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Abstract 

We present the non-~arkovi~ gene~iisation of the widely used stochastic Schriidinger equation. Our result allows 
one to describe open qu~~rn systems in terms of stochastic state vectors rather than density operators, without Markov 
approximation. Moreover, it unifies two recent independent attempts towards a stochastic description of non-Markovian 
open systems, based on path integrals on the one hand and coherent states on the other. The latter approach utilises the 
analytical properties of coherent states and enables a microscopic interpretation of the stochastic states. The alternative first 
approach is based on the general description of open systems using path integrals as originated by Feynman and Vernon. 
@ 1997 Elsevier Science B.V. 
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In the last few years the description of open quan- 
tum systems in terms of stochastic Schrc‘idinger equa- 
tions has received remarkable attention. They are now 
widely used in different fields (measurement theory, 
quantum optics, quantum chaos, solid states [ l-71 ), 
wherever quantum irreversibility matters. They do not 
only serve as a fruitful theoretical concept but also as a 
practical method for computations in the form of quan- 
tum trajectories. Up to now, however, the Markov ap- 
proximation was believed to be essential for a stochas- 
tic description 3 . 

’ E-ma& dios~~~i.k~i.hu. 
2 E-mail: w~ter.s~nz~uni~s~n.de. 
3 An exact non-M~kovi~ stochastic qu~tum-~gevin equation 

for the Heisenbetg coordinate operator was derived in Ref. [S]. 

For systems where non-M~kovi~ effects are in- 
evitable, as for non-~uilibrium relativistic fields, 
especially in quantum cosmology4, or solid state 
physics [lo] 5, an advantageous stochastic pure state 
description was missing. This Letter presents an exact 
non-Markovian stochastic Schrodinger equation. 

This result anticipated that a closed stochastic Schrtidinger equa- 
tion, desired for a long time, exists for the state vector. 

4 Non-Markovian environmental effects in quantum cosmology 
have been taken into account stochastically, using coloured noise, 
in Ref. [ 91. This effective approach, however, lacks a closed 
evolution equation for the state vector of the system. 

5For the ele~~on-phonon inte~ction the memory effects of 
the phonons were approxi~ted by a Markovian stochastic 
Schrodiiger equation for an enlarged hypothetical system in 
Ref. [Ill. 
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Traditionally, open systems are described by the re- 
duced density operator &(t) = Tr,,,( &,i( t)), ob- 
tained from the total density operator by tracing over 

the environmental degrees of freedom. In the Markov 

approximation, it is well known that the system dy- 

namics can either be described by a master equation 
for the reduced density operator fisYs (t), or alterna- 

tively, by a stochastic Schrodinger equation for state 
vectors I~z (t)) [ l-71. In the latter approach, the re- 
duced density operator is recovered as the ensemble 
average over these stochastic pure states, 

&s(t) = ~Z[I~z(~))(Jh(~)Il* (1) 

Here, ]$z (t)) indicates the solution of the stochastic 

Schrodinger equation with a particular realisation of 
the - in this case Wiener - stochastic process Z(t); 

the mean Mz [ . . .] refers to the ensemble average over 
these processes. The states l@z (t)) may or may not 
be normalised depending on whether one utilises the 
non-linear [ 21 or linear [4] version of the stochas- 
tic Schrodinger equation. Both the linear and the non- 
linear equation leads to the correct reduced density 

operator according to Eq. ( 1) and they are mathe- 
matically equivalent by virtue of a redefinition of the 

stochastic processes Z(t) [ 121. 
It is the aim of this Letter to demonstrate that a 

stochastic decompositionjust like ( 1) also holds in the 

general case, without any approximation, in particular 
without the Markov approximation. We derive the lin- 
ear version of the relevant non-Markovian stochastic 
Schrodinger equation, the corresponding non-linear, 
norm preserving theory can be found in a way similar 
to the Markovian case [ 131. 

Our result can be based on two recent indepen- 
dent approaches to a stochastic description of non- 
Markovian open systems [ 14,15 ] . One approach [ 141 
uses coherent states and has the advantage of offer- 
ing an interpretation of the solutions of the stochas- 
tic Schrodinger equation from first principles. The 
other [ 151 is based on the Feynman-Vernon approach 
to open systems using path integrals [ 161 and is valid 
for arbitrary temperatures. 

To be specific, we use a standard model of open 
system quantum mechanics, a system coupled linearly 
via position coupling to an environment of harmonic 
oscillators [ 161 

where we also introduce fi = xi xi$ for later pur- 
poses, the force acting on the system as induced by 
the environment. We assume a factorised total initial 

density operator &i(O) = I&)(& @ 3~. The envi- 
ronment oscillators are assumed to be in a thermal ini- 
tial state i?r at temperature T, and, for simplicity, the 

system is assumed to be in a pure state I#a) (@a]. The 
time evolution of the total system is determined by the 
unitary von Neumann equation & = -i [ Atot, btot]. 

Without any approximation, the reduced density op- 

erator ljsYs (t) of the model (2) can be represented 

as the ensemble average ( 1) of stochastic pure states 
II& ( t)). They are the solutions of the following non- 
Markovian stochastic Schrodinger equation, 

I&z(t)) = -i&s(B9B)Ick(t)) +iGZ(t)I$z(t)) 
t 

+i4 J wz (t>) 
dsa(t,s) sz(s) , 

0 

(3) 

which is the main result of this Letter. Eq. (3) is 
a stochastic equation, since it depends on a stochas- 

tic process Z(t) as specified below. It is also non- 
Markovian due to a memory term involving the de- 

pendence of the current state I& (t)) on earlier noise 
Z(s) , describing the (delayed) back reaction of the 

environment on the system. 
The dynamical properties and the temperature of the 

environment determine the memory kernel (u( r, s) = 
x,(x?/2 miwi) [COth( riwi/2kBT) COS Wi( t - S) - 

i sin( t - s) ] [ 161. It can be regarded as the force 
correlation function CX( t, s) = Tr( i’?( t) E(s) &), 
where fl( t) is the Heisenberg operator of the force 

of the model (2) of the undisturbed environment. 
This memory kernel also determines the probability 
distribution of the stochastic processes Z ( t) entering 
the non-Markovian stochastic Schrodinger equation 
(3). They are coloured complex Gaussian processes 
with properties 

MZ[Z(f)l =o, Mz[Z(t)Z(s)l =o, 
Mz[Z(t)Z’(s)l =(Y*(t,S), (4) 
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designed in such a way as to mimic the effect of the 
quantum force P(t). 

In the next two parts we will prove the central as- 
sertion of this Letter: The solutions ]+z (t)) of the 
non-Markovian stochastic Schriidinger equation (3) 
reproduce the exact reduced density operator psYs ( t) 
if one takes the ensemble average over the stochastic 
processes 2 ( t ) according to ( 1) . 

The first proof uses path integrals. The propagator 
J( t; 0) of the reduced density operator of the model 
(2) can be found in Feynman and Vernon’s original 
original paper [ 16 1, 

J(q,q’,t;qo,q~,O) = Wql 
s s 

mq’1 

x exp{&s[ql - i~s,s[4’l}~Cq,4’l, (5) 

with the influence functional _F[q,q’] encoding the 
effects of the environment on the system. It has been 
shown recently [ 151 that the propagator (5) allows for 
an exact stochastic d~omposition using the coloured 
complex Gaussian stochastic processes6 Z(t) with 
properties f 4), 

=MZCGZ(q,t;40,O)G~(q’,t;q~,O)l. (6) 

In Ref. [ 151, the stochastic propagators Gz (t; 0) were 
given by their path integral representation 

I v- 

- ss dr (7) 

0 0 

where we concluded that the states 

I&(r)) =Gz(r;O)I+o) (8) 

recover the reduced density operator psYs (t) according 
to (1). 

Now we derive the Sc~~dinger equation corre- 
sponding to the stochastic propagator (7) : first we 

6 In Ref. IIS] we used -iZ(f) instead of Z(r). Our theory, 
however, is invariant under phase changes of the stochastic pro- 
cesses Z(t), which is why both choices are equivalent. 

take the time derivative on both sides of Eq. (8). The 
action &,,[q] in the exponent of the path integral 
expression (7) leads to the system Hamilton oper- 
ator asYs in the Schriidinger equation, the stochastic 
integral / dr qrZ( 7) adds the stochastic driving term 
GZ (t) in Eq. (3). The only complication arises from 
the contribution of the double time integral in the 
exponent of the action in the path integral expression 
(7). Using functional differentiation, it is straightfor- 
ward to show that it leads to the remaining memory 
term in Eq. (3). This completes the desired proof of 
the equivalence of the stochastic propagator (7) and 
the non-Markovian stochastic Schrijdinger equation 
(3). With Eq. (6) we conclude that the solutions 
l$z (t)) of our equation (3) do in fact recover the 
reduced density operator of the model (2) by taking 
the ensemble average ( 1) over the processes 2 ( t) . 

It is easy to show - see also Ref. [ 1.51 - that 
our equation (3) reduces to the well-known (linear) 
Markovian stochastic Schr~dinger equation with com- 
plex Wiener noise in the limit of white noise. 

An alternative derivation of the non-M~kovian 
stochastic Schrodinger equation (3) uses a coherent 
state basis for the environmental degrees of free- 
dom. This route to a stochastic description of non- 
Markovian open systems was taken in Ref. [ 141. We 
use the non-notmalised Bargmann coherent states 
ju) [ 171 which are analytical in a and satisfy the 

completeness relation j d2a e-lalz ]CZ) (~1 = 1, where 
d2a = d Rea d Im a/n-. Assume an expansion of 
the total state vector using a Bargmann basis ]u) = 

ial> @ I&!) @ *** for the environmental degrees of 
freedom a = (at,u2,. . .>, 

l*tdtl) = J d2ae-l’12J&. (t)) @ Ia). (9) 

The states Ill/a* ( t)) of the system correspond to a par- 
ticular “configuration” ]a) of the environment. Trac- 
ing over the environment, and using the representation 
(9) for the total state, we find that the reduced density 
operator takes the form 

&f(t) = 
s 

d2ac-lu~2]~Q* (~)){~~* (r)f 

= ~,rllCla:(f))(~~Gh-(t)ll. (10) 

For the last expression we regard the coherent state 
variables a as classical stochastic variables with Gaus- 
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Sian distribution M, [ . . .] = Jd*a[. .] exp{-(a12}. 
We now turn our attention to the time evolution 

of the total state using the coherent state representa- 

tion (9). First, we rewrite the total Hamilton operator 
(2) in terms of the creation and annihilation opera- 

tors a/ and ai of the environment oscillators, and also 
change to a Heisenberg representation of the environ- 
mental part of the total Hamiltonian. Then we find that 

the system part ]I/&* (t)) of the total state obeys the 
Schrodinger equation [ 171 

(11) 

We now restrict ourselves to the zero tempera- 
ture case (T = 0), for which the initial condition 

I&* (0)) = I@o) h o s ld f or all configurations u. In this 
coherent state approach, the non-zero temperature 

case is non-trivial and will be treated elsewhere [ 131. 
In Eq. (10) the reduced density operator is ex- 

pressed naturally as an ensemble average over the pure 
states ]+a* (r)). Accordingly, the evolution equation 

( 11) represents the stochastic Schrodinger equation 

for these states. 
Remarkably, this construction is identical to the 

non-Markovian stochastic Schrodinger equation (3). 
To see the equivalence, we define stochastic processes 

Z,(t) E C *use’““. 
i 

(12) 

A simple calculation shows that these processes are 
- for zero temperature - realisations of the coloured 

complex Gaussian stochastic processes (4)) 

M,[Zo(t)l = 0, M,[Za(t)Z,(s)l = 0, 
M,[Za(t)Z,“(s)l = &(t,s>. 

Moreover, using the chain rule we find 

(13) 

Replacing the expressions ( 12) and ( 14) in the coher- 
ent state stochastic Schrodinger equation ( 11) , we re- 

cover the non-Markovian stochastic Schrodinger equa- 
tion (3)) our basic result. 

According to Eq. (9)) the solutions l$z ( t)) of the 

non-Markovian stochastic Schrodinger equation (3) 
represent the part of the total state which corresponds 
to a certain classical “configuration” a of the environ- 
ment. The link between the process Z(t) and the con- 
figuration a is given by Eq. (12). The interpretation 
of the classical “configuration” a of the environment 

(and thus of the stochastic processes Z(t) too) can 
be given in the broader framework of hybrid densi- 

ties [ 181. 

We have presented the non-Markovian stochastic 
Schrodinger equation. It allows for the description of 

open quantum systems in terms of stochastic state vec- 
tors rather then density operators, without relying on 

the Markov approximation. 
Two alternative derivations are given. First, we es- 

tablish the connection to the path integral approach 

to open systems as initiated by Feynman and Vernon. 
The non-Markovian stochastic Schrodinger equation 

reflects a stochastic decomposition of the propagator 

for the reduced density operator into stochastic prop- 

agators for state vectors. Secondly, we establish the 
connection to a coherent state description of the envi- 
ronment, allowing a microscopic interpretation of the 
stochastic states I& ( t)). 

Our theory is exact and the model (or some straight- 
forward generalisation of it) appears in many areas of 
physics (electron-phonon interaction, the spin-boson 
model, the whole of quantum optics, relativistic field 
theories as relevant as QED). These problems can 
now be phrased in the language of stochastic evolu- 
tion equations in Hilbert space, without approxima- 

tion. The success of quantum trajectory methods in 
the Markovian case suggests that our result also repre- 
sents a promising step towards an effective numerical 
algorithm for non-Markovian reduced dynamics. As a 
fundamental concept, stochastic pure state represen- 
tations no longer depend on the Markov assumption. 
Starting from our exact result, approximations like per- 
turbation expansions are possible, further simplifying 
the description of non-Markovian reduced dynamics. 

We would like to thank I.C. Percival and J.J. 
Halliwell for fruitful discussions. W.T.S. thanks the 



L. Didsi, K7: Strunz/P~ysics Letters A 235 ff997f 569-573 573 

European Union for a Marie Curie fellowship and 
the Deutsche Forschungsgemeinschaft for support 
through the SFB 237 “Unordnung und groBe Fluktua- 
tionen”. L.D. was supported by a Visiting Fellowship 
from EPSRC and by OTKA TO16047. 

References 

I 1 f L. Diosi, N. Gisin, J. Halliwell, I.C. Percival, Phys. Rev. 
L&t. 74 ( 1995) 203. 

] 21 N, Gisin. I.C. Percival, J. Phys. A: Math. Gen. 26 ( 1993) 
2233. 2245. 

131 H. Carmichael, An Open System Approach to Quantum 
Optics (Springer, Berlin, 1994). 

141 P Goetsch, R. Graham, Phys. Rev. A 50 (1994) 5242. 
151 M.B. Plenio, PL. Knight, Rev. Mod. Phys, to be published 

( 1997), quant-ph/9702~7, and references therein. 
]6] T.P. Spiller, J.F. Ralph, Phys. Lett. A 194 ( 1994) 235. 

[7] L. Viola, R. Onofrio, T. Calarco, Phys. Lett. A 229 ( 1997) 
23. 

[ 81 H. Kleinert, S.V. Shabanov, Phys. Len. A 200 ( 1995) 224. 
[9] B.L. Hu, A. Matacz, Phys. Rev. D, 51 (1994) 1577. 

[ 101 H. Grabert, P Schramm, G. Ingold, Phys. Rep. 168 ( 1988) 
115; 
U. Weiss, Quantum Dissipative Systems (World Scientific, 
Singapore, 1993). 

1 I I ] A. Imamoglu, Phys. Rev. A 50 ( 1994) 3650. 
[ 121 G.C. Ghirardi, P Pearle, A. Rimini, Phys. Rev, A 42 ( 1990) 

78. 
[ 131 L. Dibsi, W.T. Strunz, to be published. 
[ 141 L. D&i, Quantum Semiclass. Opt. 8 (1996) 309. 
[ 151 W.T. Strunz, Phys. Len, A. 224 ( 1996) 25. 
[ 161 R.P. Feynmnn, FL. Vernon, Ann. Phys. 24 (1963) 118; 

A.O. Caldeira, A.J. Leggett, Physica A 121 ( 1983) 587. 
[ I?] J.R. Kfauder, E.C.G. Sudarshan, Fundamentals of Qu~tum 

Optics (Benjamin, New York, 1968). 
[ IS] L. Diosi, in: New Developments on Fundamental Problems 

in Quantum Mechanics, M. Ferrero, E. Van der Merwe, 
eds. (Kluwer. Dordrecht, 1997), quant-ph/9610037. 


