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The non-Markovian stochastic Schrodinger equation
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We present the non-Markovian generalisa
one to describe open quantum systems in terms of stochastic state vectors rather than density operators, without Markov
approximation. Moreover, it unifies two recent independent attempts towards a stochastic description of non-Markovian
open systems, based on path integrals on the one hand and coherent states on the other. The latter approach utilises the
analytical properties of coherent states and enables a microscopic interpretation of the stochastic states. The alternative first
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In the last few years the description of open quan-
tum systems in terms of stochastic Schrodinger equa-
tions has received remarkable attention. They are now
wmcly used in different fields (measurement theory,
quantum optics, quantum chaos, solid states [1-7]),
wherever quantum irreversibility matters. They do not
only serve as a fruitful theoretical concept but also as a
practical method for computations in the form of quan-
tum trajectories. Up to now, however, the Markov ap-
proximation was believed to be essential for a stochas-

tic descripti on’
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3 An exact non-Markovian stochastic quantum-Langevin equation
for the Heigenberg coordinate operator was derived in Ref. [8].

For systems where non-Markovian effects are in-
evitable, as for non-equilibrium relativistic fields,
especially in quantum cosmology*, or solid state
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physics l‘xu }7,an advant”g Ous stocnasiic pure state
description was missing. This Letter presents an exact
non-Markovian stochastic Schrédinger equation.

This result anticipated that a closed stochastic Schrédinger equa-
tion, desired for a long time, exists for the state vector.

4 Non-Markovian environmental effects in quantum cosmology
have been taken into account stochastically, using coloured noise,
in Ref. {9]. This effective approach, however, lacks a closed
evolution equation for the state vector of the system.

SFor the electron-phonon interaction the memory effects of
the phonons were approximated by a Markovian stochastic
Schridinger equation for an enlarged hypothetical system in
Ref [111.
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Traditionally, open systems are described by the re-
duced density operator Pey(t) = Trenv(proc(t)), 0b-
tained from the total density operator by tracing over
the environmental degrees of freedom. In the Markov
approximation, it is well known that the system dy-
namics can either be described by a master equation

1t
for the reduced density operator pys(t), or alterna-

tively, by a stochastic Schrodinger equation for state
vectors |z (¢)) [1-7]. In the latter approach, the re-
duced density operator is recovered as the ensemble
average over these stochastic pure states,

ﬁsys(t)=MZ[I‘//Z(I))<¢’Z(I)|]- (1)

Here, |z (1)) indicates the solution of the stochastic
Schrodinger equation with a particular realisation of
the - in this case Wiener - stochastic process Z(t);
the mean Mz[. . .] refers to the ensemble average over
these processes. The states |z (¢)) may or may not

be normalised dpnpqrhna on whether one utilises the

non-linear [2] or linear [4] version of the stochas-
tic Schrodinger equation. Both the linear and the non-
linear equation leads to the correct reduced density
operator according to Eq. (1) and they are mathe-
matically equivalent by virtue of a redefinition of the
stochastic processes Z(t) [12].

It is the aim of this Letter to demonstrate that a
stochastic decomposition just like (1) also holds in the
general case, without any approximation, in particular
without the Markov approximation. We derive the lin-
ear version of the relevant non-Markovian stochastic
ouuuuu‘lger equuuu, the comasponumg non-linear,
norm preserving theory can be found in a way similar
to the Markovian case [13].

Our result can be based on two recent indepen-
dent approaches to a stochastic description of non-
Markovian open systems [ 14,15]. One approach [ 14]
uses coherent states and has the advantage of offer-

rryratat £ th INT: £ th $ o
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tic Schrodinger equation from first principles. The
other [15] is based on the Feynman-Vernon approach
to open systems using path integrals [ 16] and is valid
for arbitrary temperatures.

To be specific, we use a standard modei of open
system quantum mechanics, a system coupled linearly
via position coupling to an environment of harmonic

oscillators [16]

I:Itot = Hsys(‘?»ﬁ) - (?ZXIQAi

+Z(

where we also introduce F = > x:0; for later pur-
poses, the force acting on the system as induced by
the environment. We assume a factorised total initial
density operator pi(0) = |¢ho) (0| ® pr. The envi-
ronment oscillators are assumed to be in a thermal ini-
tial state nm at temperature 7, and, for simnlicity, the

Lidal Al al lipeRaliic £ AL SAUPHICILY, )

system is assumed to be in a pure state |y ) (¢ |. The
time evolution of the total system is determined by the
unitary von Neumann equation p,,, = —i[ Hiot, Prot]-
Without any approximation, the reduced density op-
erator Pgys(t) of the model (2) can be represented
as the ensemble average (1) of stochastic pure states
h/rv(ﬂ\ They are the solutions of the following non-

1z R: AT VA0 SIS OF 1RO 101I0WIINE 1O

Markov1an stochastlc Schrodinger equation,

-+ smiwl Q] ) (2)

6h2(6)) = ~iHsys(§, P) [z (1)) +1GZ (1) |9z (1))

(3)

which is the main result of this Letter. Eq. (3) is
a stochastic equation, since it depends on a stochas-
tic process Z(t) as specified below. It is also non-
Markovian due to a memory term involving the de-
pendence of the current state [z (¢)) on earlier noise
Z(s), describing the (delayed) back reaction of the

Pn\nrnnmpnt on the gvgtem

vALUNINCIL U5 U0 5y 5AL

The dynamical properties and the temperature of the
environment determine the memory kernel a(t,s) =
S x?/2 mw;) [coth(hw;/2kpT) cos w;(t — s) —
isin(z — s)] [16]. It can be regarded as the force
correiation function a(t,s) = Tr(F()F(s)pr),
where F(t) is the Heisenberg operator of the force
of the model (2) of the undisturbed environment.
This memory kernel also determines the probability
distribution of the stochastic processes Z(t) entering
the non-Markovian stochastic Schridinger equation
(3). They are coloured complex Gaussian processes

wxrithh tvmem Ao
WILL prupciucy

Mz[Z(1)] =0, Mz[Z(1)Z(s)]1=0
Mz[Z()Z*(s)] =a*(1,5), (4
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designed in such a way as to mimic the effect of the
quantum force £(t).

In the next two parts we will prove the central as-
sertion of this Letter: The solutions |z (¢)) of the
non-Markovian stochastic Schrédinger equation (3)
reproduce the exact reduced density operator pgy(t)
if one takes the ensemble average over the stochastic
processes Z(t) according to (1).

The first proof uses path integrals. The propagator
J(t;0) of the reduced density operator of the model
(2) can be found in Feynman and Vernon’s original
original paper [ 16],

HGuq 1 0.4y, 0) = / Dlq] / DIq]
x exp{iSsys[q] —iSsys[q']}f[q,q’], (5)

with the influence functional F[q,q'] encoding the
effects of the environment on the system. It has been
shown recently [ 15] that the propagator (5) allows for
an exact stochastic decomposition using the coloured
complex Gaussian stochastic processes ® Z(f) with
properties {4),

J(q.4',1: 90,90, 0)
=Mz[Gz(q,1;90,0)G5 (4. 145, 0) 1. (6)
In Ref. [ 15], the stochastic propagators Gz (t; 0) were

given by their path integral representation

Gz(q.1 90,0)

¢

=/'D{q} exp (iSsys{q} +i/d'rq,Z('r)
0

t T
-»/dv-/do-qfa(-r,a')qa), (1)
o 0

where we concluded that the states

Iz (1)) = Gz(t;0)|go) (8)

recover the reduced density operator gy (¢) according
to (1).

Now we derive the Schridinger equation corre-
sponding to the stochastic propagator (7): first we

6In Ref. [15] we used —iZ(s) instead of Z(t). Our theory,
however, is invariant under phase changes of the stochastic pro-
cesses Z(t), which is why both choices are equivalent.

take the time derivative on both sides of Eq. (8). The
action Sgyslg] in the exponent of the path integral
expression (7) leads to the system Hamilton oper-
ator Ay in the Schrodinger equation, the stochastic
integral [ drg,Z () adds the stochastic driving term
4Z(t) in Eq. (3). The only complication arises from
the contribution of the double time integral in the
exponent of the action in the path integral expression
(7). Using functional differentiation, it is straightfor-
ward to show that it leads to the remaining memory
term in Eq. (3). This completes the desired proof of
the equivalence of the stochastic propagator (7) and
the non-Markovian stochastic Schrodinger equation
(3). With Eq. (6) we conclude that the solutions
|z (t)) of our equation (3) do in fact recover the
reduced density operator of the model (2) by taking
the ensemble average (1) over the processes Z ().

It is easy to show - see also Ref. [15] - that
our equation {3) reduces to the well-known (linear)
Markovian stochastic Schrodinger equation with com-
plex Wiener noise in the limit of white noise.

An alternative derivation of the non-Markovian
stochastic Schridinger equation (3) uses a coherent
state basis for the environmental degrees of free-
dom. This route to a stochastic description of non-
Markovian open systems was taken in Ref. [ 14]. We
use the non-normalised Bargmann coherent states
|@) [17] which are analytical in a and satisfy the
completeness relation [ dzae“‘”zla) (a|l = 1, where
d’a = d Rea d Ima/#. Assume an expansion of
the total state vector using a Bargmann basis |a) =
la;) ® laz) ® ... for the environmental degrees of
freedom a = (a;,a2,...),

(1)) = /dzae_'a'2'¢a'(t)> ® la). 9

The states |1, (¢)} of the system correspond to a par-
ticular “configuration” |a) of the environment. Trac-
ing over the environment, and using the representation
(9) for the total state, we find that the reduced density
operator takes the form

Bes(D) = f d2a e [ge (1)) (e ()]
= Mol () o (D11, (10)

For the last expression we regard the coherent state
variables a as classical stochastic variables with Gaus-
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sian distribution M,[...] = [d%a[...] exp{—|a|*}.
We now turn our attentlon to the time evolution
of the total state using the coherent state representa-
tion (9). First, we rewrite the total Hamilton operator
(2) in terms of the creation and annihilation opera-
tors &;‘ and &; of the environment oscillators, and also

chanaa to a0 Hatcanhara ranracantatinn of tha anvirnon-
Cnange to a ncisCnolrg reproscntation o1 uic Cnviron

mental part of the total Hamiltonian. Then we find that
the system part |~ (¢)) of the total state obeys the
Schrédinger equation [17]

.o PN LA ‘. PEREY VS Xl
[Wax (1)) = —1Hsys|tha= (1)) +1f12id \/'—2—71—’—(01

7/ a2 0\

x (ei"""a}" +e—iw"'i;)|¢m(t)>. (11)
da;

We now restrict ourselves to the zero tempera-
ture case (T—O) for which the initial condition
|(//a~ \U)} = |¢//0; holds for all configurations a. In this
coherent state approach, the non-zero temperature
case is non-trivial and will be treated elsewhere [13].

In Eq. (10) the reduced density operator is ex-
pressed naturaily as an ensemble average over the pure
states ¢, (1)). Accordingly, the evolution equation
(11) represents the stochastic Schrodinger equation
for these states.

Remarkably, this construction is identical to the
non-Markovian stochastic Schrodinger equation (3).
To see the equivalence, we define stochastic processes

Zs(1) = reli, (12)

3 e

A simple calculation shows that these processes are
- for zero temperature - realisations of the coloured

Al o Moo cinm ctmnlhactia meanacong

COLIPICA Ua‘uamau SLULEIAdUIL PIULLOOLS \"7},

Ml Z, (1)1 =0, Mu[Z,(t)Zs(s5)] =
Ml Z,(1)Z; (5)] = ar(t,5). (13)

Moreover, using the chain rule we find

X O
@ Vme
_ dsr‘ Le—'iwi(!-—‘?) b}
= / 2—‘ 2 m;w; SZa(S)

s
/dsar=0(t §) ——— 37.(5)" (14)

Replacing the expressions (12) and (14) in the coher-
ent state stochastic Schridinger equation (11), we re-
cover the non-Markovian stochastic Schrédinger equa-
tion (3), our basic result.

According to Eq. (9), the solutions |z (£)) of the
non-Markovian stochastic Schridinger equation (3)

renracent the nart of the tatal state which corresnandg
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to a certain classical “configuration” a of the environ-
ment. The link between the process Z (¢) and the con-
figuration a is given by Eq. (12). The interpretation
of the classical “configuration” a of the environment
(and thus of the stochastic processes Z(¢) too) can
be given in the broader framework of hybrid densi-
ties [ 1 R]

We have presented the non-Markovian stochastic
Schrodinger equation. It allows for the description of
open quantum systems in terms of stochastic state vec-
tors rather then density operators, without relying on
the Markov approximation.

Two alternative derivations are given. First, we es-
tablish the connection to the nath integral approach

to open systems as initiated by Feynman and Vernon.
The non-Markovian stochastic Schrodinger equation
reflects a stochastic decomposition of the propagator
for the reduced density operator into stochastic prop-
agators for state vectors. Secondly, we establish the
connection to a coherent state description of the envi-
ronment, allowing a microscopic interpretation of the
stochastic states |z (1)).

Our theory is exact and the model (or some straight-
forward generalisation of it) appears in many areas of
physics (electron— phonon interaction, the spin-boson
model, the whole of quantum optics, relativistic field
theories as relevant as QED). These problems can
now be phrased in the language of stochastic evolu-
tion equations in Hilbert space, without approxima-
tion. The success of quantum trajectory methods in
the Markovian case suggests that our result also repre-
sents a promising step towards an effective numerical
algorithm for non-Markovian reduced dynamics. As a
fundamental concept, stochastic pure state represen-
tations no longer depend on the Markov assumption.
Starting from our exact result, approximations like per-
turbation expansions are possible, further simplifying
the description of non-Markovian reduced dynamics.
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