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Abstract. Semiclassical (stochastic) wave equations are proposed for the coupled dynamics
of atomic quantum states and semiclassical radiation field. All relevant predictions of standard
unitary quantum dynamics are exactly reproducible in the framework of the stochastic wave
equation model. We stress in such a way that the concept of stochastic wave equations is not
to be restricted to the widely used Markovian approximation.

1. Introduction

For many years it has been understood that one cannot reproduceall the statistical
predictions of quantum theory from purely classical statistics [1] but can do it forcertain
predictions. The reduced dynamics of quantum subsystems (i.e. effective dynamics of
open quantum systems) can always be interpreted as hybrids of quantum and classical
mechanisms. The correspondingsemiclassical dynamics (which may also be called
semiquantized) is described bystochastic wave equations(SWEs). For ten years they have
attracted interest in the research of foundations [2] and, since the 1990s [3], in quantum
optics, too.

Consider a system of atoms interacting with the radiation field. Basically, all attainable
results are approximations:SWEs have been derived in the weak-coupling Markovian limit
[4]. In the present work, however, we investigate the exact unitary dynamics of the atom+
radiation system and we ask the following question. Can we describe the radiation field in
terms of classical (stochastic) variables instead of quantum ones in such a manner that all
relevant predictions remainexactly identical with those of the unitary quantum theory? The
answer will be affirmative in almost all respects. The forthcoming results were anticipated
previously [5] by detailed relativistic calculations. Here we intend to give a short account
for exact SWEs. Readers interested in practical rather than conceptual aspects may, after
reading section 2, understandSWEsdirectly from section 5.

2. The quantum model

For simplicity’s sake, we consider single-mode (cavity) quantum electrodynamics. The
Hamiltonian for the composite system of the atom plus radiation field has the following
general form:

Ĥ = Ĥ ato + ωâ†â + Ĵ â† + Ĵ †â (1)
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whereĤ ato is the atomic Hamiltonian,̂a is the absorption operator for the single radiation
mode of frequencyω. In the interaction terms,̂J is the atomic operator proportional to
charges and currents. As usual, we assume that at timet = 0 the quantum state of the
system is a product of the atomic and cavity radiation states, respectively,

90 = ψato
0 ψrad

0 . (2)

In an interaction picture, the quantum state9 evolves unitarily:

d9t

dt
= −iĤI (t)9t (3)

with interaction Hamiltonian

ĤI (t) = ĵ (t)â† + HC (4)

whereĵ (t) = eiωt Ĵ (t) is the ‘rotated’ version of the interaction picture currentĴ (t). Though
the present work concerns pure state equations it will nonetheless be convenient to also
define a density operator̂ρ ≡ 99†.

3. Stochastic field variables, semiclassical states and observables

The basic field variableŝa, â† do not commute: [̂a, â†] = 1. We shall, nevertheless, establish
a certain natural correspondence between them and their classical counterpartsa, a∗. Let
us introduce a special notation for symmetric products:

âcÔ ≡ 1
2

(
âÔ + Ôâ

) = {â, Ô} (5)

whereÔ is an arbitrary operator and̂ac is called a ‘superoperator’ (cf [5] and references
therein). The superoperatorsâc, â

†
c commute with each other [6]:

[âc, â
†
c ]Ô ≡ {â, {â†, Ô}} − {â†, {â, Ô}} = 0 (6)

hence we shall make the natural correspondence, mentioned above, between the classical
complex variablea (or a∗) and the superoperatorâc (or â

†
c).

We describe the radiation field in terms of the classical stochastic variablesa, a∗ coupled
to the quantized atomic ones. The state of the quantum system will then be represented by
the semiclassical‘density’:

ρ̂(a, a∗) = trrad
(
δ(a − âc)δ(a

∗ − â†
c)ρ̂

)
(7)

which is expected to be the density operator for the atom and phase space distribution for the
field simultaneously. It should satisfy the positivity conditionρ̂(a, a∗) > 0 for all complex
values ofa, a∗. Then trato ρ̂(a, a∗) is the reduced phase space distributionρrad(a, a∗) of
the radiation field mode and, alternatively,

∫
ρ̂(a, a∗) da∗ da is the reduced density operator

ρ̂ato of the atom. Similarly to (7), we define the semiclassical counterpart of Hermitian
observableF̂ by

F̂ (a, a∗) = trrad(δ(a − âc)δ(a
∗ − â†

c)F̂ ) . (8)

We, however, do not consider all Hermitian observables but those where the correspondence
is invertible:

tr
(
F̂ (âc, â

†
c)Ô

) = tr
(
F̂ Ô)

(9)

for all Ô. This includes a pretty large class of Hermitian operators.
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The equivalence of the semiclassical picture with the full quantized one relies upon the
following equation:

tr
(
F̂ (âc, â

†
c)ρ̂

) = trato

∫
F̂ (a, a∗)ρ̂(a, a∗) da∗ da (10)

which follows from (7)–(9) and from the commutativity ofâc and â
†
c .

4. The positivity issue and its solution by coarse-graining

Let us write the phase space distribution of the radiation field, defined by tracing (7) over
the atomic states as well, in the Fourier representation:

ρrad(a, a∗) = 1

π2

∫
exp(−λa∗ + λ∗a) tr

(
exp(−λ∗âc + λâ†

c)ρ̂
)

dλ∗ dλ . (11)

By substituting the identity

exp(−λ∗âc + λâ†
c)ρ̂ = exp(−λ∗â/2) exp(λâ†/2)ρ̂ exp(λâ†/2) exp(−λ∗â/2) (12)

which follows from the rules (5), (6), one can apply the identity

exp(Â) exp(B̂) = exp([Â, B̂]/2) exp(Â + B̂)

to obtain

ρrad(a, a∗) = 1

π2

∫
exp(−λa∗ + λ∗a) tr

(
exp(−λ∗â + λâ†)ρ̂

)
dλ∗ dλ . (13)

One recognizes thatρrad(a, a∗) is identical to the well known Wigner function introduced
long ago [7]. However, the Wigner functioncannotbe interpreted as phase space density
since it may take negative values as well. From Husimi’s work we know that a minimum
coarse-graining will cure the problem [8]. Consequently, we apply a minimum coarse-
graining to the ‘sharp’ distribution̂ρ(a, a∗) defined by (7). Leta0, a

∗
0 be noisy complex

field variables of vacuum distribution(2/π) exp(−2|a0|2). The coarse-grained semiclassical
state thus reads

ρ̂(a, a∗) =
∫

exp(−2|a0|2)
π/2

ρ̂(a + a0, a
∗ + a∗

0) da∗
0 da0 . (14)

The corresponding coarse-grained phase space densityρ̄rad(a, a∗) = tr ¯̂ρ(a, a∗) is identical
to the so-calledQ-function of the radiation field (see, e.g., in [9]). As is well known, the
Q-function is 1/π times the diagonal element of the density operator between coherent
states. Accordingly, the corresponding relation holds true for¯̂ρ(a, a∗) itself:

¯̂ρ(a, a∗) = 1

π
〈a, a∗|ρ̂|a, a∗〉 (15)

where |a, a∗〉 is the coherent state of the radiation field mode. (Two remarks on our
notations are in order. First, we indicate the explicit dependence of coherent states onboth
a anda∗. Second, the quadratic form above has to be understood on the factor Hilbert-space
of the cavity while the resulting expression is still an(a, a∗)-dependent density operator
in the atom’s Hilbert-space.) The form (15) guarantees the positivity of the coarse-grained
semiclassical density.

One also introduces coarse-grained semiclassical observables:

¯̂
F(a, a∗) =

∫
exp(−2|a0|2)

π/2
F̂ (a + a0, a

∗ + a∗
0) da∗

0 da0 . (16)
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Then a coarse-grained version of the ‘sharp’ equivalence equation (10) follows:

tr
( ¯̂
F(âc, â

†
c)ρ̂

) = trato

∫
F̂ (a, a∗) ¯̂ρ(a, a∗) da∗ da (17)

i.e. the statistics of coarse-grained quantum observables are still exactly reproducible from
the coarse-grained semiclassical state¯̂ρ(a, a∗).

One would worry because coarse-grained distributions are believed to lose information.
In typical quantum optics applications things prove not so bad as long as one considers
expectation values of polinoms of the absorption and emission operators. Then the additional
noise is easy to subtract. Let us assume that we are interested in the expectation value of
the photon number operatorâ†â in the current quantum statêρ and we want to calculate
it from ¯̂ρ(a, a∗). It is plausible to choosêF(a, a∗) = |a|2. Then, via (16), let us calculate

the corresponding coarse-grained observable¯̂
F(âc, â

†
c). We obtainâ

†
c âc = â

†
c âc + 1

2. The
equivalence condition (17) thus leads to

tr
(
(â†

c âc + 1
2)ρ̂

) =
∫

|a|2ρ̄rad(a, a∗) da∗ da . (18)

Due to the identity tr((â†
c âc + 1

2)ρ̂) = tr(â†âρ̂) + 1, equation (18) yields

tr(â†âρ̂) =
∫

|a|2ρ̄rad(a, a∗) da∗ da − 1 . (19)

This is the simplest example to illustrate how exact quantum expectation values are
reproduced from the coarse-grained semiclassical state¯̂ρ(a, a∗).

5. Exact stochastic wave equation

We remind the reader that the composite system of the atom+ radiation was originally
assumed to be in a pure quantum state9. Let us introduce a coherent state representation
of 9:

ψ(a, a∗) = 1√
π

〈a, a∗|9〉 . (20)

The scalar product on theRHS is to be taken on the factor Hilbert-space of the cavity.
(The author has failed to find a more suitable compact notation, see also the second remark
after (15).) Strictly speaking,ψ(a, a∗) is a wavefunction of the field-mode coordinates
a, a∗ while, on the other hand, it is state vector (of arbitrary representation) in the atomic
Hilbert-space. It follows from (15) that the wavefunction (20) just yields the coarse-grained
semiclassical density in the form

¯̂ρ(a, a∗) = ψ(a, a∗)ψ†(a, a∗) . (21)

So, it is natural to callψ(a, a∗) a semiclassical wavefunction. Let us obtain its equation of
motion.

In coherent state representation the following operator correspondences should be used
(cf [10]):

â†9 ↔ a∗ψ(a, a∗) â9 ↔
(

a

2
+ ∂

∂a∗

)
ψ(a, a∗) . (22)

Hence the Hamiltonian equation of motion (3) leads to the following equation of motion
for the semiclassical wavefunction:

dψt (a, a∗)
dt

= −i

(
a∗ĵ (t) + a

2
ĵ †(t)

)
ψt (a, a∗) − iĵ †(t)

∂ψt (a, a∗)
∂a∗ . (23)
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This wave equation, combining unitary and stochastic dynamics, is our central result.
By means of this equation, exact predictions of the unitary quantum theory can be obtained†.

Let us summarize theSWE method. Assume the atomic state att = 0 is ψato
0 while the

cavity’s state is the vacuum state|0, 0〉. Then, according to (2), the semiclassical (stochastic)
wavefunction (20) initially takes the form

ψ0(a, a∗) = ψato
0

exp(−|a|2/2)√
π

. (24)

Let us switch on the interaction. Then the conditional atomic wavefunctionψt (a, a∗)
evolves as a function of the state(a, a∗) of the classical field, according to (23) while the
(coarse-grained) probability distribution of the classical field variablesa, a∗ is given by

ρt (a, a∗) = ‖ψt (a, a∗)‖2 . (25)

The expectation value of an arbitrary semiclassical observableF̂ (a, a∗) will exactly
reproduce the quantum expectation value of the corresponding coarse-grained Hermitian
observable, i.e.

tr
( ¯̂
F(âc, â

†
c)ρ̂t

) =
∫

ψ†
t (a, a∗)F̂ (a, a∗)ψt (a, a∗) da∗ da (26)

where ¯̂
F(a, a∗) is derived fromF̂ (a, a∗) by the minimum coarse-graining (16).

The existence of exactSWE was pointed out in [5] in the context of relativistic
quantum-electrodynamics. That time, however, the stochastic field was not identified as
a semiclassical radiation field. A generalization of ourSWE (23) for infinite number of
field modes being initially in thermal equilibrium states at non-zero temperature seems
straightforward.

6. Outlook

The main result of the present work is a suggestion that semiclassicalSWEs could exactly
reproduce the quantum physics of both atomicand radiation degrees of freedom. In our
opinion, the very existence of exact stochastic models is a novelty of fundamental interest.
Conceptual elements of equivalence with unitary quantum theory are symmetrized products
of non-commuting operators and a minimum coarse-graining of states and observables. Our
SWE establishes the possibility of making efficient Monte Carlo simulations in the non-
Markovian regime since using classical variables for the radiation field represents a fair
simplification. Of course, the re-derivation of the extensively used MarkovianSWEs is
possible and desirable.
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† If we introduce the unnormalized wavefunctionϕ(a∗) defined byψ(a, a∗) = ϕ(a∗) exp(−|a|2/2)/
√

π then the
SWE (23) takes a much simpler form

dϕt (a
∗)

dt
= −ia∗ĵ (t)ϕt (a

∗) − iĵ †(t)
∂ϕt (a

∗)
∂a∗

with the initial conditionϕ0(a
∗) = ψato

0 instead of (24).
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