
J. Phys. A: Math. Gen.31 (1998) 9601–9603. Printed in the UK PII: S0305-4470(98)92505-7

COMMENT

Relativistic formulation of quantum state diffusion?
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Abstract. The recently reported relativistic formulation of the well known non-relativistic
quantum state diffusion is mistaken. It predicts, for instance, inconsistent measurement outcomes
for the same system when seen by two different inertial observers.

1. Introduction

Breuer and Petruccione (BP) [1] have quite recently reported the construction of a relativistic
generalization of the stochastic Ito–Schrödinger equations now widely used for open
quantum systems. I have found that the model is incorrect. It predicts, for instance,
inconsistent experimental results for slowly moving observers. The reader might ignore my
own interpretation of BP’sconceptand read directly thecounterexample.

2. The concept

In Dirac’s electron theory, to each space-like hyperplaneσ of the Minkowski-space a
quantum stateψ is attributed. Suchψ is interpreted as the quantum state which is seen by
the inertial observer residing on the hyperplaneσ . Let, for concreteness, the hyperplanes
be parametrized by their unit normal vectorsn and by their distancea from the origin. If
we vary the hypersurface, the state vectorψ(σ) ≡ ψ(n, a) transforms unitarily:

dψ = −idaHψ − idnµKµψ (1)

where the HamiltonianH and the boost operatorKµ depend also on the hyperplaneσ .
Equation (1) can be split into two unitary equations:

∂ψ

∂a
= −iHψ (2)

(δνµ − nµnν)
∂ψ

∂nν
= −iKµψ. (3)

This is standard Dirac theory so far‡. BP will retain the second unitary equation (3) while
replacing the first equation (2) by the non-unitary Ito–Schrödinger equation of standard
quantum state diffusion:

∂ψ

∂a
= −iHψ + nonlinear, stochastic terms. (4)

† E-mail address: diosi@rmki.kfki.hu
‡ In standard Dirac theory,ψ as well asH andKµ have well known expressions. BP have departed from the
standard forms. Their wavefunction (11) (or (21)) is not Dirac’s one!
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BP also present equations for the average stateρ, derived from equations (3), (4):

(δνµ − nµnν)
∂ρ

∂nν
= −i[Kµ, ρ] (5)

∂ρ

∂a
= −i[H, ρ] + LρL† − 1

2L
†Lρ − 1

2ρL
†L. (6)

The first equation is unitary, the second is not. BP claim to prove that their equations (3),
(4) as well as (5), (6) are compatible, preserve Lorentz-invariance, and that their translation
invariance can also be pointed out in a specific sense†. Unfortunately, BP are unaware of
further basic features of Dirac’s theory. In particular, Dirac’s theory assumes that various
inertial observers have consistent experimental results. The BP equations fail to do so!

Assume, for instance, that two space-like hyperplanesσ1 andσ2 intersect at spacetime
point x. Let A be a local scalar observable atx. Then in Dirac’s theory the observableA
transforms betweenσ1 andσ2 in such a way that its expectation value will not change:

〈A〉σ1 = 〈A〉σ2 (7)

where〈· · ·〉σ stands for expectation values in quantum statesψ taken on the hyperplaneσ .
The claimed compatibility and relativistic invariance of the BP equations (3), (4) and (5),
(6) are, in themselves, irrelevant since the physical consistency (7) of Dirac’s theory is lost.
How fatally it is lost the reader shall understand on a non-relativistic application.

3. The counterexample

We do not need BP’s stochastic equations but the ensemble averaged ones (64), (65) (cf my
equations (5), (6)), together with equation (63) which relates measured expectation values
to the density operator (in the standard way, this time). Let us apply these equations to
a typical non-relativistic situation. Consider a free non-relativistic electron in the authors’
reference systemn0 = (1, 0, 0, 0). We call the observer who rests in this reference system
R-observer. Soon we need a movingM-observer, too, who rests in the reference system
nv = (1, v/c,0, 0) moving with asmall non-relativistic velocityv with respect to the R-
observer. The electron is non-relativisitic for both observers. Assume it remainslocalized
along the rightx-axis atx ≈ `. Both observers will measure the same spin-observable:

A = | ↑〉〈↓ | + h.c. (8)

They will measurein coincidence! For instance, the M-observer switches on his apparatus
at timea = 0, in coincidence with the R-observer’s apparatus at (his/her) timea0 = `v/c2.
We expect that the two measurements lead to the same result in the the non-relativistic limit
v/c→ 0:

tr{Aρ(nv, 0)} = tr{Aρ(n0, a0)} +O(v/c). (9)

Note that we can choose an arbitrary large distance` so thata0 = `v/c2 remains relevant
(e.g. constant) even forv/c→ 0.

† That translation invariance would be broken by the author’s dynamic equations we demonstrate easily. For
instance, let the parameters of three space-like hyperplanesσ1, σ2, σ3 be, in obvious notation, chosen as follows:
n1 = n2 = (1, 0, 0, 0), n3 = (2/

√
3, 0, 0, 1/

√
3), a1 = 1, a2 = 2, a3 = 2/

√
3. Let the two other reference

framesR1, R2 have(0, 0, 0,
√

3− 2) and(0, 0, 0, 2
√

3− 2) as their shifted origins. Elementary calculations show
that a1 = a3 in R1 anda2 = a3 in R2, while n1, n2, n3 do not change. Consider the averaged statesρ1, ρ2, ρ3,
respectively, on the three hyperplanes. We apply equation (65) of BP in frameR1 to relateρ1 andρ3: they turn
out to be unitary equivalent. Similarly, we apply equation (65) in frameR2 to ρ2 andρ3: they, too, will be unitary
equivalent. This implies thatρ1 andρ2 must be unitary equivalent. But these latters are related non-unitarily by
equation (64) (no matter which inertial frame is chosen).
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For the electron’s initial state in the frame of the R-observer we choose a superposition
of the spin-up, spin-down states:

ρ(n0, 0) = 1
2(| ↑〉〈↑ | + | ↓〉〈↓ | + | ↑〉〈↓ | + | ↓〉〈↑ |). (10)

(Observe that, initially, the R-observer would measure 1 for the expectation value ofA.)
We define the following Lindblad generator:

L(n0, a) ≡ 1

τ
| ↑〉〈↑ |. (11)

Let the reduction timeτ , controlling the strength of the quantum state diffusion, satisfy the
conditionτ << a0. Then equation (64) turns the initial pure state (10) into the mixed one:

ρ(n0, a0) ≈ 1
2(| ↑〉〈↑ | + | ↓〉〈↓ |). (12)

At time a0 = `v/c2, the quantum state has reduced to the mixture of| ↑〉 and | ↓〉. The
expectation value of the Hermitian observableA becomes zero for the the R-observer’s
measurement.

Let’s turn to the M-observer. According to the equation (65), he/she initially sees the
state

ρ(nv, 0) = ρ(n0, 0)+O(v/c) (13)

which is identical to the rest observer’s initial state upto terms of the order ofv/c. So, the
M-observer measures 1 up to termsO(v/c).

In summary, we can write

〈A〉(nv,0) − 〈A〉(n0,a0) = 1+O(v/c) (14)

which, indeed, contradicts† the invariance condition (7) of Dirac’s theory.

4. Conclusion

Abandoning the standard Dirac wavefunctions has not been the main reason for BP’s failure.
The fatal reason is that relativistic Wiener processes do not exist but trivial ones do, as is
particularily shown in the context of continuous wavefunction reduction theories by, e.g.
Pearle [2] and myself [3]. Relativistic models of continuous reduction theories should first
relax the Markovian approximation, cf [4].
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† ` or 1/τ (or both) diverge in the limitv/c→ 0. This does, however, not invalidate our counterexample. First,
it makes sense to assign any finite values to` and 1/τ . Second, the violation of equation (7) by equation (14) is
obvious already at finitev/c, i.e. at finite` and 1/τ .


