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In addition to the Riemannian metricization of the thermodynamic state space, local relaxation times
offer a natural time scale, too. Generalizing existing proposals, we reldieraodynamidime

scale to the standard kinetic coefficients of irreversible thermodynamics. The notion of
thermodynamic speed is generalized to higher dimensions. Criteria for minimum entropy production
in slow, slightly irreversible processes are discussed. Euler—Lagrange equations are derived for
optimum thermodynamic control for fixed clock time period as well as for fitkedmodynamic

time period. It is emphasized that the correct derivation of the principle of constant thermodynamic
speed, proposed earlier by others, requires the entropy minimization at fixed thermodynamic time
instead of clock-time. Most remarkably, optimum paths are Riemannian geodesics which would not
be the case had we used ordinary time. To interpret thermodynamic time, an easy-to-implement
stepwise algorithm is constructed to realize control at constant thermodynamic speed.
Thermodynamic time is shown to correspond to the number of steps, and the sophisticated task of
determining thermodynamic time in real control problems is achieved by measuring ordinary
intensive variables. ©1996 American Institute of Physid$S0021-960606)50447-2

I. INTRODUCTION Since the first version of the present wérn indepen-
dent paper by Spirkl and Riésappeared, discussing the
Standard equations of irreversible thermodynamics hav9r0b|em of entropy minimization in finite-time thermody-
been known for many decades. Investigations on optimizingyamic processes, without a power expansion in the veloci-
finite-time thermodynamic processes controlled by externajies. Their equations, leading to ours in the small velocity
reservoirs date from the 1980’s. An instructive exposition ofjimit, are not incased in the Riemannian geometry of the
the problem at the time was published in Ref. 1. Basicallystate space. The merit of our work is a geometric approach
the problem consists of finding the best path in the statgyhich s, at least to our present understanding, closely tied to
space along which one drives the system from a given equine small velocity limit.
librium state to another. _ The problem itself is illustrated by the finite-time cool-
A particular approach to the problem of optimally con-jng procesgSec. 1), its dynamics is described by a phenom-
trolling finite-time thermodynamic processes takes its Originenological cooling equation. Then, applying kinetic equa-
from the natural geometric structure of the thermodynamiqiOns from standard irreversible thermodynamics, we
state spacé™ It would seem straightforward to expect that oo ralize the concept of thermodynamic time and speed for
the geodesic path should somehow be related to the optimughy number of control variablesSec. 1. Furthermore we
path connecting the given initial and final equilibrium states..

A f i inted Gtthat th wural rel invoke standard Euler—Lagrange equations to obtain the
atic?r\:v t?/rr(?s;s;gssl awfilig;rl:eital roleain dee\:;:i:gr]ao;r)(tair?n);m finite-time.p.ath of minimum .entropy P gduction "’“_‘d we

. ) . . . make explicit the role of variational conditions. Most impor-
cooling strategies, e.g. in computer simulated annealmq.ant we prove that the optimum path is aeodesical so a
Quite recently, Andresen and Gorddmave shown that the ' b b P 9

. , broader generalization of the old principle of constant ther-
strategy of constant thermodynamic spelrelated to a modvnamic speed is achieved. Even an older belief about the
certain minimum of entropy production. y 'CSp : ieved. BV : u

significance of Riemannian metric in thermodynamics might
) ' — — get justified(Sec. IV). Finally, we construct an iterative al-
b)E'Izgggrr‘]'lg 2‘12"" ﬂ?égéfﬁgﬂgﬁa it gorithm to realize thermodynamic processes at constant ther-
9E|ectronic mail: lukacs@rmki.kfki.hu _modynamllc speed, also giving a genuine control-theoretic
9Electronic mail: racz@fserv.kfki.hu interpretation of thermodynamic time itséBec. \).
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IIl. EXAMPLE: FINITE-TIME COOLING 5= C(T)(T/T)Z’T(T) @

Consider a system in thermal contact with a large reserwhere we applied Eq(2). The common criterium of opti-
voir and letT andT, denote their respective temperatures. Inmum is
general, bothlr and T, will depend on timet. At the initial .
time t;, assume the system and the reservoir are in equilib- J detzmin, (8)
rium with each other at temperatufe, i.e., ti

T, (t)=T(t)=T,. (1)  Where the overall time;—t; of the process is fixed. A well-
known analogue from mechanics can lead us to the solution
Then start to decrease the reservoir's temperatyréom  of thjs variational problem. If we think of as if it were the
Tj to Ty, consuming fixed finite timé¢—t;, i.e., choose a ¢oordinate of a particle moving in one dimension them-

monoti)nicall);] decrea'sing function T(fj(t) SO dthat tatis mutandisS would be identified as the kinetic energy of
Ti(t) =T;. The system's temperatutigt) decreases due to particle and the minimum problef@ becomes formally

permanent heat transfer to the reservoir and will always bgyatica| 1o the Lagrange variational principle for the particle
retarded with respgpt to the reservoir's current temperaturg, von Accordingly, the solution(t) satisfy the Euler—
Tr(t%’k?ii icc))rr?t?oﬁ)(i): Igvgz-l—(:(glego(rtge-gég()ﬁproblem.lo For Lagrange eg.uatiod(aS/aT)/dtzaS/aT. This is equivalent
finite timet;—t;, a horse must be attracted from one placet0 the condition

(T;) to another placeT;) by promising a carrot waved in - C(T).,

front of the horse’s head at a distance that optimizes the S= 7z T 7(T)=const. ©
“losses.” In the concrete thermodynamic case, losses ma

be identified by the total entropy produced during the pro_){'here is, however, a remarkable alternative to this optimum,

cess. because one can choose different boundary conditions. In-

Throughout this paper, we consider slightly irreversibleStead of clock-time¢—t;, the thermodynamic lapsé — &
processes when, e.d, (t) changes slowly enough to allow of the cqollng can bg fixed. Then the optimum cooling be-
the heat transfer to satisfy Newton's law and the following®omes different; it will correspond to constant entropy rate
equation is expected to drive the permanent relaxation of th¥ersus thermodynamic time:

system’s temperatur€: . C(T)
1 S'=7S= TZT@:cmmt (10)
T=-— AT 2 L . e
7(T) @ The derivation of this condition is completely analogous to

the derivation of the conditio9), after rescaling the opti-

rovided the local relaxation time changes little between . .
b g mum problem in terms of instead oft.

T andT, . It will be useful to re-scale the clock-time param- The condition (10) has a challenging geometrical

eter. Introducinghermodynamic timé was proposed earlier . T e .
in Refs. 5—7. The relation of the two scales relies upon thénterpretatmn. S' s the square of the thermodynamic speed

local relaxation timer(T(t)) along the cooling process: of the cooling process:

'=|T||? 11
de=dt/r. 3 §=IT1% (11)
, , calculated with the entropic metric defined by the quadratic
In the new variable, Eq.2) takes a simple form: norm
,_dT c(T)
=g AT @ |dTi2= —z=(dT)>. (12
We note that this equation has the following explicit solutionHence the corresponding optimum process is called cooling
with the initial conditiong;=0: at constant thermodynamic speed. Refs. 5—7. We note
¢ that Andresen and Gordbmave not been conscious about
T(¢)=e¢ Ti+f T (&)et dg’). (5) the necessity to fix the thermodynamic lapse instead of
0 clock-time period when deriving the principle of constant

Now the basic goa| is to Single out “optimum” Coo“ng thermodynamic Speed from entropy minimization. In Sec. IV
paths. Following, e.g., Andresen and Gorflame requires We shall prove that the principle of constant thermodynamic
that the optimum cooling happen with maximum reversibil-SPeed also applies for optimum finite-time thermodynamic

ity, i.e., at minimum total entropy production. The entropy PrOC€SSeS affecting mokéhan ong variables. First, ir_1 Sec.
production rate of the cooling process is [l we must generalize the concept of thermodynamic length,

time, and speed for such finite-time processes.

. (1 1
S= C(T)T(—— —), (6)
T T IIl. THERMODYNAMIC LENGTH AND TIME

where C(T) is the specific heat of the system. In case of Letthe equilibrium states of a given thermodynamic sys-
sufficiently slow cooling this expression reduces to tem be characterized by thet+1 extensive variables; the
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vectorX=(X*,X?, ... X" will parametrize the manifold of

Diosi et al.: Optimum path to minimize entropy production

X(t) is driven by a certain reservoir pa¥;(t) and the sys-

state space whilX"** remains fixed. Following Refs. 2—4 tem’s retardatiom\X=X— X, is proportional to the current

one defines a metric tensgron the manifold of equilibrium
states, derived from the entroi$(X):

9?S(X)
9ik(X) =~ —Srowk- (13
If one took the entropic intensive

ternative forms:

ldX]|2= (dX|gldX) = [[dY[|>=(dY|g™*dY). (14
Consider now a certain paftX(t);tj<t<t;} in the thermo-
dynamic state space. Thigermodynamic lengthdf the path
takes thealternative forms

i i
1= ["1axi= [ "lavi.

(15

velocity X of the process:
AX=—(yg)~X. (22

In fact, this equation is formally identical to the relaxation
equation(19) which remains valid ifX, becomes a slowly

0 _ variables yarying function of time. It is important to realize thAtx
Y\ .= dS(X)/aX*; k=1,2, ... n instead of the extensive vari-

ables X then the metric tensor would be the inverse
g '=[g'*] of g=[g;]. Hence, in obvious notations, the
thermodynamic line-element square takes the following a

andX are usually not antiparallel. One can, nonetheless, see
that their longitudinali.e., parallel toX) projections are al-

|ways of opposite signs. This will enable us to define a certain

effective relaxation timer. Let us introduce the longitudinal
component of the retardation:

1

AXl= =
IX[|

(AX[g|X). (23
Substituting Eq(22) yields the longitudinal relaxation equa-

tion (note thatX!=|X||):

AXI=— 7], (24)

Obviously, the length of a path is independent of the choice
of coordinates and even of the parametrization of the patHV ere

itself. No intrinsic relation manifests itself between the ther-

modynamic length and the clock-time paramdter

In order to obtain a natural time scale along a given path,

T=— (25

W(AXlglﬁo.

we first have to invoke standard concepts of irreversible therryis can be rewritten in the following equivalent form:
modynamics. Consider a reservoir in equilibrium at some

state variableX, and bring it into contact with the system
which is in equilibrium atX. Then, the state of the system
will converge to the state of the reservoir. The standard form

of the relaxation equations redds
X'=y*AY,, (16)

whereAY =Y —Y is the deviation from the equilibrium in
terms of the entropic intensive variables, apd[ y'¥] is the

matrix of kinetic coefficients; it is symmetric and positive.

During this process of relaxation, entrofywill be produced
at the rate

S=(X|AY). 17
If AY is small, one can write

AY=—gAX. (18
The relaxation equatiofiL6) takes the alternative forms:

X=—9gAX or Y=—gyAY. (19
Using Equation(18) and the equation

Y=—gX (20)

alternative expressions of entropy production reit@é fol-
low

S=(X[y YX)=(Y[(gyg) "YY). (21)

= ——(X|y YX). (26)

X2
Indeed, as it is clearly seen from this form, the effective
relaxation timer is positive and only depends on the direc-
tion of X but not on its magnitudés long as it is moderate
Equation(26) has the compact form

S
T=—,
IX|I?

showing up7’s invariance if one changes the representation
of the states from extensive variabl¥sto intensive ones
Y, for instance.

Having introduced the effective relaxation tinte the
notion of thermodynamic time& can now be extended for
paths in more dimensions. Formally, we retain the old defi-
nition (3) of the element of thermodynamic tinde

dé=dt/,

(27)

(28)

which now depends on the direction of the spé@csome—
times, avector of thermodynamic speed (or Y') will be

more useful thaX (or Y):

X . .
'=—=7X or ,Ed—ngY.

Based on the above standard equations, an effective rghe common(scalay thermodynamic speédorresponds to

laxation time 7, depending on the path’s local directiof

the invariant norrts) | X'||=|Y’|| of the vectos) (29) so an

can be defined. Recall from Sec. Il that the system’s pattextension of the notion of thermodynamic speed for more
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dimensions has been performed. The entropy productiothat the entropy minimizing path corresponds to a constant
S’ = 7S per unit thermodynamic time can also be consideredentropy production rate, as was pointed out in Sec. Il for the

From Eq.(27) we obtain single variable cooling process.
) An equivalent Euler—Lagrange equation could be ob-
S'=7S=|x'|% (30 tained had we chosen the extensive variables param-

This means that the dimensionless entropy production ratg" 128 the paths. Actually we have chosen the intensive ones

S’ is equal to the squared thermodynamic speed, as is exince in typical experimental situations the reservoir’s inten-
pected from the single variable case in Sec. Il. sive variables are under our contief. Sec. .

In certain casegsee Sec. Vit would be interesting to
find the path minimizingS;; at the condition that thé¢her-
modynamic time; — & =f:_fdtlr be kept fixed and the clock-
time t;—t; might be varied. In this case, one suitably re-
places allt-dependencies b§-dependencies. From ratg0),

Consider a certain patfy (t)} corresponding to a finite- one obtains the following equation for the total entropy pro-
time thermodynamic process connecting the initial stateduction:

IV. OPTIMUM PATHS MINIMIZING ENTROPY
PRODUCTION

Y;i=Y(t;) with the final oneY;=Y(t;). Remember that a & &

thermodynamic patkiY (t)} is the solution to the “cooling” SﬁEJ S’d§=f [Y’|2dé. (35

equation(2) having now the following general forfrcf. Eq. i i

(19)]: At fixed & ,&, the minimum of entropy production is
: achieved if the pathy (&) satisfies the following Euler—
Y=gnY,=Y), (32) Lagrange equations:

driven by the given reservoir patfy,(t)}. The system’s d 1 a1

path has a small retardatidny (t) behind the reservoir path. d_g(g_lY’)k_ E(Y’ N, Y’) =0. (36

Higher dimensions show, however, a particular complica-
tion: the system’s velocity will not be parallel to the retarda- The entropy production rate versus thermodynamic téne
tion. The system does not choose the straightest way to folwill be an integral of this Euler—Lagrange equation:
low the reseryoir. But, as we proved in the pre\./iouls section, S'=|Y'|2=const. 37)
the system will always tend to reduce the longitudinal retar-
dation.[We risk the statement that such complication wouldThus the minimizing path corresponds to cons@&ntOn the
not be a point to the horse in the horse-carrot analogy merpther handS' is equal to the squared invariant norm of the
tioned in Sec. Il. The horse would definitely turn his/her thermodynamic speed’ defined by Eq.(29). Hence the
steps toward the carrgt. optimum path is ofconstant thermodynamic speeén

In the slow process approximation E@1) applies and equivalent result could be obtained Xtvariables.
the total entropy production will depend on the path as fol- ~ The constancy of the thermodynamic speed is merely a

lows: consequence of a very remarkable feature of optimum paths:
they correspond togeodesic motionin the Riemann-—
tr. t . P - . . .
SﬁEJ Sdtzf (Y|(gyg) ~YY)dt. (32) metricized manifold of thermodynamic states. Namely, if we
t; t; borrow a theorem from dynamics again we find that the

minimum condition for the entropy productiof35) is

Let us find the path minimizing the overall entropy produc-e uivalent to the Lagrange principle of particle dynamics in
tion, among paths connecting the fixed initial and ending q grange p P P y

points at a fixed fime lapsé;—t,. An analogy with curved spacé? The minimizing path is the shorteggeo-

Lagrange’s variational principle can be established if wedeS'o path betweenY; and Yy and the motion will be of

. i i . N constant(thermodynamit speed along it. For readers even
identify the Lagrange function a$/2. Then, minimizing o6 familiar with Riemannian geometry it is possible to
paths are found to obey the following Euler—Lagrange equaye,jize that geodesic motion is equivalent to say that the
tions: speedvector Y' is constant in a sense that the covariant
d o 1. a(gyg) . acceleration vanishés$ This constitutes a vectorial generali-
gt((979) 7Y)"'— E(Y TN, Y) =0. (33)  zation of the old scaler principle of constant thermodynamic
speed for optimum thermodynamic processes.

Obviously, the entropy production ra@l) is an integral of
the above differential equation:
. . . V. AN EASY CONTROL OF OPTIMUM COOLING
S=(Y|(gyg) "!|Y)=const., (34)
o ) It follows from the previous section that the Riemannian
which is the mathematical counterpart of the energy conselgeometric structure of the thermodynamic state space has an
vation rule in mechanic§Equation(34) follows directly if  jnyinsic relation with the processes of maximum reversibil-

we multiply Eq(33) by Y and substitute the identity ity at fixed thermodynamidapse rather than clock time. We
Y, d(gyv9) Y aY.=d(gyg) "Y/dt.] In our case this means are going to show that optimum cooling processes can easily
J. Chem. Phys., Vol. 105, No. 24, 22 December 1996
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be controlled by using thermometers instead of clocks! The

Diosi et al.: Optimum path to minimize entropy production

Now we can summarize the iterative algorithm of cool-

method is straightforward to implement for the simultaneousng. Given the current temperaturig, of the system, one

control of more thermodynamic parameters.

decreases the reservoir's temperature according to4.

We propose a stepwise control strategy to approximateand lets the system relax until the conditi(88) becomes
processes of constant thermodynamic speed. Essentially tlvalid. This procedure is then iterated fo., 1, etc. One can
same strategy has been proposed in Ref. 14, with an alternaee by inspection that the same average thermodynamic

tive starting point: Nultonet al. took stepwise finite-time
processes from the beginning.

Assume that we change the reservoir temperature step-

wise betweerT; and T;:

TiETOZTr0>Tr1>Tr2>‘ . '>TrN:Tf y

speed
B dl
~ [log(1—¢)]

belongs to each step and consequently to the whole process
as well. So this stepwise algorithm approaches the theoretical

(43)

and the cooling strategy goes like this. First we lower theoptimum process of constant thermodynamic Sd-ééd[e

reservoir temperature td,; suddenly, and we wait for the
system to become equilibrated to a given extent.e. its
temperature T will be as close to T,; as
T,=€T,1+(1—€)T;. Then we move to the next iteration by
lowering the reservoir temperatureTo, and letting the sys-
tem’s temperatur@ to equilibrate to thesameextente, iden-
tified by To,=€T,,+(1—€)T;. In general

Tn+1=ETr,n+1+(l_5)Tny (n=0,1,...N—1).
(39

need no clocks to measure time but thermometers to measure
temperatures and trepriori knowledge of the specific heat
function C(T) of the system in hand. In the general case
when more thermodynamic variables are to be controlled one
has to derive the geodesic path between the initial and final
equilibrium states in advance and then apply the stepwise
algorithm along the geodesic path. Our results can easily be
adapted to computer simulated statistical systems. The above
algorithm applies, for instance, in simulated anne&laithe
additional cost of numeric calculation of the annealed sys-

If all steps are so small that the change of the relaxation time, .o temperature and specific heat at each step
(T) is negli_g_ible at the step’s scale then, as we shall see, the A few words are needed to interpret the condition of
subtle condition$38) assure that the same amount of relax-ﬁxed thermodynamic time when looking for the optimum

ation time, measured in natural unitsr(T,), will be allo-
cated to each step. For the{1)'th cooling step, the relax-
ation equatior(2) yields the solutionT,,, ; in function of the
thermodynamic  time &6¢ of the step as
Thi1=(1—€ %)T, ny1+e %T,. By submitting this solu-
tion for each step in turn to the corresponding conditi®®)

we can see that each step will have Hanelapse
Sé=log(l—e) ! (39

of thermodynamic time. Hence, the numidéof small steps
required to realize the cooling process frdmto T;, pro-

vided the quality of each relaxation has had the commo

characteristic value, will be proportional to the thermody-
namic time lapsé;— &; of the cooling path:

&= &

N=Tog(i=a"

(40)

The smaller the defect of relaxations-x the bigger number

control. It may often happen that it it the clock time of a
given thermodynamic process that is the economically or
technologically relevant quantity. Rather than clock time, the
numberof iterated technological steps might better charac-
terize the amount of relevant facilitigsomputer capacity,
special materials, or just moneyhat can be consumed to
bring the system from its initial state into a prescribed final
one. In such cases the clock-time period of the process is of
less interest to be fixed in advance. The step humber is rather
to be fixed. The condition of fixed-in-advance step number is
equivalent to the condition of fixed-in-advance thermody-
amic time, as shown by E¢0). It may eventually happen
that the thermodynamic timgroportional to the step num-
ber takes the place of the clock time. The overall clock time
needed to perform a single cooling step might not be domi-
nated by the clock time of the relaxation but by the clock
time of the technological adjustment before and after the
relaxation. In this case, the gross time of the stepwise process

Ti—>Tf .

fixed-in-advance thermodynamic time becomes the relevant

To assure constant thermodynamic speed in average Wndition in designing the finite-time thermodynamic pro-

choose step$,,,T,,, ... insuch a way that theamether-
modynamic lengthsl defined by Eq(12) belongs to all cor-
responding segmend; — T4, Ti— T3, .. .:

C(Ty)
—TZ” IThe1—Th?=6812 (n=0,1,...N—1). (41
n
From Equation$38,4) one obtains:
T 15I/ET(01 N—1)
=|1-— , (n=0,1,...N—-1).
r,n+1 C(Tn) n
(42)

cess and, consequently, minimum entropy production will be
achieved along the geodesic path in thermodynamic state
space.

VI. CONCLUSION

We have extended the notion of the relaxation time
from one dimension to an arbitrary number of dimensions.
Thus the thermodynamic time can be deduced for multi-
dimensional thermodynamic processes, too, in a straightfor-
ward way. As a consequence, the optimum control of a ther-
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