distinguished subsystem
Hamiltonian, in the absence of the environment.
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Density operators satisfying (1) give statistical predic- equation (1). However, its utility lies in the fact that the
tions in full agreement with experiment in a wide variety solutions to the Ito equation appear to correspond rather
of situations. However, they do not give a picture of the well to individual experimental runs, and thus provide

behavior of an individual system, but only of ensembles. considerable insight into the behavior of individual pro-
The quantum state diffusion approach avoids this short- cesses and systems [22]. Solutions to the Ito equation
coming [3-5,15]. It originated from considerations of the commonly have the property of localization—the disper-
quantum measurement problem [16—19] and the desider- sion of certain operators tends to decrease as time evolves.

ata of describing individual experimental outcomes and This has been demonstrated by numerical solutions [5],
putting physical intuition into the equations, as urged by analytic solutions in special cases [14,19,23], and some

Bell [20]. It was also motivated by its computational ad- general theorems [4,15]. The method has also been suc-
vantage and insight in treating practical problems in open cessfully used to analyze quantum jump experiments [24].
systems [21]. It consists of an “unraveling” of the evo- Equations of type (2) have arisen previously in the
lution of p under (1). This involves regarding p as a context of “spontaneous localization” models [17,18], in
mean over a distribution of pure state density operators, which it is regarded as a fundamental modification of
p = M|y) (|, where M denotes the mean (defined be- standard quantum mechanics [25]. In the quantum state
low), with the pure states evolving according to the non- diffusion picture, however, Eq. (2) is a phenomenological
linear stochastic Langevin-Ito equation description of open quantum systems which, as indicated
i above, is seen to be a particularly good one. It is the

ldyy = — ng(ﬂ} dt aim of this Letter to connect it with a formulation of

quantum mechanics with very different origins, namely

1 ¥ t + the decoherent histories approach. We are not concerned

+ g 2L Ly~ LiLp = (L) Yl yith ontological questions.
! Our first results, required for the comparison with the
+ Z(Lj —AL)) )dé;(1) (2)  decoherent histories approach below, are explicit represen-
i tations of the solutions to the Lindblad equation (1) and
for the normalized state vector |¢). Here, d¢; are in- the Ito equation (2). To solve the Lindblad equation, con-
dependent complex differential random variables repre-  sider the case of a single Lindblad operator L = Lg + iL,
senting a complex Wiener process. Their linear and where Lg, L; are Hermitian. Divide the finite time interval
quadratic means are M[dé;d¢;] = 8y di, M[d€;dé] =  [0,1]into K subintervals, so that 7 = K1, and let 1 — 0,
0, and M[d¢;] = 0. K — o, holding ¢ constant. Then we have the following

The quantum state diffusion picture described by the [to ~ representation of the solution to (1):
equation (2) is mathematically equivalent to the Lindblad |

) d*¢,---d*¢ - ex <5t(€*L—€ LY )ex f5t|L~€ 12 ex —iHé‘l (0)
)[1 Kml_[:]p7m m)p<7 m)p<go)p

X Ke iHSt —atlL—€|2 —5t(€*L—€LT)
Hl Xp % 0 eXp 7 m €Xp 7 m m ’
m= (3)

where Hy = H + (iA/4)[L,L'], and the €,, are complex numbers at the discrete moments of time labeled by m. We
use the notation |L — €,,]> = (Lg — Ref€,,)> + (L; — Im¢,,)%>. That this is the solution is readily verified by explicit
computation [26]. The solution has the form of a “measurement process” of the L’s, continuous in time, with “feedback”
via the terms €L — ¢, L1 [27]. The case of many different Lindblad operators, L;, is readily obtained by taking products
over j of the appropriate operators in (3) at each moment of time. The ordering of the operators at each moment of time
is irrelevant in the limit 61 — 0 (although the operators at different times are time ordered, according to increasing m).
For future reference we write Eq. (3) in terms of a density operator propagator as p(t) = Kg[p(0)].
Similarly, the solution to the Ito equation has the explicit representation

p(t) = fim (ﬁ

6t— 0, K > x\ 7w

K .
(1)) = lim [] exp(fszi(zwf)mL = LTL = (LD(L)m) + (L = (L)) 65) exp(—%ﬂar) ly (), “)
m=]

where (L), denotes the expectation of L at time ¢, = [ tories approach discussed below), it is useful to present
mé&t. Equation (4) expresses an individual history [¢¢ (1)) an alternative representation, obtained by exchanging the
as an explicit functional of an individual complex Gauss- Wiener process £(z) for the stochastic variable €(t), defined
ian noise £(¢r). However, to make clearer the connec- by [€(t) — (L)]dt = d£™(1) (Ref. [19]). Equation (4) thus
tion with Eq. (3) (and ultimately with the decoherent his- becomes
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ly@) = o

t— 0, K— >

lim S51\K/"? K S5t +
(?) N0 T exp<7(€mL — L ))

m=1

X exp(—% |L — €,,,|2) exp(—%H()5t> [4(0)), (5)

where H, is given above after Eq. (3). N is a (complex)
normalization factor, ensuring that (i (¢)|(z)) = 1, and
appears because the state is now thought of as a functional
of the stochastic process €(z) instead of £(z), |¢) = |ipe).
Again the generalization to many Lindblad generators is
straightforward. That (4) and (5) are solutions to Eq. (2)
may be verified by explicit computation [26]. This explicit
representation of the solution clearly indicates that the
solutions will tend to exhibit localization in the operator
L. 1Tt also illustrates that the solutions have the form of
a “trajectory,” or “history,” concentrated around the €(¢)
corresponding to the particular Wiener process £(7).

We may associate a probability with these trajectories.
To see this, recall that we are working from the outset
with a statistical ensemble of solutions to the Ito equation,
|i¢), obeying the rules of standard (“classical”) probability
theory, and the probability distribution of the solutions is
that implied by the means of d¢, etc., given above. Indeed,
the solution (3) to the master equation is a sum over ¢ of
lie) (pel, weighted by the probability for each solution.
As before, it is more useful to express this probability
distribution as a probability p[€(z)] over the states |i¢)
sastisfying Eq. (5). Since Eq. (3) must be a mean over
[ie) {ipel, it is easily seen from Egs. (3) and (5) that the
probability distribution over the |¢)’s must be p[€(7)] =
IN[€(¢)]]~? [or what amounts to the same, the norm of the
state (5) but without the normalization factor N].

Note, however, that in general (elipe) # O for € +
¢, and thus p[€(r)] may not usually be thought of as
the probability for histories of values of L, because
the alternative values are not exclusive. They become
approximately exclusive only when the solutions |¢)
are well localized in L because the solutions are then
approximately orthogonal. So although probabilities are
always assigned to trajectories in quantum state diffusion,
they translate into probabilities for histories of values of
L only when sufficient localization in L has taken place.
Localization as a condition for the meaningful assignment
of probabilities to trajectories in QSD is therefore clearly
connected to the condition of decoherence of histories
discussed below.

Turn now to the decoherent histories approach. The
decoherent histories approach is a generalization of quan-
tum mechanics to genuinely closed systems, such as the
entire Universe [1,2]. Its aim is to give a predictive for-
mulation of quantum theory applicable to closed systems
which does not rely on notions of measurement or on the
existence of an external classical domain. From such a
framework, one hopes to understand the emergence of the

’”

classical world from an underlying quantum one, and
the origin of the quantum-classical division upon which
the Copenhagen interpretation depends.

In the decoherent histories approach, the mathematical
objects one focuses on are the probabilities for histories
of a closed system. A quantum-mechanical history is de-
fined by an initial state p at time r = O together with a
string of projection operators P, ---P,, acting at times
t1,- -, ty, characterizing the possible alternatives of the
system at those times. The projections are exhaustive,
> . Pa =1, and exclusive, P,Pg = 8.3P,. Because of
interference, most sets of histories for a closed system
cannot be assigned probabilities. The interference be-
tween pairs of histories in a set is measured by the so-
called decoherence functional,

D(gg,gf) = Tr[Pa,,([n)"’Pa[(tl)ppa']([l)"'Pay/y(tn)],
(6)

where P, (1) = e %/t p,eit/h H is the Hamiltonian
of the closed system, and « denotes the string «; --- a,.
When D(a,a’) = 0 for a # o', interference may be
neglected, and one may assign the probability p(a) =
D(a, a) to the history. Probabilities assigned under this
condition may be shown to obey the sum rules of
probability theory [1]. Sets of histories satisfying this
condition are called decoherent. Loosely, satisfaction
of these conditions means that one can “talk about”
(i.e., apply classical logic to) the physical properties
of the system, and think about those properties as if
they were definite, without having to invoke notions of
measurement. Given the Hamiltonian and the initial state
for a closed system, one’s initial aim is to determine the
strings of projection operators for which the decoherence
condition is satisfied.

The decoherent histories approach is readily applied to
the class of open systems considered here, i.e., closed sys-
tems in which there is a natural separation into a dis-
tinguished subsystem and the rest. For such systems,
a natural set of histories to study are those character-
ized by the properties of the distinguished subsystem at
each moment of time, but ignoring (i.e., coarse graining
over) the properties of the environment. Histories of this
type are often decoherent as a result of the interaction be-
tween the system and the environment. To be precise,
consider histories characterized by strings of projections
Py ®I°---P, ®I° at times t,---,t,, where I denotes
the identity of the environment. Now assuming that the
initial density operator factorizes, the trace over the envi-
ronment may be carried out explicitly in the decoherence
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functional (6), and, in the regime in which a Markovian
approximation holds, it then has the form

D(a.a) = Tr(Po, K" [Pa, - K[
X[Po, Ko'Lp(O)Par]-- Por ).
(7)

Here, K/''' is the reduced density operator propagator
introduced above, and the trace is now over the distin-
guished subsystem only.

Given this expression, and given the explicit form of
K above, Eq. (3), we may now discuss decoherence. For
simplicity, consider the case of projections continuous in
time in the decoherence functional (7). The discrete time
version of the decoherence functional will contain terms
of the form

o
PGLK;t7|[."]Pa£ = f d2€PL,A exp(—*zflL _ 1€|2>

< L en( = 5L = ) P ®

The operator exp(—%c‘itIL — £]?) is an approximate pro-
jection operator in the limit, used here, of small §¢. (It is
an approximate projector for all 8¢ if [L,LT] = 0.) Now
the key point is that, on the right hand side, we have
two different projection operators P,,, P,/ operating on
the same Gaussian projection, exp(~%81lL — €1?). Be-
cause Gaussian projections are approximately exclusive,
the decoherence functional will be approximately diago-
nal in the a,’s if we choose the projections P,, also to be
Gaussian projections onto L:

P, = exp(—3&*8tIL — k1617 2al?). 9)

Here, « is a dimensionless and complex continuous label,
and «~'(8¢)7"/? is the width of the projection which
will be tuned by the dimensionless parameter . The
approximate exclusivity of these approximate projectors
means that «, although continuous, has significance
only up to order 1. Clearly, with the choice (9), (8)
will be very small unless a =~ x6t'/2¢ = a’. Therefore,
histories characterized by strings of projections onto L
will approximately decohere. We thus arrive at our
main result: The variables exhibiting localization in the
quantum state diffusion picture are the same as the
variables characterizing a decoherent set of histories in
the decoherent histories approach.

The operator (9) is an approximate projection operator
(under the conditions stated above) onto a subset of the
spectrum of the (generally non-Hermitian) operator L, and
the label a is complex. Projections of precisely this type
have not previously been used in the decoherent histories
approach, but there is no obvious obstruction to doing so.

The degrees of localization and decoherence also are
related. From the solution to the Ito equation (5), the de-
gree of localization is determined by the degree to which
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L becomes concentrated about a particular trajectory €(z).
At each time step &1¢, the localization width of L is of or-
der 8:7'/2. Similarly, from Eq. (8), one may see that the
degree of decoherence is also determined by the degree to
which L is concentrated about a particular value. Loosely,
the off-diagonal terms of the decoherence functional are
suppressed in comparison to the on-diagonal terms (this is
the appropriate way to measure approximate decoherence
[2]) by a factor of order of exp(—« 2|a — a’|> X const),
where the constant is of order 1. This means that the pro-
jectors given by Eq. (9) define an approximately decoher-
ent set of histories only if k < 1.

The degrees of localization and decoherence are related,
therefore, in the sense that approximate decoherence of his-
tories may be achieved only if the projectors P, character-
izing the histories are coarser than the localization width.

Finally, consider the probabilities for histories. Given
approximate decoherence, the decoherent histories ap-
proach assigns probabilities to histories given by the
diagonal elements of the decoherence functional (7). Con-
sider Eq. (8), but now with a; = a;. Under the con-
ditions yielding approximate decoherence, the integrand
in (8) will be very small unless ¢ = x~'(61)""2a. The
projection operators P,, then have essentially no effect
(except to produce a negligible modification of the width
of the neighboring Gaussian projectors), so we can drop
them. One thus finds that

Tr—1

ot
Pathk ["']Pak =~ exp (ATIL - Kil&f*l/za”z) []

ot 2 2
X exp (47 L — K7'8l‘,)/"6¥k|"> )

(10)

Using this result, one may then see that the probabili-
ties assigned to these histories in the decoherent histo-
ries approach have the form of the norm of the state
(5) without the normalization factor, and with €(1;) =
k'8t 2a(t,). They are therefore exactly the same as
the probabilities assigned in the quantum state diffusion
approach. A more detailed account of this work will be
presented elsewhere [26].
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