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In addition to the Riemannian metricization of the thermodynamic state space, local relaxation times
offer a natural time scale, too. Generalizing existing proposals, we relate athermodynamictime
scale to the standard kinetic coefficients of irreversible thermodynamics. The notion of
thermodynamic speed is generalized to higher dimensions. Criteria for minimum entropy production
in slow, slightly irreversible processes are discussed. Euler–Lagrange equations are derived for
optimum thermodynamic control for fixed clock time period as well as for fixedthermodynamic
time period. It is emphasized that the correct derivation of the principle of constant thermodynamic
speed, proposed earlier by others, requires the entropy minimization at fixed thermodynamic time
instead of clock-time. Most remarkably, optimum paths are Riemannian geodesics which would not
be the case had we used ordinary time. To interpret thermodynamic time, an easy-to-implement
stepwise algorithm is constructed to realize control at constant thermodynamic speed.
Thermodynamic time is shown to correspond to the number of steps, and the sophisticated task of
determining thermodynamic time in real control problems is achieved by measuring ordinary
intensive variables. ©1996 American Institute of Physics.@S0021-9606~96!50447-2#
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I. INTRODUCTION

Standard equations of irreversible thermodynamics h
been known for many decades. Investigations on optimiz
finite-time thermodynamic processes controlled by exter
reservoirs date from the 1980’s. An instructive exposition
the problem at the time was published in Ref. 1. Basica
the problem consists of finding the best path in the s
space along which one drives the system from a given e
librium state to another.

A particular approach to the problem of optimally co
trolling finite-time thermodynamic processes takes its ori
from the natural geometric structure of the thermodynam
state space.2–4 It would seem straightforward to expect th
the geodesic path should somehow be related to the optim
path connecting the given initial and final equilibrium stat
A few years ago it was pointed out5,6 that the natural relax-
ation timet plays a fundamental role in devising optimu
cooling strategies, e.g. in computer simulated anneal
Quite recently, Andresen and Gordon7 have shown that the
strategy of constant thermodynamic speed5 is related to a
certainminimum of entropy production.

a!Electronic mail: diosi@rmki.kfki.hu
b!Electronic mail: H10575kul@huella.bitnet
c!Electronic mail: lukacs@rmki.kfki.hu
d!Electronic mail: racz@fserv.kfki.hu
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Since the first version of the present work,8 an indepen-
dent paper by Spirkl and Ries9 appeared, discussing th
problem of entropy minimization in finite-time thermody
namic processes, without a power expansion in the vel
ties. Their equations, leading to ours in the small veloc
limit, are not incased in the Riemannian geometry of t
state space. The merit of our work is a geometric appro
which is, at least to our present understanding, closely tie
the small velocity limit.

The problem itself is illustrated by the finite-time coo
ing process~Sec. II!, its dynamics is described by a phenom
enological cooling equation. Then, applying kinetic equ
tions from standard irreversible thermodynamics,
generalize the concept of thermodynamic time and speed
any number of control variables~Sec. III!. Furthermore we
invoke standard Euler–Lagrange equations to obtain
finite-time path of minimum entropy production and w
make explicit the role of variational conditions. Most impo
tant, we prove that the optimum path is geodesical s
broader generalization of the old principle of constant th
modynamic speed is achieved. Even an older belief abou
significance of Riemannian metric in thermodynamics mig
get justified~Sec. IV!. Finally, we construct an iterative al
gorithm to realize thermodynamic processes at constant t
modynamic speed, also giving a genuine control-theor
interpretation of thermodynamic time itself~Sec. V!.
96/105(24)/11220/6/$10.00 © 1996 American Institute of Physics
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11221Diosi et al.: Optimum path to minimize entropy production
II. EXAMPLE: FINITE-TIME COOLING

Consider a system in thermal contact with a large res
voir and letT andTr denote their respective temperatures.
general, bothT andTr will depend on timet. At the initial
time t i , assume the system and the reservoir are in equ
rium with each other at temperatureTi , i.e.,

Tr~ t i !5T~ t i !5Ti . ~1!

Then start to decrease the reservoir’s temperatureTr from
Ti to Tf , consuming fixed finite timet f2t i , i.e., choose a
monotonically decreasing function Tr(t) so that
Tr(t f)5Tf . The system’s temperatureT(t) decreases due t
permanent heat transfer to the reservoir and will always
retarded with respect to the reservoir’s current tempera
Tr(t) by some positiveDT(t)[T(t)2Tr(t).

This control is a so-calledhorse-carrotproblem.10 For
finite time t f2t i , a horse must be attracted from one pla
(Ti) to another place (Tf) by promising a carrot waved in
front of the horse’s head at a distance that optimizes
‘‘losses.’’ In the concrete thermodynamic case, losses m
be identified by the total entropy produced during the p
cess.

Throughout this paper, we consider slightly irreversib
processes when, e.g.,Tr(t) changes slowly enough to allow
the heat transfer to satisfy Newton’s law and the followi
equation is expected to drive the permanent relaxation of
system’s temperatureT:

Ṫ52
1

t~T!
DT ~2!

provided the local relaxation timet changes little between
T andTr . It will be useful to re-scale the clock-time param
eter. Introducingthermodynamic timej was proposed earlie
in Refs. 5–7. The relation of the two scales relies upon
local relaxation timet(T(t)) along the cooling process:

dj5dt/t. ~3!

In the new variable, Eq.~2! takes a simple form:

T8[
dT

dj
52DT. ~4!

We note that this equation has the following explicit soluti
with the initial conditionj i50:

T~j!5e2jS Ti1E
0

j

Tr~j8!ej8dj8D . ~5!

Now the basic goal is to single out ‘‘optimum’’ coolin
paths. Following, e.g., Andresen and Gordon7 one requires
that the optimum cooling happen with maximum reversib
ity, i.e., at minimum total entropy production. The entro
production rate of the cooling process is

Ṡ5C~T!ṪS 1T2
1

Tr
D , ~6!

whereC(T) is the specific heat of the system. In case
sufficiently slow cooling this expression reduces to
J. Chem. Phys., Vol. 105, N
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Ṡ5C~T!~ Ṫ/T!2t~T! ~7!

where we applied Eq.~2!. The common criterium of opti-
mum is

E
t i

t f
Ṡdt5min, ~8!

where the overall timet f2t i of the process is fixed. A well-
known analogue from mechanics can lead us to the solu
of this variational problem. If we think ofT as if it were the
coordinate of a particle moving in one dimension then,mu-

tatis mutandis, Ṡwould be identified as the kinetic energy o
the particle and the minimum problem~8! becomes formally
identical to the Lagrange variational principle for the partic
motion. Accordingly, the solutionsT(t) satisfy the Euler–
Lagrange equationd(]Ṡ/]Ṫ)/dt5]Ṡ/]T. This is equivalent
to the condition

Ṡ5
C~T!

T2
Ṫ2t~T!5const. ~9!

There is, however, a remarkable alternative to this optimu
because one can choose different boundary conditions
stead of clock-timet f2t i , the thermodynamic lapsej f2j i
of the cooling can be fixed. Then the optimum cooling b
comes different; it will correspond to constant entropy ra
versus thermodynamic time:

S8[tṠ5
C~T!

T2
T825const. ~10!

The derivation of this condition is completely analogous
the derivation of the condition~9!, after rescaling the opti-
mum problem in terms ofj instead oft.

The condition ~10! has a challenging geometrica
interpretation:7 S8 is the square of the thermodynamic spe
of the cooling process:

S85iT8i2, ~11!

calculated with the entropic metric defined by the quadra
norm

idTi2[
C~T!

T2
~dT!2. ~12!

Hence the corresponding optimum process is called coo
at constant thermodynamic speed~cf. Refs. 5–7!. We note
that Andresen and Gordon7 have not been conscious abo
the necessity to fix the thermodynamic lapse instead
clock-time period when deriving the principle of consta
thermodynamic speed from entropy minimization. In Sec.
we shall prove that the principle of constant thermodynam
speed also applies for optimum finite-time thermodynam
processes affecting more~than one! variables. First, in Sec
III we must generalize the concept of thermodynamic leng
time, and speed for such finite-time processes.

III. THERMODYNAMIC LENGTH AND TIME

Let the equilibrium states of a given thermodynamic s
tem be characterized by then11 extensive variables; the
o. 24, 22 December 1996
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11222 Diosi et al.: Optimum path to minimize entropy production
vectorX[(X1,X2, . . . ,Xn) will parametrize the manifold of
state space whileXn11 remains fixed. Following Refs. 2–
one defines a metric tensorg on the manifold of equilibrium
states, derived from the entropyS(X):

gik~X!52
]2S~X!

]Xi]Xk . ~13!

If one took the entropic intensive variable
Yk5]S(X)/]Xk; k51,2, . . . ,n instead of the extensive var
ables X then the metric tensor would be the inver
g21[@gik# of g[@gik#. Hence, in obvious notations, th
thermodynamic line-element square takes the following
ternative forms:

idXi25~dXugudX!5idYi25~dYug21udY!. ~14!

Consider now a certain path$X(t);t i<t<t f% in the thermo-
dynamic state space. Thethermodynamic length lof the path
takes the~alternative! forms

l5E
t i

t f
idXi5E

t i

t f
idYi . ~15!

Obviously, the length of a path is independent of the cho
of coordinates and even of the parametrization of the p
itself. No intrinsic relation manifests itself between the th
modynamic length and the clock-time parametert.

In order to obtain a natural time scale along a given pa
we first have to invoke standard concepts of irreversible th
modynamics. Consider a reservoir in equilibrium at so
state variablesXr and bring it into contact with the system
which is in equilibrium atX. Then, the state of the syste
will converge to the state of the reservoir. The standard fo
of the relaxation equations reads11

Ẋi5g ikDYk , ~16!

whereDY5Yr2Y is the deviation from the equilibrium in
terms of the entropic intensive variables, andg5@g ik# is the
matrix of kinetic coefficients; it is symmetric and positiv
During this process of relaxation, entropySwill be produced
at the rate

Ṡ5~ẊuDY!. ~17!

If DY is small, one can write

DY52gDX. ~18!

The relaxation equation~16! takes the alternative forms:

Ẋ52ggDX or Ẏ52ggDY. ~19!

Using Equation~18! and the equation

Ẏ52gẊ ~20!

alternative expressions of entropy production rate~17! fol-
low

Ṡ5~Xug21uX!5~Yu~ggg!21uY!. ~21!

Based on the above standard equations, an effective
laxation timet, depending on the path’s local directionẊ,
can be defined. Recall from Sec. II that the system’s p
J. Chem. Phys., Vol. 105, N
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X(t) is driven by a certain reservoir pathXr(t) and the sys-
tem’s retardationDX[X2Xr is proportional to the curren
velocity Ẋ of the process:

DX52~gg!21Ẋ. ~22!

In fact, this equation is formally identical to the relaxatio
equation~19! which remains valid ifXr becomes a slowly
varying function of time. It is important to realize thatDX
andẊ are usually not antiparallel. One can, nonetheless,
that their longitudinal~i.e., parallel toẊ) projections are al-
ways of opposite signs. This will enable us to define a cert
effective relaxation timet. Let us introduce the longitudina
component of the retardation:

DXi[
1

iẊi
~DXuguẊ!. ~23!

Substituting Eq.~22! yields the longitudinal relaxation equa
tion ~note thatẊi5iẊi):

DXi52tiẊi , ~24!

where

t52
1

iẊi2
~DXuguẊ!. ~25!

This can be rewritten in the following equivalent form:

t5
1

iẊi2
~Ẋug21uẊ!. ~26!

Indeed, as it is clearly seen from this form, the effecti
relaxation timet is positive and only depends on the dire
tion of Ẋ but not on its magnitude~as long as it is moderate!.
Equation~26! has the compact form

t5
Ṡ

iẊi2
, ~27!

showing upt ’s invariance if one changes the representat
of the states from extensive variablesX to intensive ones
Y, for instance.

Having introduced the effective relaxation timet, the
notion of thermodynamic timej can now be extended fo
paths in more dimensions. Formally, we retain the old d
nition ~3! of the element of thermodynamic timej:

dj5dt/t, ~28!

which now depends on the direction of the speedẊ. Some-
times, avector of thermodynamic speedX8 ~or Y8) will be
more useful thanẊ ~or Ẏ):

X8[
dX

dj
5tẊ or Y8[

dY

dj
5tẎ. ~29!

The common~scalar! thermodynamic speed5 corresponds to
the invariant norm~s! iX8i5iY8i of the vector~s! ~29! so an
extension of the notion of thermodynamic speed for m
o. 24, 22 December 1996
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11223Diosi et al.: Optimum path to minimize entropy production
dimensions has been performed. The entropy produc
S85tṠ per unit thermodynamic time can also be consider
From Eq.~27! we obtain

S8[tṠ5iX8i2. ~30!

This means that the dimensionless entropy production
S8 is equal to the squared thermodynamic speed, as is
pected from the single variable case in Sec. II.

IV. OPTIMUM PATHS MINIMIZING ENTROPY
PRODUCTION

Consider a certain path$Y(t)% corresponding to a finite
time thermodynamic process connecting the initial st
Y i[Y(t i) with the final oneY f[Y(t f). Remember that a
thermodynamic path$Y(t)% is the solution to the ‘‘cooling’’
equation~2! having now the following general form@cf. Eq.
~19!#:

Ẏ5gg~Yr2Y!, ~31!

driven by the given reservoir path$Yr(t)%. The system’s
path has a small retardationDY(t) behind the reservoir path
Higher dimensions show, however, a particular compli
tion: the system’s velocity will not be parallel to the retard
tion. The system does not choose the straightest way to
low the reservoir. But, as we proved in the previous secti
the system will always tend to reduce the longitudinal ret
dation.@We risk the statement that such complication wou
not be a point to the horse in the horse-carrot analogy m
tioned in Sec. II. The horse would definitely turn his/h
steps toward the carrot.#

In the slow process approximation Eq.~21! applies and
the total entropy production will depend on the path as f
lows:

Sf i[E
t i

t f
Ṡdt5E

t i

t f
~Ẏu~ggg!21uẎ!dt. ~32!

Let us find the path minimizing the overall entropy produ
tion, among paths connecting the fixed initial and end
points at a fixed time lapset f2t i . An analogy with
Lagrange’s variational principle can be established if
identify the Lagrange function asṠ/2. Then, minimizing
paths are found to obey the following Euler–Lagrange eq
tions:

d

dt
~~ggg!21Ẏ!k2

1

2 S ẎU ]~ggg!21

]Yk
UẎD50. ~33!

Obviously, the entropy production rate~21! is an integral of
the above differential equation:

Ṡ5~Ẏu~ggg!21uẎ!5const., ~34!

which is the mathematical counterpart of the energy con
vation rule in mechanics.@Equation~34! follows directly if
we multiply Eq.~33! by Ẏk and substitute the identity
Ẏk](ggg)21/]Yk5d(ggg)21/dt.# In our case this mean
J. Chem. Phys., Vol. 105, N
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that the entropy minimizing path corresponds to a cons
entropy production rate, as was pointed out in Sec. II for
single variable cooling process.

An equivalent Euler–Lagrange equation could be o
tained had we chosen the extensive variablesX to param-
etrize the paths. Actually we have chosen the intensive o
since in typical experimental situations the reservoir’s inte
sive variables are under our control~cf. Sec. II!.

In certain cases~see Sec. V! it would be interesting to
find the path minimizingSf i at the condition that thether-
modynamic timej f2j i5* t i

t fdt/t be kept fixed and the clock

time t f2t i might be varied. In this case, one suitably r
places allt-dependencies byj-dependencies. From rate~30!,
one obtains the following equation for the total entropy p
duction:

Sf i[E
j i

j f
S8dj5E

j i

j f
iY8i2dj. ~35!

At fixed j i ,j f , the minimum of entropy production is
achieved if the pathY(j) satisfies the following Euler–
Lagrange equations:

d

dj
~g21Y8!k2

1

2 SY8U ]g21

]Yk
UY8D50. ~36!

The entropy production rate versus thermodynamic timj
will be an integral of this Euler–Lagrange equation:

S85iY8i25const. ~37!

Thus the minimizing path corresponds to constantS8. On the
other hand,S8 is equal to the squared invariant norm of th
thermodynamic speedY8 defined by Eq.~29!. Hence the
optimum path is ofconstant thermodynamic speed. An
equivalent result could be obtained inX-variables.

The constancy of the thermodynamic speed is mere
consequence of a very remarkable feature of optimum pa
they correspond togeodesic motionin the Riemann–
metricized manifold of thermodynamic states. Namely, if w
borrow a theorem from dynamics again we find that t
minimum condition for the entropy production~35! is
equivalent to the Lagrange principle of particle dynamics
curved space.12 The minimizing path is the shortest~geo-
desic! path betweenYi and Yf and the motion will be of
constant~thermodynamic! speed along it. For readers eve
more familiar with Riemannian geometry it is possible
realize that geodesic motion is equivalent to say that
speedvector Y8 is constant in a sense that the covaria
acceleration vanishes.13 This constitutes a vectorial general
zation of the old scaler principle of constant thermodynam
speed for optimum thermodynamic processes.

V. AN EASY CONTROL OF OPTIMUM COOLING

It follows from the previous section that the Riemanni
geometric structure of the thermodynamic state space ha
intrinsic relation with the processes of maximum reversib
ity at fixed thermodynamiclapse rather than clock time. W
are going to show that optimum cooling processes can ea
o. 24, 22 December 1996
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11224 Diosi et al.: Optimum path to minimize entropy production
be controlled by using thermometers instead of clocks! T
method is straightforward to implement for the simultaneo
control of more thermodynamic parameters.

We propose a stepwise control strategy to approxim
processes of constant thermodynamic speed. Essentiall
same strategy has been proposed in Ref. 14, with an alte
tive starting point: Nultonet al. took stepwise finite-time
processes from the beginning.

Assume that we change the reservoir temperature s
wise betweenTi andTf :

Ti[T05Tr0.Tr1.Tr2.•••.TrN5Tf ,

and the cooling strategy goes like this. First we lower
reservoir temperature toTr1 suddenly, and we wait for the
system to become equilibrated to a given extente, i.e. its
temperature T will be as close to Tr1 as
T15eTr11(12e)Ti . Then we move to the next iteration b
lowering the reservoir temperature toTr2 and letting the sys-
tem’s temperatureT to equilibrate to thesameextente, iden-
tified by T25eTr21(12e)T1. In general

Tn115eTr ,n111~12e!Tn , ~n50,1, . . . ,N21!.
~38!

If all steps are so small that the change of the relaxation t
t(T) is negligible at the step’s scale then, as we shall see
subtle conditions~38! assure that the same amount of rela
ation time, measured in natural units 1/t(Tn), will be allo-
cated to each step. For the (n11)8th cooling step, the relax
ation equation~2! yields the solutionTn11 in function of the
thermodynamic time dj of the step as
Tn115(12e2dj)Tr ,n111e2djTn . By submitting this solu-
tion for each step in turn to the corresponding condition~38!
we can see that each step will have thesamelapse

dj5 log~12e!21 ~39!

of thermodynamic time. Hence, the numberN of small steps
required to realize the cooling process fromTi to Tf , pro-
vided the quality of each relaxation has had the comm
characteristic valuee, will be proportional to the thermody
namic time lapsej f2j i of the cooling path:

N5
j f2j i

u log~12e!u
. ~40!

The smaller the defect of relaxations 12e the bigger number
of iterations will be necessary to achieve the same coo
Ti→Tf .

To assure constant thermodynamic speed in average
choose stepsTr1 ,Tr2 , . . . in such a way that thesamether-
modynamic lengthd l defined by Eq.~12! belongs to all cor-
responding segmentsiTi2T1i ,iT12T2i , . . . :

C~Tn!

Tn
2 uTn112Tnu25d l 2 ~n50,1, . . . ,N21!. ~41!

From Equations~38,41! one obtains:

Tr ,n115S 12
d l /e

AC~Tn!
D Tn , ~n50,1, . . . ,N21!.

~42!
J. Chem. Phys., Vol. 105, N
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Now we can summarize the iterative algorithm of coo
ing. Given the current temperatureTn of the system, one
decreases the reservoir’s temperature according to Eq.~42!
and lets the system relax until the condition~38! becomes
valid. This procedure is then iterated forTn11, etc. One can
see by inspection that the same average thermodyna
speed

v5
d l

u log~12e!u
~43!

belongs to each step and consequently to the whole pro
as well. So this stepwise algorithm approaches the theore
optimum process of constant thermodynamic speed.15 We
need no clocks to measure time but thermometers to mea
temperatures and thea priori knowledge of the specific hea
function C(T) of the system in hand. In the general ca
when more thermodynamic variables are to be controlled
has to derive the geodesic path between the initial and fi
equilibrium states in advance and then apply the stepw
algorithm along the geodesic path. Our results can easily
adapted to computer simulated statistical systems. The ab
algorithm applies, for instance, in simulated annealing5 at the
additional cost of numeric calculation of the annealed s
tem’s temperature and specific heat at each step.

A few words are needed to interpret the condition
fixed thermodynamic time when looking for the optimu
control. It may often happen that it isnot the clock time of a
given thermodynamic process that is the economically
technologically relevant quantity. Rather than clock time,
numberof iterated technological steps might better char
terize the amount of relevant facilities~computer capacity,
special materials, or just money! that can be consumed t
bring the system from its initial state into a prescribed fin
one. In such cases the clock-time period of the process i
less interest to be fixed in advance. The step number is ra
to be fixed. The condition of fixed-in-advance step numbe
equivalent to the condition of fixed-in-advance thermod
namic time, as shown by Eq.~40!. It may eventually happen
that the thermodynamic time~proportional to the step num
ber! takes the place of the clock time. The overall clock tim
needed to perform a single cooling step might not be do
nated by the clock time of the relaxation but by the clo
time of the technological adjustment before and after
relaxation. In this case, the gross time of the stepwise pro
will be proportional to its thermodynamic time. Actually, th
fixed-in-advance thermodynamic time becomes the relev
condition in designing the finite-time thermodynamic pr
cess and, consequently, minimum entropy production will
achieved along the geodesic path in thermodynamic s
space.

VI. CONCLUSION

We have extended the notion of the relaxation timet
from one dimension to an arbitrary number of dimensio
Thus the thermodynamic time can be deduced for mu
dimensional thermodynamic processes, too, in a straight
ward way. As a consequence, the optimum control of a th
o. 24, 22 December 1996
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11225Diosi et al.: Optimum path to minimize entropy production
modynamic process based on the thermodynamic time s
can be achieved with any number of variables to be c
trolled. We have seen that the optimum path should be
lowed as closely as possible by the process in hand as
geodesic is uniquely marked out between the initial and
desired final states. In addition, the proposed stepwise d
ing force for the process can be arranged by measuring
dinary thermodynamic variables e.g. temperature, concen
tion etc.

A remarkable result of the present analysis is that
path of minimum irreversible entropy production in fixe
thermodynamic time becomes a geodesic of the Rieman
space of thermodynamic states introduced a decade
Thus far Riemannian structure was seen only in its influe
in infinitesimal neighborhoods, e.g., on thermodynamic fl
tuations. Now we have shown within the context ofstandard
irreversible thermodynamics that some finite time thermo
namic processes, when optimum, follow the shortest path
the Riemannian space. The result is valid in an arbitr
number of dimensions and proves for the first time the d
tinguished role of geodesics in driven irreversible proces
Our result is based on the usual expansion of the irrevers
entropy production up to the second order in speeds.
course, the given interpretation for geodesics is restricte
not too high speeds and rates. These results may turn o
form a basis for amplifying the benefits of finite-time the
modynamics both in theory and in practice.
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