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Non-Markovian quantum state diffusion
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A nonlinear stochastic Schro¨dinger equation for pure states describing non-Markovian diffusion of quantum
trajectories and compatible with non-Markovian master equations is presented. This provides an unraveling of
the evolution of any quantum system coupled to a finite or infinite number of harmonic oscillators without any
approximation. Its power is illustrated by several examples, including measurementlike situations, dissipation,
and quantum Brownian motion. Some examples treat this environment phenomenologically as an infinite
reservoir with fluctuations of arbitrary correlation. In other examples the environment consists of a finite
number of oscillators. In such a quasiperiodic case we see the reversible decay of a macroscopic quantum-
superposition~‘‘Schrödinger cat’’!. Finally, our description of open systems is compatible with different
positions of the ‘‘Heisenberg cut’’ between system and environment.@S1050-2947~98!01409-7#

PACS number~s!: 03.65.Bz, 05.40.1j, 42.50.Lc
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I. INTRODUCTION

In quantum mechanics, a mixed state, represented b
density matrixr t , describes both an ensemble of pure sta
and the ~reduced! state of a system entangled with som
other system, here consistently called ‘‘the environment.’’
both cases the time evolution ofr t is given by a linear map

r t5Ltr0 , ~1!

which describes the generally non-Markovian evolution
the system under consideration. Such equations desc
both an open system in interaction with infinite reservoirs,
a system entangled with a finite environment. In almost
cases, the general Eq.~1! cannot be solved analytically. Eve
numerical simulation is most often beyond today’s alg
rithms and computer capacities, and thus, the solution of
~1! remains a challenge.

In the Markov limit, Eq.~1! simplifies and reduces to
master equation of Lindblad form@1#

d

dt
r t52 i @H,r t#1

1

2(m ~@Lmr t ,Lm
† #1@Lm ,r tLm

† # !, ~2!

whereH is the system’s Hamiltonian and the operatorsLm
describe the effect of the environment in the Markov a
proximation. This approximation is often very useful b
cause it is valid for many physically relevant situations a
because analytical or numerical solutions can be found.

In recent years, a breakthrough in solving the Markov
master equation~2! has been achieved through the discove
of stochastic unravelingsof the density operator dynamics
An unraveling is a stochastic Schro¨dinger equation for state
uc t(z)&, driven by a certain noisezt such that the mean of th
solutions of the stochastic equation equals the density op
tor

r t5M @ uc t~z!&^c t~z!u#. ~3!
PRA 581050-2947/98/58~3!/1699~14!/$15.00
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HereM @•••# denotes the ensemble mean value over the c
sical noisezt according to a certain distribution functiona
P(z).

The simplest stochastic Schro¨dinger equations unraveling
the density matrix evolution are linear and do not prese
the norm ofc t(z). Such an unraveling is merely a math
ematical relation. To be truly useful, one should derive u
ravelings in terms of the corresponding normalized state

c̃ t~z!5
c t~z!

ic t~z!i , ~4!

where now relation~3! can be interpreted as an unraveling
the mixed stater t into an ensemble of pure states. Of cour
using the normalized statesc̃ t(z) requires a change of th
distribution P(z)→ P̃t(z) in order to ensure the correct en
semble mean, with

P̃t~z![ic t~z!i2P~z! ~5!

so that the Eq.~3! remains valid for the normalized solution

r t5M̃ t@ uc̃ t~z!&^c̃ t~z!u#. ~6!

We refer to this change~5! of the probability measure a
a Girsanov transformation@2#—other authors refer to ‘‘cook-
ing the probability’’ or to ‘‘raw and physical ensembles
@3#, or to ‘‘a priori anda posterioristates’’ @4#.

In the case of Markovian master equations of Lindbl
form ~2!, several such unravelings~6! are known. Some un-
ravelings involve jumps at random times, others have c
tinuous solutions. The Monte Carlo wave-function meth
@5#, sometimes called quantum jump trajectories@6,7#, is the
best known example of the first class, whereas the quan
state diffusion~QSD! unraveling@8# is typical of the second
class. All these unravelings have been used extensively
recent years, as they provide useful insight into the dynam
of continuously monitored~individual! quantum processe
@9,10#. In addition, they provide an efficient tool for the nu
1699 © 1998 The American Physical Society
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1700 PRA 58L. DIÓSI, N. GISIN, AND W. T. STRUNZ
merical solution of master equations. It is thus desirable
extend the powerful concept of stochastic unravelings to
more general case of non-Markovian evolution. First
tempts towards this goal using linear equations can be fo
in @11#, other authors have tackled this problem by add
fictitious modes to the system in such a way as to make
enlarged, hypothetical system’s dynamics Markovian ag
@12–14#. In our approach, by contrast, the system remains
small as possible and thus the corresponding stocha
Schrödinger equation becomes genuinely non-Markovian

Throughout this paper we assume a normalized ini
statec0(z)[c0 of the system, independent of the noise
t50. Such a choice corresponds to a pure initial stater0
5uc0&^c0u for the quantum ensemble and corresponding
to a factorized initial stater tot5r0^ renv of the total density
operator of system and environment.

In this paper we present the nonlinear non-Markovian s
chastic Schro¨dinger equation that unravels the dynamics o
system interacting with an arbitrary ‘‘environment’’ of ha
monic oscillators, finite or infinite in number. For a bri
overview of the underlying microscopic model see Appen
C. In the Markov limit, this unraveling reduces to QSD@8#
and will therefore be referred to asnon-Markovian quantum
state diffusion. Our results are based on the linear theor
presented in@15,16#, where the problem of non-Markovia
unravelings was tackled from two quite different approach
The linear version of the non-Markovian stochastic Sch¨-
dinger equation relevant for this paper, unifying these fi
attempts, was presented in@17# for unnormalized states.

Here we present examples of the corresponding norm
ized and thus more relevant theory. We include cases w
the environment is treated phenomenologically, represe
by an exponentially decaying bath correlation function, a
cases where the ‘‘environment’’ consists of only a fini
small number of oscillators—in Sec. V of even just a sing
oscillator. The latter case corresponds to periodic~or quasi-
periodic! systems, that is, to extreme non-Markovian situ
tions. Before presenting examples in Secs. III, IV, and V,
the basic equations are summarized in Sec. II. Several o
problems are discussed in Sec. VII, while the conclud
Sec. VIII summarizes the main achievements.

II. BASIC EQUATIONS

In this section we summarize all the basic equations.
us start by recalling the case of Markov QSD, providing
unraveling of the Lindblad master equation~2!.

A. Markov case

The linear QSD equation for unnormalized states read

d

dt
c t52 iHc t1Lc t +zt2

1

2
L†Lc t , ~7!

wherezt is a white complex-valued Wiener process of ze
mean and correlations

M @zt* zs#5d~ t2s!, M @ztzs#50, ~8!

and + denotes the Stratonovich product@18#.
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The solutions of Eq.~7! unravel the density matrix evo
lution according to the master equation~2! through the gen-
eral relation~3!. Here, Eq.~7! is written for a single Lindblad
operatorL, but it can be straightforwardly generalized b
including a sum over all Lindblad operatorsLm , each with
an independent complex Wiener processzm .

The simple linear equation~7! has two drawbacks. First
its physical interpretation is unclear because unnormali
state vectors do not represent pure states. Next, its relev
for numerical simulation is severely reduced by the fact t
the normic t(z)i of the solutions tends to 0 with probabilit
1 ~and to infinity with probability 0, so that the mean squa
norm is constant!. Hence, in practically all numerical simu
lations of Eq.~7! the norm tends to 0, while the contributio
to the density matrix in Eq.~3! is dominated by very rare
realizations of the noisez.

Introducing the normalized states~4! removes both these
drawbacks. As a consequence, the linear Eq.~7! is trans-
formed into a nonlinear equation forc̃ t(z). In this Markov
case, the result of Girsanov transforming the noise accord
to Eq.~5! and normalizing the state is well known@2,3#, it is
the following QSD evolution equation for the normalize
states

d

dt
c̃ t52 iH c̃ t1~L2^L& t!c̃ t +~zt1^L†& t!

2 1
2 ~L†L2^L†L& t!c̃ t , ~9!

where ^L&5^c̃ tuLuc̃ t&. This equation is the standard QS
equation for the Markov case written as a Stratonovich s
chastic equation. Notice that it appears in its Itoˆ version in
Ref. @8#. The effect of the Girsanov transformation is th
appearance of the shifted noise

zt1^L†& t , ~10!

entering Eq.~9!, wherezt is the original process of Eq.~7!.
The effect of the normalization is the subtraction of the o
erator’s expectation values.

B. Non-Markovian case

In the non-Markovian case, the linear stochastic Sch¨-
dinger equation generalizing Eq.~7! was derived in Ref.
@17#, it reads

d

dt
c t52 iHc t1Lc tzt2L†E

0

t

a~ t,s!
dc t

dzs
ds. ~11!

It unravels the reduced dynamics of a system coupled to
arbitrary ‘‘environment’’ of harmonic oscillators—see Ap
pendix C for a brief overview. Thus, Eq.~11! represents an
unraveling of a certain~standard! class of general non
Markovian reduced dynamics as in Eq.~1!. The structure of
Eq. ~11! is very similar to the Markovian linear equation~7!:
The isolated system dynamics is Schro¨dinger’s equation with
some HamiltonianH. The stochastic influence of the env
ronment is described by a complex Gaussian processzt driv-
ing the system through the Lindblad operatorL. While this is
a white noise process in the Markov case, here it is a colo
process with zero mean and correlations



n
y
n

’’
al
it
th
-

-
q
f

it
-

-
n-
ca

en

oo

o
m

-

or

t

t

f

of
w
n,

p
e
a

io
-
he

he
,

ion

ator
n

-

to
l-
rator

its

s
tic
r
-

he
nt

r-
on
gi-

D

n-

tion

PRA 58 1701NON-MARKOVIAN QUANTUM-STATE DIFFUSION
M @zt* zs#5a~ t,s!, M @ztzs#50, ~12!

where the Hermitiana(t,s)5a* (s,t) is the environment
correlation function. Its microscopic expression can be fou
in Appendix C. In this paper, we sometimes but not alwa
adopt a phenomenological point of view and will ofte
choose a(t,s) to be an exponential (g/2)exp@2gut2su
2 iV(t2s)], decaying on a finite environmental ‘‘memory
time scaleg21, and oscillating with some environment
central frequencyV. The Markov case emerges in the lim
g→`. In the most extreme non-Markovian case, when
‘‘environment’’ consists of just a single oscillator of fre
quencyV, we have the periodica(t,s)5exp@2iV(t2s)#. Fi-
nally, the last term of Eq.~11! is the non-Markovian gener
alization of the last term of the Markovian linear QSD E
~7!. This term is highly nontrivial and reflects the origin o
the difficulties of non-Markovian unravelings.

One can motivate Eq.~11! on several grounds. First,
was originally derived from a microscopic system
environment model@17#. In the original derivation the corre
lation functiona(t,s) describes the correlations of enviro
ment oscillators with positive frequencies. However, as
be seen in Appendix C, any positive definitea(t,s) can for-
mally be obtained from some suitably chosen environm
that possibly includes negative frequency oscillators~Hamil-
tonian not bounded from below!.

Next, as a second motivation, we sketch a direct pr
that Eq. ~11! defines an evolution equation~1! for density
operators. This ensures that the stochastic equation is c
patible with the standard description of mixed quantu
states@19,20#. Let r05( j pj uc0

( j )&^c0
( j )u be any decomposi

tion of the density operator at the initial time 0~recall that at
time zero the system and environment are assumed unc
lated!. What needs to be proven is thatr t is a function ofr0

only, wherer t[( j pjM @ uc t
( j )&^c t

( j )u#. This guarantees tha
r t does not depend on the decomposition ofr0 into a mix-
ture of pure states$uc0

( j )&%. For this purpose we notice tha
the solutionc t of Eq. ~11! is analytic inz and is thus inde-
pendent of z* . Hence we find (duc t&/dzs) ^c tu
5 d(uc t&^c tu)/dzs. Accordingly, the evolution equation o
uc t&^c tu is linear: it depends linearly onuc0&^c0u. Since the
meanM is also a linear operation,r t depends linearly onr0.
Finally, the positivity ofr t is guaranteed by the existence
a pure state decomposition and its normalization follo
from the fact that Eq.~11! preserves the norm in the mea
M @ ic ti2#5const as shown in Appendix B.

Third, another set of motivations for Eq.~11! is provided
by the numerous examples of the next sections of this pa
and by the fact that, by full analogy with the Markov cas
there exists a corresponding nonlinear equation for norm
ized states, as will be shown in the remainder of this sect

To summarize, Eq.~11! is the basic equation for non
Markovian linear QSD. The functional derivative under t
integral indicates that the evolution of the statec t at timet is
influenced by its dependence on the noisezs at earlier times
s. Admittedly, this functional derivative is the cause for t
difficulty of finding solutions of Eq.~11! in the general case
even numerical solutions.

We tackle this problem by noting that the linear equat
~11! may be simplified with theAnsatz
d
s

e

.

n

t
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re-
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dc t

dzs
5Ô~ t,s,z!c t , ~13!

where the time and noise dependence of the oper
Ô(t,s,z) can be determined from the consistency conditio

d

dt

dc t

dzs
5

d

dzs
ċ t ~14!

with the linear equation~11!. The ansatz~13! is completely
general and hence, once the operatorÔ(t,s,z) is known, the
linear non-Markovian QSD equation~11! takes the more ap
pealing form

d

dt
c t52 iHc t1Lc tzt2L†E

0

t

a~ t,s!Ô~ t,s,z!dsc t .

~15!

We are going to show in the subsequent sections how
determineÔ(t,s,z) for many interesting and physically re
evant examples. In most of these cases, in fact, the ope
Ô turns out to be independent of the noisez and takes a
simple form.

Being the non-Markovian generalization, Eq.~11!, or
equivalently Eq.~15! suffers from the same drawbacks as
Markov limit ~7!: the norm of its solutions tend to 0 with
probability 1. And the cure will be similar. One introduce
the normalized states~4! and substitutes the linear stochas
Schrödinger equation~15! by the corresponding nonlinea
one. Its explicit form can be rather involved as will be dem
onstrated in the following sections.

The derivation of the desired evolution equation of t
normalized statesc̃ t requires two steps: taking into accou
the Girsanov transformation of the noise~5! and normaliza-
tion. In Appendix B we prove that the non-Markovian Gi
sanov transformation for the noise probability distributi
P̃t(z) ~5! corresponds to a time-dependent shift of the ori
nal processzt ,

z̃t5zt1E
0

t

a~ t,s!* ^L†&sds. ~16!

This shift and the normalization of the statec t results, as
shown in Appendix B, in the nonlinear, non-Markovian QS
equation for the normalized state vectorsc̃ t , which takes the
ultimate form

d

dt
c̃ t52 iH c̃ t1~L2^L& t!c̃ tz̃t

2E
0

t

a~ t,s!@~L†2^L†& t!Ô~ t,s,z̃!

2^~L†2^L†& t!Ô~ t,s,z̃!& t#dsc̃ t , ~17!

wherez̃t is the shifted noise~16!.
Equation~17! is the central result of this paper, the no

Markovian, normalized stochastic Schro¨dinger equation that
unravels the reduced dynamics of a system in interac
with an arbitrary ‘‘environment’’ of harmonic oscillators—
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encoded by the properties of the environment correla
functiona(t,s). In the following sections we will give many
interesting examples of thisnon-Markovian quantum stat
diffusionequation~17!.

III. SPIN- 1
2 EXAMPLES

In this section we use spin-1
2 examples to illustrate gen

eral methods to solve the non-Markovian QSD equati
~11! @or ~15!# and~17!, respectively. These are generally n
merical, though sometimes analytical, solutions, which illu
trate certain features of non-Markovian QSD, unknown
the Markov theory. Throughout this sectionsW denote the
Pauli matrices.

A. Measurementlike interaction

This is the simplest example, hence we present it in so
detail. LetH5 (v/2) sz , L5lsz with l a real number pa-
rametrizing the strength of the interaction. The harmonic
cillator environment is encoded by its correlation functi
a(t,s), which is left arbitrary in this section. First, in orde
to eliminate the functional derivative in Eq.~11!, we assume
as anAnsatz

dc t

dzs
5lszc t , ~18!

i.e., we chooseÔ(t,s,z)5lsz independent oft, s, andz in
Eq. ~13!. It is straightforward to show that, indeed, this a
satz is compatible with Eq.~14!, i.e., it solves the fundamen
tal linear equation~11!.

The corresponding nonlinear, non-Markovian QSD E
~17! for the normalized statec̃ t reads

d

dt
c̃ t52 i

v

2
szc̃ t1l~sz2^sz& t!c̃ t

3S zt1lE
0

t

a~ t,s!* ^sz&sds1lE
0

t

a~ t,s!dŝ sz& tD .

~19!

This equation is the generalization of the Markov QSD eq
tion ~9! for general environment correlationsa(t,s). Notice
that, indeed, Eq.~19! reduces to the corresponding Marko
QSD equation~9! in the limit of a delta-correlated environ
ment @one has*0

t a(t,s) f (s)ds→ 1
2 f (t) for any function

f (t)].
Equation~19! shows the effect of the non-Markovian Gi

sanov transformation~5!. It induces not only the shifted
noise ~16!, but also leads to an additional shift due to t
implicit zt dependence ofc̃ t , as explained in detail in Ap-
pendix B. Numerical simulations of Eq.~19! are shown be-
low.

In order to find the reduced density matrix of this mod
we solve analytically the linear non-Markovian QSD equ
tion ~15!. Using Eq.~18! we find

d

dt
c t52 i

v

2
szc t1lszc tzt1l2E

0

t

a~ t,s!* dsc t .

~20!
n

s

-

e

-

.

-

,
-

From the explicit solution of this equation we obtain th
expression for the ensemble mean

r~ t ![M @ uc t&^c tu#5S r11~0! r12~0!e2F~ t !

r21~0!e2F~ t !* r22~0!
D ,

~21!

with F(t)5 ivt12l2*0
t ds*0

sdu@a(s,u)1a* (s,u)#. Taking
the time derivative, one can show that this density matrix
the solution of the following non-Markovian master equ
tions:

ṙ t52 i
v

2
@sz ,r t#

2
l2

2 E
0

t

@a~ t,s!1a* ~ t,s!#ds†sz ,@sz ,r t#‡ ~22!

52 i
v

2
@sz ,r t#1E

0

t

K~ t,s!rsds, ~23!

where the ‘‘memory superoperator’’K(t,s) acts as follows
on any operatorA:

K~ t,s!A52
l2

2
@a~ t,s!1a~ t,s!* #

3e22l2*s
t du*0

udv@a~u,v !1a~u,v !* #
†sz ,@sz ,A#‡.

~24!

Let us now turn to actual simulations of this example.
Fig. 1~a! we show non-Markovian QSD trajectories fro
solving Eq.~19! numerically withl252v and an exponen-
tially decaying environment correlation functiona(t,s)
5 (g/2) exp(2gut2su) with g5v ~solid lines!. For this expo-
nentially decaying environment correlation function the a
ymptotical solution is either the up state or the down st
(^sz&561), while the ensemble meanM @^sz&# remains
constant~dashed line!. Thus, as in the standard Markov QS
case, the two outcomes ‘‘up’’ or ‘‘down’’ appear with th
expected quantum probability: Prob(limt→`c t5u↑&)
5u^↑uc0&u2. Notice that for these non-Markovian situation
the quantum trajectories are far smoother than their wh
noise counterparts of Markov QSD@8#. We emphasize that if
the environment consists of only a finite number of oscil
tors, represented by a quasiperiodic correlation funct
a(t,s), no such reduction to an eigenstate will occur.

In Fig. 1~b! we compare the average over 10 000 traje
tories of the non-Markovian QSD equation~19! with the
analytical ensemble mean~21! and see very good agreemen
This confirms that indeed both the memory integrals in E
~19! arising from the Girsanov transformation of the noi
are needed to ensure the correct ensemble mean.

B. Dissipative interaction

This is the simplest example with a non-self-adjoint Lin
blad operator. Again we setH5 (v/2) sz , but now we

chooseL5ls2[l 1
2 (sx2 isy) describing spin relaxation
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Also, the environmental correlation functiona(t,s) and thus
the quantum harmonic oscillator environment can be cho
arbitrary.

First we have to replace the functional derivative in E
~11!, and we try an ansatz~13! of the form

dc t

dzs
5 f ~ t,s!s2c t , ~25!

with f (t,s) a function to be determined. The consisten
condition ~14! of our ansatz~25! leads to the condition on
f (t,s):

] t f ~ t,s!s2c t5F2 i
v

2
sz2lF~ t !s1s2 , f ~ t,s!s2Gc t

~26!

5@ iv1lF~ t !# f ~ t,s!s2c t ~27!

FIG. 1. Quantum trajectories of the non-Markovian QSD eq
tion for the ‘‘measurement’’-like caseH5 (v/2) sz , L5lsz and
an exponentially decaying bath correlation functiona(t,s)
5 (g/2) exp(2gut2su). We choosel252v, g5v and an initial
state uc0&5(112i )u↑&1(11 i )u↓&. Displayed is the expectation
value^sz& of several solutions of the non-Markovian QSD equati
~solid lines! and their ensemble average~dashed line!. ~b! Same
parameters as in~a!. Here we compare the ensemble average of
Bloch vector using 10 000 quantum trajectories of non-Markov
QSD ~solid lines!, with the analytical result~dashed lines!.
n

.

with

F~ t ![E
0

t

a~ t,s! f ~ t,s!ds. ~28!

Hence, ifs2c tÞ0, the functionf (t,s) must satisfy the fol-
lowing equation:

] t f ~ t,s!5@ iv1lF~ t !# f ~ t,s! ~29!

with initial condition f (s,s)5l. The corresponding non
Markovian QSD equation~17! for normalized state vector
c̃ t reads

d

dt
c̃ t52 i

v

2
szc̃ t2lF~ t !~s1s22^s1s2& t!c̃ t

1l~s22^s2& t!c̃ t

3S zt1lE
0

t

a~ t,s!* ^s1&sds1^s1& tF~ t ! D ,

~30!

with F(t) determined from Eqs.~28! and ~29!. For a given
a(t,s), the non-Markovian QSD equation~30! can be solved
numerically, havingF(t) determined numerically from Eq
~29!. Note that in the Markov limit, the correlation functio
a(t,s) tends to the Dirac functiond(t2s). Consequently,
F(t) tends to the constant1

2 f (t,t)5 l/2 and one recovers th
standard Markov QSD, Eq.~9!.

It turns out that non-Markovian QSD can exhibit remar
able properties, unknown in the Markov theory. In order
highlight these features, we proceed analytically and ass
exponentially decaying environment correlationsa(t,s)
5 (g/2) e2gut2su2 iV(t2s). Then we see from Eqs.~28! and
~29! that the relevant functionF(t) in Eq. ~30! satisfies

Ḟ~ t !52gF~ t !1 i ~v2V!F~ t !1lF~ t !21
lg

2
~31!

with initial condition F(0)50. With g̃[g2 i (v2V) the
solution reads

F~ t !5
g̃

2l
2

Ag̃222g̃l2

2l

3tanhF t

2
Ag̃222g̃l21arctanhS g̃

Ag̃222g̃l2
D G .

~32!

For the remainder of this section we assume exact re
nance:V5v and thusg̃5g. Let us first consider the case o
short memory or weak coupling,g.2l2. For long times,
F(t) tends to (g2Ag222gl2)/(2l). For large g this
asymptotic value tends tol/2, which corresponds to the
Markov limit ~7!, as it should.

More interesting, let us consider the opposite case o
long memory or strong coupling,g,2l2. In this case,F(t)
diverges to infinity when the timet approaches the critica
time tc5@p12arctan(g/A2l2g2g2)#A2l2g2g2. What
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happens is that at timetc , the first component of the vecto
c t vanishes, hences2c tc

50 and Eq.~29! no longer holds.
Indeed, the second term of Eq.~30! becomes dominant an
drives the spin to the ground state in a finite time, which
prove below in terms of the density matrix. In Fig. 2~a! ~for
individual trajectories! and Fig. 2~b! ~for the ensemble aver
age over 10 000 runs! we see this effect from solving th
non-Markovian QSD equation numerically, where we choo
l25V5v, so thatvtc5 3

2 p'4.71. Fort.tc the statec t is
constant. This is an example where a stationary solutio
reached after a finite time. This is an example of a diffus
stochastic Schro¨dinger equation that is at the same time co
patible with the no-signaling constraint~i.e., the evolution of
mixed states depends only on the density matrix, not o
particular decomposition into a mixture of pure states! and
has no ‘‘tails’’ ~does not take an infinite time to reach

FIG. 2. ~a! Quantum trajectories of the non-Markovian QS
equation for the dissipative caseH5 (v/2) sz , L5ls2, and an
exponentially decaying bath correlation functiona(t,s)
5 (g/2) exp@2gut2su2iV(t2s)#. We choosel25v, g5v and
resonanceV5v. As an initial state we useuc0&53u↑&1u↓&. Dis-
played is the expectation valuêsz& of several solutions of the
non-Markovian QSD equation~solid lines! and their ensemble av
erage~dashed line!. At the finite time vtc5

3
2 p'4.71, all indi-

vidual trajectories reach the ground state.~b! Same parameters as i
~a!. Here we compare the ensemble average of the Bloch ve
using 10 000 quantum trajectories of non-Markovian QSD~solid
lines!, with the analytical result~dashed lines!.
e

e

is
e
-

a

definite state!; see the discussions in@21,22#. In @23# it is
proven that such a feature is impossible for Markov situ
tions. Notice that this peculiar feature holds at resona
only.

Finally, we note that for the intermediate caseg52l2,
one hasF(t)5 l3t/(11l2t)→l for t→`, again approach-
ing a constant value„the reader may find it helpful to adop
our convenient convention for the choice of units:@zt#
5@l#5@ f (t)#5@F(t)#5@1/At# and @a(t,s)#5@1/t#….

In order to determine the corresponding master equa
for the reduced density operator, we solve the linear Q
equation~11! where we make use of the change of variab

f t[e2 i (v/2) szt1ls1s2*0
t F(s)dsc t . After some computation

and taking the ensemble mean analytically, one gets

r t[M @ uc t&^c tu#

5S r11~0!e2*0
t
@F~s!1F~s!* #ds r12~0!e2 ivt2*0

t F~s!ds

r21~0!eivt2*0
t F~s!* ds 12r11~ t !

D .

~33!

This proves that whenever Re@*0
t F(s)ds# diverges for a fi-

nite time, the density matrixr t reaches the ground state
that finite time and thus all pure state samples have to do
as well. For the time evolution of this reduced density mat
one gets

ṙ t52 i
v

2
@sz ,r t#1l@F~ t !1F~ t !* #

3~s2r ts12 1
2 $s1s2,r t%! ~34!

52 i
v

2
@sz ,r t#1E

0

t

K~ t,s!rsds, ~35!

where the ‘‘memory superoperator’’K(t,s) acts as follows
on any operatorA:

K~ t,s!A52
l2

2
@a~ t,s!1a~ t,s!* #

3~2e2l*s
tF~u!dus2As12$s1s2 ,A%

22~e2l*s
tF~u!du21!s1s2As1s2!. ~36!

In Figs. 2~a! and 2~b! we illustrate this example (l25g
5V5v) for exponentially decaying correlations. All indi
vidual non-Markovian quantum trajectories reach the grou
state in the critical timevtc'4.71 @Fig. 2~a!#. Taking the
ensemble mean over 10 000 trajectories, we find very g
agreement with the analytical result of the reduced den
matrix @Fig. 2~b!#.

IV. MORE EXAMPLES

A. Model of energy measurement

This caseH5L5L† is a straightforward generalization o
Sec. III A. Again, the environment correlationa(t,s) can be

or
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chosen arbitrary. We findÔ5H in Eq. ~13! and the non-
Markovian QSD equation~17! for the normalized state
reads

d

dt
c̃ t52 iHc t2~H22^H2& t!c̃ tE

0

t

a~ t,s!ds

1~H2^H& t!c̃ tS zt1E
0

t

a~ t,s!* ^H&sds

1E
0

t

a~ t,s!dŝ H& tD . ~37!

For the corresponding master equation we find

ṙ t52 i @H,r t#2E
0

t

a~ t,s!dsH@H,r t#

2E
0

t

a~ t,s!* ds@r t ,H#H, ~38!

hence Tr(Hr t) is constant, contrary to the individual expe
tation valueŝ H&c̃ t

.
The eigenvectors ofH are stationary solutions of the non

Markovian QSD equation~37!. Thus, if the noise is large
enough, all initial states tend asymptotically to such
eigenstate, as in Markov QSD. However, if the noise h
long memory, as for example in the extreme case of perio
systems~see Sec. V!, such a reduction property clearly doe
not hold. The exact conditions under which Eq.~37! de-
scribes reduction~localization! to eigenstates are not known
Notice, however, that if the correlation decays smoothly s
that*0

t a(t,s)ds tends for large timest to a real constant, and
if ^H& t converges for large times to a fixed value, then
non-Markovian equation~37! tends to

d

dt
c̃ t52 iH c̃ t2~H22^H2& t!c̃ t3const

1~H2^H& t!c̃ t~zt1const3^H& t!. ~39!

The long-time solutions of this equation are the same as
long-time solutions of the corresponding Markov approxim
tion. The latter is the Markov QSD equation, hence
asymptotic solutions tend to eigenstates ofH. Section III A
provides an example of this more general statement foH
5 (v/2) sz .

B. A simple toy model

In this subsection we use a simple toy model@24# to il-
lustrate that the non-Markovian QSD equation~17! may con-
tain unexpected additional terms that cancel in the Mar
limit. ConsiderH5p andL5q and an arbitrary environmen
correlation functiona(t,s). Then the ansatz~13! for replac-
ing the functional derivative with some operator satisfyi
the consistency condition~14! reads

dc t

dzs
5@q2~ t2s!#c t . ~40!
n
s
ic

h

e

e
-
e

v

Thus, the non-Markovian QSD Eq.~17! takes the form

d

dt
c̃ t52 ipc̃ t2~q22^q2& t!E

0

t

a~ t,s!dsc̃ t1~q2^q& t!c̃ t

3S zt1E
0

t

a~ t,s!* ^q&sds1E
0

t

a~ t,s!dŝ q& tD
1~q2^q& t!c̃ tE

0

t

~ t2s!a~ t,s!ds. ~41!

The first two lines of this non-Markovian QSD equatio
could have been expected, since they have the same for
in the previous examples; see, for instance, Eq.~37!. The last
line of the above equation, however, has no counterpar
the previous examples. Clearly, it vanishes in the Mark
limit @a(t,s)→d(t2s)#, when the non-Markovian QSD
equation~41! for this model reduces to the Markov QS
equation~9!.

C. Quantum Brownian motion model

In this subsection we consider the important case of qu
tum Brownian motion of a harmonic oscillator@25#, that is,
we chooseH5 (v/2) (p21q2), L5lq, and arbitrary envi-
ronmental correlationa(t,s). As shown in Appendix C, the
basic linear non-Markovian QSD equation for this quantu
Brownian motion case is again the fundamental linear eq
tion ~11!.

It turns out that the functional derivative in Eq.~11! is
more complicated in this case, becauseÔ(t,s,z) depends
explicitly on the noisez. However, fortunately, this depen
dence is relatively simple. Indeed, let

dc t

dzs
[Ô~ t,s,z!c t

5F f ~ t,s!q1g~ t,s!p1 i E
0

t

ds8 j ~ t,s,s8!zs8Gc t .

~42!

The consistency condition~14! leads to the following equa
tions for the unknown functionsf (t,s), g(t,s), and
j (t,s,s8) in Eq. ~42!:

] t f ~ t,s!5vg~ t,s!1 il f ~ t,s!E
0

t

ds8@a~ t,s8!g~ t,s8!#

22ilg~ t,s!E
0

t

ds8@a~ t,s8! f ~ t,s8!#

2 ilE
0

t

ds8@a~ t,s8! j ~ t,s8,s!#, ~43!

] tg~ t,s!52v f ~ t,s!2 ilg~ t,s!E
0

t

ds8@a~ t,s8!g~ t,s8!#,

~44!

j ~ t,s,t !5lg~ t,s!, ~45!
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] t j ~ t,s,s8!52 ilg~ t,s!E
0

t

ds9@a~ t,s9! j ~ t,s9,s8!#.

~46!

These equations have to be solved together with the n
Markovian QSD equation~17!.

If, for simplicity, we assume exponentially decaying e
vironment correlationsa(t,s)5 (g/2) e2gut2su and introduc-
ing capital letters for the integrals,X(t)[*0

t a(t,s)x(t,s)ds,
for x5 f ,g, j , one obtains the simpler closed set of equatio

Ḟ~ t !5
lg

2
2gF~ t !1vG~ t !2 ilF~ t !G~ t !2 il J̃~ t !,

~47!

Ġ~ t !52gG~ t !2vF~ t !2 ilG~ t !2, ~48!

J8 ~ t !5
lg

2
G~ t !22g J̃~ t !2 ilG~ t !J̃~ t !, ~49!

where J̃(t)[*0
t a(t,s8)J(t,s8)ds8. The initial conditions

read F(0)5G(0)5 J̃(0)50. Finally, J(t,s) can be deter-
mined from the solutions of the above equations, we get

J~ t,s!5lG~s!e2*s
t
@g1 ilG~s8!#ds8. ~50!

Hence, the non-Markovian QSD equation for quantu
Brownian motion becomes

d

dt
c̃ t52 iH c̃ t2~q22^q2& t!c̃ tF~ t !

2~qp2^qp& t2p^q& t1^p& t^q& t!c̃ tG~ t !

1~q2^q& t!c̃ tXzt1E
0

t

a~ t,s!* ^q&sds1^q& tF~ t !

2 i E
0

t

J~ t,s8!S zs81E
0

s8
a~s8,s!* ^q&sdsD ds8C.

~51!

Let us make some comments about this non-Markovian Q
equation. First, recall that it corresponds to the exact solu
of the quantum Brownian motion problem@25# of a har-
monic oscillator. Next, this example shows a new feat
that we did not encounter in the previous examples: the n
zt enters the equation nonlocally in time. Third, terms
volving the operatorqp appear, although there are no su
terms either in the Hamiltonian or in the Lindblad opera
L5lq. Finally, since this equation is exact, it is a goo
starting point to tackle the quantum Brownian motion pro
lem using this approach and to find its proper Markov lim
In connection with this last point, we emphasize that
master equation corresponding to Eq.~51! necessarily pre-
serves positivity@26# because it provides a decomposition
the density operator into pure states at all times. Howe
these questions and numerical simulations are left for fu
work.
n-
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D. Harmonic oscillator at finite temperature

As another important example of an open quantum sys
we briefly sketch the case of a harmonic oscillatorH
5va†a coupled to a finite temperature environment throu
L25l2a. As explained in detail in Appendix C, the finit
temperature also induces absorption from the bath, which
to be described by a second environment operatorL1

5l1a†. Hence, the linear non-Markovian QSD equati
~11! has to be modified and involves two independent nois
zt

2 andzt
1 ,

d

dt
c t52 iHc t1l2ac tzt

22l2a†E
0

t

a2~ t,s!
dc t

dzs
2

ds

1l1a†c tzt
12l1aE

0

t

a1~ t,s!
dc t

dzs
1

ds, ~52!

see Eq.~C5! in Appendix C. This equation can be solve
with the following Ansätze:

dc t

dzs
2

5F f 2~ t,s!a1E
0

t

ds8 j 2~ t,s,s8!zs8
1 Gc t , ~53!

dc t

dzs
1

5F f 1~ t,s!a†1E
0

t

ds8 j 1~ t,s,s8!zs8
2 Gc t . ~54!

Using similar techniques as in the previous subsection
evolution equations forf 6(t,s) and j 6(t,s,s8) can be ob-
tained and thus the resulting non-Markovian QSD equat
can be written in closed form. A new feature of this examp
again unknown in the Markov case, is that each of the t
environment operatorsL2 and L1 , is coupled to both
noises.

V. HARMONIC OSCILLATOR COUPLED TO A FEW
OSCILLATORS: DECAY AND REVIVAL

OF SCHRÖDINGER CAT STATES

The case of a harmonic oscillator coupled to a finite
infinite number of harmonic oscillators all of which are in
tially in their ground state~zero temperature!, H5va†a, L
5la, is very similar to the damped spin-1

2 example treated
in Sec. III B. TheAnsatzdc t /dzs 5 f (t,s)ac t similar to Eq.
~25! holds with f (t,s) and F(t) satisfying the same equa
tions ~29! and~28!. Thus, the non-Markovian QSD equatio
~17! for this situation reads

d

dt
c̃ t52 iva†ac̃ t1~a2^a& t!c̃ t

3S zt1E
0

t

a* ~ t,s!^a†&sds1lF~ t !^a†& tD
2lF~ t !~a†a2^a†a& t!c̃ t . ~55!

Again, this non-Markovian QSD equation reduces to t
Markov equation~9! for a(t,s)5d(t2s) since in this case
F(t)5 l/2 according to Eq.~28!. As in the case of a dissi
pative spin~Sec. III B!, for exponentially decaying bath cor
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FIG. 3. Reversible decay of an initial Schro¨-
dinger cat stateuc0&5ua&1u2a& with a52. We
show theQ function of a non-Markovian quan
tum trajectory of a harmonic oscillator (v),
coupled to just a single ‘‘environment’’ oscillato
(V50.5v), initially in its ground state. The cou
pling strength between the two oscillators
0.1v, and the time step between two success
plots is 0.47/v.
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relations at resonance, the system oscillator may reach
ground state in a finite time, provided the correlation tim
g21 is long enough.

Notice also that Eq.~55! preserves coherent statesub&.
The time evolution of the complex numberb t labeling these
coherent states is given by

ḃ t5@2 iv2F~ t !#b t . ~56!

More interesting than a coherent state initial condition
the case of a superpositionub&1u2b& of two symmetric
coherent states, known as a ‘‘Schro¨dinger cat’’ @27#. If the
correlation decays, so does the Schro¨dinger cat state. If, in
contrast, the environment consists only of a finite numbe
oscillators, then the cat state will first decay, due to the
calization property of QSD, but since the entire system
quasiperiodic, the cat state will then revive.

As an illustration, we simulate the extreme case where
‘‘environment’’ consists of only a single oscillator. It thu
models the decay and revival of a field cat state in a ca
that is isolated from the outside, but coupled to a sec
cavity, to which it may decay reversibly. Such an experim
on reversible decoherence was proposed recently in@28#. In
this simple case, the environment correlation function re

a~ t,s!5e2 iV~ t2s!, ~57!

whereV is the frequency of the single ‘‘environment’’ os
cillator. Figure 3 shows the time evolution of theQ function
of such a ‘‘Schro¨dinger cat’’ in phase space forV50.5v
and a coupling strength between the two oscillators of 0.v.
Apart from an overall oscillatory motion due to the ‘‘sy
tem’’ Hamiltonianva†a, we see how the cat first decays b
later becomes alive again. Further investigations of stoch
tic state vector descriptions of such reversible decohere
processes are left for future investigations. It is worth m
tioning that depending on the stochastic process, the ca
subsequently decay into either of its two components.

VI. SHIFTING THE SYSTEM-ENVIRONMENT
BOUNDARY

In this section we consider a situation where the ‘‘Heise
berg cut’’ between the system and the environment is
obvious. Since the non-Markovian QSD equation provid
its
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the exact solution of the total system-environment dynam
the description of the system does not depend on this
This is in contrast to the usual Markov approximation, whe
the position of the cut is crucial. As an example, let us co
sider a system consisting of one spin-1

2 and one harmonic
oscillator, the two subsystems being linearly coupled. A
sume moreover that the spin12 is coupled to a heat bath a
zero temperature, see Fig. 4. The total Hamiltonian read

H total5H11H21H121Henv1HI ~58!

with

H15
v1

2
sz , ~59!

H25v2a†a, ~60!

H125x~s2a†1s1a!, ~61!

Henv5(
v

vav
† av , ~62!

HI5(
v

xv~s2av
† 1s1av!. ~63!

We can either consider the spin-oscillator system coup
to a heat bath, or consider only the spin coupled to a h
bath and coupled to an auxiliary oscillator, as illustrated

FIG. 4. Shifting the ‘‘system-environment’’ boundary. First, w
consider the ‘‘spin-single oscillator’’ system with statec t(j),
coupled to a heat bath with noisej t . Alternatively, we can conside
the ‘‘spin’’ only as the ‘‘system’’f t(j,z), coupled to the ‘‘single
oscillator 1 heat bath’’ environment~noises j t ,zt). In non-
Markovian QSD, both descriptions are possible and lead to
same reduced spin state.
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Fig. 4. In the first case, we can consider the Markov Q
description, i.e., a family of spin-oscillator state vecto
c t(j) indexed by the complex Wiener processesj t . In the
second case, using non-Markovian QSD we have a famil
spin-12 state vectorsf t(j,z) indexed by the samej t plus the
non-Markovian noisezt with correlations

M @zt* zs#5e2 iv2~ t2s!. ~64!

The ~linear! stochastic equations~11! governingc t and f t
read

ċ t52 i ~H11H21H12!c t1ls2c tj t2
l2

2
s1s2c t ,

~65!

ḟ t52 iH 1f t1ls2f tj t2
l2

2
s1s2f t1xs2f tzt

2xs1E
0

t

e2 iv2~ t2s!
df t

dzs
ds, ~66!

wherel is a function of thexv’s, that is of the strength o
the spin–heat-bath coupling.

A natural question in the present framework is to stu
the ‘‘Heisenberg cut’’: compare the states of the spin1

2 av-
eraged over the noisez with the mixed state obtained b
tracing out the second oscillator (Tr2) from the one-
oscillator-spin states, i.e., we ask whether the equality

Mz@ uf t~j,z!&^f t~j,z!u#5
?

Tr2~ uc t~j!&^c t~j!u! ~67!

holds. According to the general non-Markovian QSD theo
presented in this paper, the spin-1

2 state should be indepen
dent of the position of the Heisenberg cut. Below we illu
trate this feature using the present example.

By assumption the oscillator starts in the ground sta
c05f0^ u0&. Hence, the statec t can be expanded as

c t5c0~ t !u↓,0&1c1~ t !u↑,0&1c2~ t !u↓,1&, ~68!

where

ċ05lj~ t !c11 i
v1

2
c0 , ~69!

ċ152S i
v1

2
1

l2

2 D c12 ixc2 , ~70!

ċ252 i F S v22
v1

2 D c21xc1G . ~71!

Tracing out the single harmonic oscillator, one obtains
spin-12 state~in the ↑↓ basis!

r1[Tr2~ uc t~j!&^c t~j!u!5S uc1u2 c0* c1

c0c1* uc0u21uc2u2D .

~72!
of

y

y

-

:

e

We now turn to the alternative description of the sam
situation, but with the ‘‘cut’’ between the spin12 and the
oscillator. In order to solve Eq.~66! we make the usualAn-
satz

df t

dzs
5 f ~ t,s!s2f t , ~73!

where the consistency condition~14! leads to ] t f (t,s)
5@ iv11 l2/21xF(t)# f (t,s), where f (t,t)5x and F(t)
5*0

t a(t,s) f (t,s)ds. Consequently,

Ḟ~ t !5x1S iv12 iv21
l2

2
1xF~ t ! DF~ t !. ~74!

Using the notationsf t5v0(t)u↓&1v1(t)u↑& one gets

v̇05 i
v1

2
v01~lj t1xzt!v1, ~75!

v̇152S i
v1

2
1

l2

2
1xF~ t ! D v1 . ~76!

Note that sincev̇1 is independent ofzt , v1(t) is itself inde-
pendent ofz, hence,

d

dt
Mz@v0#5 i

v1

2
Mz@v0#1lj tv1 . ~77!

Averaging over thez noise, one obtains the spin-1
2 state~in

the ↑↓ basis!

r2[Mz@ uf t~j,z!&^f t~j,z!u#5S uv1u2 Mz@v0* #v1

Mz@v0#v1* Mz@ uv0u2#
D .

~78!

Finally, a straightforward comparison of Eqs.~69!–~71! and
~74!–~76! shows thatc05Mz@v0#, c15v1, andc252 iFv1.
Hence, 3 of the 4 entries of the matricesr1 andr2 are equal.
The equality of the fourth entry follows from the gener
feature that linear non-Markovian QSD preserves the m
of the square norm.

This completes the proof thatr15r2: the spin-12 state is
independent of the position of the Heisenberg cut, for
times and all realizations of the heat-bath-induced noisej.
This illustrates the general fact that non-Markovian QSD
tributes stochastic pure states to systems in a way that
pends on the position of the Heisenberg cut, but that is c
sistent for all possible choices of the cut. See Fig. 4 for
illustration of these relationships. This is in opposition to t
case prevailing in Markovian unravelings.

VII. OPEN PROBLEMS

This paper is the first presentation of non-Markovi
QSD. Admittedly, there remain many open questions an
lot of work has still to be done to exploit all the possibilitie
opened up by this new approach. In this section we list so
of the open problems:

~1! The ultimate goal would be to develop a general p
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pose numerical simulation program. However, at presen
general recipe is known.

~2! When do the long time limit and the Markov lim
commute? This is a question that is of particular interest
quantum Brownian motion.

~3! If the initial condition is not factorized, the prese
approach must be generalized.

~4! In the Markov case unravelings exist both with co
tinuous trajectories and with quantum jumps, and the c
nection between the two is well understood@6,7#. In the non-
Markovian case, the only unraveling known at present is
continuous non-Markovian QSD described in this pap
What about non-Markovian unravelings with quantu
jumps?

~5! In the Markov case, continuous QSD unravelings ex
for real or pure imaginary noise, as well as for compl
noise. What about the non-Markovian case? It seems th
the present case complex noise is essential.

~6! Note that most of the non-Markovian master equatio
used in this paper have known analytical solutions. In th
cases, the general Zwanzig form@29# of the master equation

ṙ t5E
0

t

K~ t2s!rsds ~79!

with the memory kernelK(t2s) could be rewritten as a
Lindblad type master equation with time-dependent coe
cients. Then, the master equation can also be simulated u
Markov QSD with time-dependent coefficients. However
the solution of the master equation is not known explicit
or does not lead to a Lindblad type equation, then numer
simulation has to use the non-Markovian QSD theory.
would be interesting to illustrate non-Markovian QSD f
more of such examples and to study the conditions un
which a non-Markovian problem can be treated with M
kovian unravelings.

~7! How does non-Markovian QSD compare with cons
tent histories@30# and other approaches? For instance, it w
shown in@31# that the solutions of the non-Markovian equ
tion ~17! can be considered as conditional states in the fra
work of a ‘‘hybrid’’ representation of the fully quantize
microscopic system, allowing a clear physical interpretat
of the stochastic states.

~8! What is the perturbation expansion of the no
Markovian QSD equation~17! in terms of the memory time
g21? The zeroth-order term would be the Markov QS
equation~9!, what about the higher orders?

~9! Finally, non-Markovian QSD should be applied
open problems in physics, where non-Markovian effects
relevant, such as semiconductor lasers@12#, or atom lasers
@32#.

VIII. CONCLUSION

We present a stochastic equation for pure states des
ing non-Markovian quantum state diffusion, compatible w
non-Markovian master equations. We illustrate its pow
with several examples. In essence, we show that quan
~finite or infinite! harmonic oscillator environments can b
modeled by classical, complex Gaussian processes, ent
the non-linear, non-Markovian stochastic Schro¨dinger equa-
o
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tion for the ‘‘system’’ state that we derive in this paper.
Several authors have proposed stochastic pure-state

scriptions of such non-Markovian situations using fictitio
modes added to the system in such a way as to mak
dynamics of the enlarged hypothetical system Markov
@12,13#. Others@14# treat a non-Markovian problem with a
explicitly time-dependent Markov unraveling. In our a
proach, by contrast, there are no additional modes, hence
system is as small as possible, and the stochastic Schro¨dinger
equation becomes genuinely non-Markovian. This is of
terest for efficient numerical simulation and high-focus
sight into the relevant physical processes. Also, n
Markovian quantum trajectories are in general mu
smoother than those of Markov processes, which might e
help to reduce further the numerical effort.

Let us stress an important conceptual difference betw
Markov QSD and non-Markovian QSD. In the Markov cas
one starts from a master equation for mixed states and a
ciates to it a stochastic Schro¨dinger equation. The maste
equation may either be derived from a microscopic model
merely be based on phenomenological motivations@8#. In the
non-Markovian case, on the contrary, one starts from
stochastic Schro¨dinger equation~11!. The existence of a
master equation is guaranteed by the microscopic mo
summarized in Appendix C. In general, however, the expl
form of this master equation is not known. Nevertheless,
existence ensures that the corresponding stochastic Sc¨-
dinger equation for normalized states~17! does not allow
arbitrary fast signaling, despite its nonlinearity@20#.

From a pragmatic point of view, the Hamiltonian an
Lindblad operators in the basic linear stochastic Schro¨dinger
equation ~11! can either be derived from a microscop
theory, or be merely based on phenomenological moti
tions. Non-Markovian master equations are almost alw
exceedingly difficult to treat, even numerically. Howeve
one can always start from the non-Markovian QSD appro
of this paper, which appears thus more fundamental than
master equation approach.
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APPENDIX A: FREQUENCY REPRESENTATION

It is sometimes useful to express the noise by freque
componentszv :

zt5(
v

zveivt, ~A1!

where the frequenciesv can take positive as well as negativ
values. Also the correlation function can be written in Fo
rier representation:
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a~ t,s!5a~ t2s!5(
v

ave2 iv~ t2s!, av.0. ~A2!

The correlation of the Fourier components of the noise
trivial: M @zv

! zl#5dvlav . In this representation the distribu
tion functional becomes a simple Gaussian distribution o
all zv’s:

P~z!5N expS 2(
v

uzvu2

av
D ~A3!

and the statesc t become functions of the frequency amp
tudeszv of the noise. We can then write the fundamen
linear non-Markovian QSD equation~11! in terms of them:

d

dt
c t52 iHc t1(

v
S Leivtzv2L†ave2 ivt

]

]zv
Dc t .

~A4!

This frequency representation is a helpful tool to discuss
mathematical properties of the non-Markovian stocha
Schrödinger equation~17!, as we do in Appendixes B and C
Remember that in Eq.~A4! we assume the initial condition
to be independent of the noise:c0(z)5c0.

APPENDIX B: GIRSANOV TRANSFORMATION
FOR NON-MARKOVIAN QSD

As time goes by, Girsanov transformation distorts the d
tribution P(z) ~A3! of the complex noise intoP̃t(z) accord-
ing to Eq.~6!. In frequency representation, we have

P̃t~z!5N ic t~z!i2expS 2(
v

uzvu2

av
D . ~B1!

We assume that att50 the statec0 is normalized and doe
not depend onz. So, initially, P̃0(z) is identical withP(z).

We find the time evolution ofP̃t(z) from the linear non-
Markovian Schro¨dinger equation~11! in frequency represen
tation ~A4!. Using Eq.~B1!, we find

d

dt
P̃t~z!5N K c t~z!U d

dt
c t~z!L expS 2(

v

uzvu2

av
D 1c.c.

~B2!

Now we make a crucial observation. The solutionc t(z) of
Eq. ~A4!, with initial condition c t(z)5c0, is analytic in all
zv’s. Then it follows that]uc t(z)&/]zv

! 5]^c t(z)u/]zv50
for all zv . Hence, when inserting Eq.~A4! into Eq.~B2!, we
can substitute

K c t~z!UL†
]

]zv
c t~z!L 5

]

]zv
^L†& tic t~z!i2, ~B3!

and we obtain

d

dt
P̃t~z!52(

v
ave2 ivt

]

]zv
^L†& t P̃t~z!1c.c. ~B4!
s

r

l

e
ic

-

This is a remarkable result. It shows that the Girsanov tra
formation is equivalent to a drift of the random variablez.
We read off the drift velocities directly from Eq.~B4!:

d

dt
zv5ave2 ivt^L†& t . ~B5!

One can see that the Girsanov transformation prese
the normalization of the distributionP̃t(z). This has the im-
mediate consequence that the non-Markovian stocha
Schrödinger equation~11! preserves the mean norm of th
quantum state:

M @ ic ti2#[E ic ti2P~z!dz5E P̃t~z!dz51. ~B6!

Now we are going to derive the stochastic non-Markov
Schrödinger equation for the normalized statesc̃ t(z)
5c t(z)/ic t(z)i , wherec t(z) is the unnormalized solution
of the linear stochastic equation~11!. First, we solve the drift
Eq. ~B5! for the trajectorieszv(t), with the initial conditions
zv(0)5zv for all v:

z̃v~ t !5zv1E
0

t

ave2 ivs^L†&sds, ~B7!

where ^L†& t5^c t„z̃(t)…uL†uc t„z̃(t)…&/^c t„z̃(t))uc t„z̃(t)…&.
The Girsanov transformation~5! leaves invariant the prob
ability of the noisez along the above trajectories:

P̃t„z̃~ t !…dz̃~ t ![P~z!dz ~B8!

for all zv . Hence, we can write the stochastic unraveling~6!
as follows:

r t5M̃ t@ uc̃ t~z!&^c̃ t~z!u#5M @ uc̃ t„z̃~ t !…&^c̃ t„z̃~ t !…u#.
~B9!

The mean value on the very right refers to the simple und
torted distributionP(z). To calculate it, one has to expres
c t„z̃(t)… as a function of the initial amplitudeszv5 z̃v(0).
Remember thatc t(z) is the solution of the linear non
Markovian equation~11! or ~A4! with initial condition
c t(z)5c0. The additional time dependence ofc t„z̃(t)…
throughz̃(t) appends a new term to the evolution equation
these ‘‘Girsanov-shifted’’ states, so that we find the follow
ing stochastic evolution equation:

d

dt
c t„z̃~ t !…5

]

]t
c t1(

v
żv

]

]zv
c t ~B10!

52 iHc t1(
v

Leivtz̃v2~L†2^L†& t!

3E
0

t

a~ t,s!Ô~ t,s,z̃!dsc t , ~B11!

where we used Eqs.~13!, ~15!, and~B5!. Finally, these states
have to be normalized. The resulting evolution equation
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the normalized statesc̃ t is our central result, given by Eq
~17!. In the time domain, the shifted noise~B7! takes the
form ~16!.

APPENDIX C: REVIEW OF THE LINEAR
NON-MARKOVIAN THEORY

Here we briefly review the microscopic origin of the lin
ear non-Markovian stochastic Schro¨dinger equation~11!—
see @15–17#. The linear non-Markovian QSD equation r
sults from a standard model of a system interacting with
environment of harmonic oscillators, represented by a se
bosonic annihilation and creation operatorsav ,av

† . The in-
teraction termHI between system and environment is chos
to be linear in theav’s and arbitrary in the system operat
L: HI5(vxv(Lav

† 1L†av), with some coupling constant
xv . Thus, the model is defined by

H tot5Hsyst1HI1Henv ~C1!

5Hsyst1(
v

xv~Lav
† 1L†av!1(

v
vav

† av . ~C2!

Solving this total closed system in a clever way leads to
linear non-Markovian stochastic Schro¨dinger equation~11!
for the system statec t(z). As an initial condition we assum
a factorized formr tot5uc0&^c0u ^ rT for the total density
operator, with all bath oscillators initially in some therm
staterT5 ^ vrv(T).

1. Zero temperature

In @17# it was shown that if all the environment oscillato
are initially in their ground state (T50), the dynamics of the
reduced density operatorr t5trenvr tot(t) of the model~C1!
can be unraveled„r t5M @ uc t(z)&^c t(z)u#… using the linear
stochastic Schro¨dinger equation~11!,

d

dt
c t52 iHc t1Lc tzt2L†E

0

t

a~ t,s!
dc t

dzs
ds, ~C3!

where the colored complex stochastic processeszt with zero
mean satisfy

M @zt* zs#5(
v

xv
2 e2 iv~ t2s![a~ t,s!, M @ztzs#50.

~C4!

We see the microscopic origin of the bath correlation fu
tion a(t,s) at zero temperature. For real physical systems
have v.0 in Eq. ~C4!. To model an arbitrary time-
translation-invariant correlation function, one needs envir
ment oscillators with negative frequencies as well.

2. Finite temperature

In order to derive the linear non-Markovian QSD equati
at finite temperatures, we use a simple mathematical tr
well known in field theory@33#: the nonzero temperatur
density operatorrT of the heat bath can be canonical
mapped onto the zero-temperature density operator~the
vacuum! of a larger~hypothetical! environment. The prob-
n
of

n

e

-
e

-

k,

lem atT.0 is thus reduced to the problem atT50, whose
linear non-Markovian QSD equation~C3! we already know.
The resulting finite-temperature linear non-Markovian QS
equation is

d

dt
c t52 iHc t1Lc tzt

22L†E
0

t

a2~ t,s!
dc t

dzs
2

ds

1L†c tzt
12LE

0

t

a1~ t,s!
dc t

dzs
1

ds. ~C5!

It thus depends on two independent processeszt
2 ,zt

1 with
zero means and with temperature-dependent correlation

M @zt
2* zs

2#5(
v

~ n̄v11!xv
2 e2 iv~ t2s![a2~ t,s!,

~C6!

M @zt
2zs

2#50

and

M @zt
1* zs

1#5(
v

n̄vxv
2 eiv~ t2s![a1~ t,s!, M @zt

1zs
1#50.

~C7!

Here, n̄v5(exp\v/kT21)21 denotes the average therm
number of quanta in the modev. We identify these terms a
describing the stimulated (n̄) and spontaneous (11) emis-
sions (Lz2) and the stimulated absorptions (n̄) from the
bath (L†z1). Notice also that forT→0, all the n̄v tend to
zero and Eq.~C5! reduces to Eq.~C3!, as it should.

3. Finite temperature and L 5L †

In the case of a self-adjoint coupling operatorL5L†[K,
the finite temperature result can be simplified considera
by introducing the sum processzt5zt

21zt
1 having zero

mean and correlations

M @zt* zs#5a1~ t,s!1a2~ t,s![a~ t,s!

5(
v

xv
2 @~2n̄v11!cosv~ t2s!2 isinv~ t2s!#,

M @ztzs#50. ~C8!

Notice that (2n̄v11)5coth(\v/2kT) so thata(t,s) is noth-
ing but the well-known bath correlation kernel of the s
called quantum Brownian motion model@25#. In terms of
this single processzt , the linear non-Markovian QSD equa
tion at finite temperature~C5! takes the simple form of the
zero-temperature equation~C3! involving just one noisezt

d

dt
c t52 iHc t1Kc tzt2KE

0

t

a~ t,s!
dc t

dzs
ds, ~C9!

with the temperature-dependenta(t,s) of Eq. ~C8!. For K
5q the position operator, this unraveling was first intr
duced in@16#, derived from the exact Feynman-Vernon pa
integral propagator of this model.
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