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Abstract. – Based on a relation between inertial time intervals and the Riemannian curvature,
we show that the space-time uncertainty derived by Ng and van Dam appears to imply unrealistic
uncertainties of the Riemannian curvature.

Recently, Ng and van Dam [1], [2] presented a proof of the intrinsic quantum uncertainty
d` of any geodetic length ` being proportional to the one-third power of the length itself:

d` = `
2/3
P `1/3 , (1)

where `P is the Planck length. In addition, they claim that an intrinsic uncertainty of
space-time metric has been derived in ref. [1], [2]. Now, the problem deserves a discussion
since, a few years ago, the present authors [3] pointed out that the formula (1) would certainly
overestimate the uncertainty of the space-time. We suggest [3] that this formula would be the
uncertainty of a distincted world line whose length is measured at the price of total ignorance
about the lengths of any other neighbouring world lines. In a sense, the uncertainties of all
neighbouring world lines within about a tube of diameter ` will charge the uncertainty of the
distincted one.

Calculate, for instance, the mass m of the clock when adjusted according to eqs. (3) and
(4) of Ng and van Dam:

m = mP

( `

`P

)1/3

, (2)

where mP is the Planck mass. We note that the optimum measurement of a length ` ≈ 1 cm
requires a clock of mass m ≈ 106 g and, similarily, the optimum measurement of a time-like
distance t ≈ 1 s needs a clock with m ≈ 1016 g (i.e. 1010 metric tons!). Of course, the large
mass of the clock needed to reach the limit of accuracy is not a proof against the proposed
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fluctuation formula. But we can show that eq. (1) leads to drastic effects in the space-time
continuum, strongly affecting macroscopy. That eq. (1) appears to seriously overestimate the
uncertainty of the space-time can now be shown by an independent elementary consideration.

Let us start with formula (6) of Ng and van Dam:

dt = t
2/3
P t1/3 , (3)

where dt is the proposed uncertainty of the time t along an arbitrarily chosen time-like geodesic
and tP is the Planck time. This uncertainty implies a certain uncertainty of the physical
space-time geometry. One expects that the corresponding fluctuations of the local Riemann
curvature are fairly small.

Fortunately, there exists a simple relation between a subtle triplet of time intervals on the
one hand and the average Riemannian curvature on the other. We recapitulate this relation
according to Wigner [4].

Assume space-time is flat on average. Take a clock and at a distance `/2 a mirror; for
simplicity’s sake let them be at rest relative to each other. Let us emit a light signal from the
clock to the mirror, and let the clock measure the total flight time t1 as the signal has got
back to it. Repeat the same experiment immediately after, for the flight time t2, and similarly
for a third one t3. Then, the average R0101 of the 0101 component of the Riemann curvature
tensor in the space-time region swept by the light pulses is

R0101 = 2
t1 t3 − t22
c2 t42

, (4)

provided both clock and mirror lay along the first coordinate axis [4].
Let us obtain the quantum uncertainty dR0101 of the above curvature. Of course, each

period ti (i = 1, 2, 3) has the same average value `/c. Their quantum uncertainties dti are also
equal. According to Ng and van Dam, any time-like geodesic length possesses the ultimate
uncertainty (3); so do ours, too:

dti =
(`P
c

)2/3( `
c

)1/3

. (5)

If ` À `P the periods ti are much larger than their fluctuations (5) and, consequently, we
can approximate the uncertainty of the curvature (4) by an expession linear in dti:

dR0101 =
2c
`3
δ(t1 − 2t2 + t3) . (6)

To calculate the squared average value of dR0101, one rewrites the above equation in the
following equivalent form:

[dR0101]2 =
(2c
`3

)2(
3[dt1]2 + 9[dt2]2 + 3[dt3]2−

−3[d(t1 + t2)]2 − 3[d(t2 + t3)]2 + [d(t1 + t2 + t3)]2
)
.

(7)

Each term on the r.h.s. is then evaluated by means of eq. (3). After extracting a root, one
obtains

dR0101 = 2
√

15− 6× 22/3 + 32/3
1
`2

(`P
`

)2/3

. (8)

It seems plausible to assume that the r.h.s. of eq. (8) yields the order of magnitude not only
for the Riemann-tensor components but for the components of Ricci tensor as well as for the
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Riemann scalar R unless special statistical correlation is shown or at least assumed between
the various components of the Riemann tensor. So, eq. (8) yields the following estimation for
the Riemann scalar R averaged in a 4-volume ∼ `4/c:

dR ∼ 1
`2

(`P
`

)2/3

. (9)

Basically, one would expect with Ng and van Dam that these fluctuations are small . There
is at least one good criterion to test their smallness. According to the Einstein theory of general
relativity, the non-zero scalar curvature R assumes non-zero energy density. If we assume that
the energy-momentum tensor is dominated by the energy density ρ, then the fluctuation (9)
of the Riemann scalar would imply

dρ̄ ∼ (c2/G)dR ∼ (h̄/c)`−2/3
P `−10/3 , (10)

where dρ̄ denotes the universal fluctuation of the energy density ρ averaged in a 4-volume
∼ `4/c. This fluctuation would be extremly high at small length scales. At ` ∼ 10−5 cm, for
instance, the uncertainty dρ̄ would be in the order of water density; that is trivially excluded
by experience. According to recent cosmological estimations, e.g. from galaxy counts, the
average mass density of our Universe should not exceed 10−29 g cm−3. Then, eq. (10) yields
` À 104 cm which in turn means that the proposal of Ng and Dam for the uncertainty of
geodesic length may not be applied for lengths shorter than some 100 metres, otherwise one
might get another universe due to the additional cosmologic mass density generated by the
short-range metric fluctuations.

According to all these arguments, we think that Ng and van Dam in [1], [2] have in fact
derived an unconditional uncertainty for a single geodesic. However, the uncertainty of a single
geodesic length should not be used to calculate the intrinsic uncertainty of the space-time
metric: it would need the simultaneous uncertainties of all geodesics or at least of a subtle
subset of all. We pointed out that to ignore the correlations of those uncertainties would
lead to high uncertainties of the space-time curvature. Finally, it is worth mentioning that a
detailed account of the present authors’ alternative to replace eq. (1) can be found in ref. [3].
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[3] Diósi L. and Lukács B., Phys. Lett. A, 142 (1989) 331.

[4] Wigner E. P., Rev. Mod. Phys., 29, July issue (1957); Phys. Rev., 120 (1960) 643.


