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Coupling Classical and Quantum Variables using Continuous Quantum Measurement Theory
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Continuous quantum measurement theory is used to construct a phenomenological description of the
interaction of a quasiclassical variableX with a quantum variablex, where the quasiclassical nature
of X is assumed to have come about as a result of decoherence. The state of the quantum subsystem
evolves according to the stochastic nonlinear Schrödinger equation of a continuously measured system,
and the classical system couples to a stochasticc numberxstd representing the imprecisely measured
value ofx. The theory gives intuitively sensible results even when the quantum system starts out in a
superposition of well-separated localized states. [S0031-9007(98)07285-8]
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A variety of problems in a number of different fields
involve coupling quantum variables to variables that a
effectively classical. A case of particular interest
quantum field theory in curved space-time, where o
would often like to understand how a quantized matt
field affects a classical gravitational field. The mo
commonly postulated way of modeling this situation
the semiclassical Einstein equations [1]:

Gmn ­ 8pGkTmnl . (1)

Here, the left-hand side is the Einstein tensor of th
classical metric fieldgmn and the right-hand side is the
expectation value of the energy momentum tensor of
quantum field.

Yet, one cannot realistically expect that an equatio
such as (1) could be valid in more than a very limite
set of circumstances. One would expect it to be valid, f
example, only when the fluctuations in energy density a
small [2,3], and it is not difficult to produce situations in
which its predictions are not physically reasonable [4,5
In particular, when the quantum state of the matter fie
consists of a superposition of two well-separated localiz
states, Eq. (1) suggests that the gravitational field coup
to the average energy density of the two states, wh
physical intuition suggests that the gravitational field fee
the energy of one or the other of the localized matt
states, with some probability. It therefore becomes
interest to ask, Is there a way of going beyond th
naive mean field equations which sensibly accommoda
a wide class of nontrivial matter states, but withou
having to tackle the considerably more difficult questio
of quantizing the gravitational field?

In this Letter we will present a simple scheme fo
coupling classical and quantum variables which goes
beyond the naive mean field equations, and produces
tuitively sensible results in the key case of superpositi
states. We will not address the full problem of the sem
classical Einstein equations (1), but rather we will co
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centrate on a simple model in which the scheme is easi
presented and perhaps verified. Our attempt to descri
the coupling of classical and quantum variables is of cours
one of many [6–9].

We consider a classical particle with positionX in
a potentialV sXd coupled to a harmonic oscillator with
positionx, which will later be quantized. The action is

S ­
Z

dt

µ
1
2

M ÙX2 2 V sXd 1
1
2

M Ùx2

2
1
2

mv2x2 2 lXx

∂
. (2)

Hence the classical equations of motion are

MẌ 1 V 0sXd 1 lx ­ 0 , (3)

mẍ 1 mv2x 1 lX ­ 0 . (4)

The naive mean field approach involves replacing (3) wit
the equation

MẌ 1 V 0sXd 1 lkcjx̂jcl ­ 0 , (5)

and replacing (4) with the Schrödinger equation

d
dt

jcl ­ 2
i
h̄

sĤ0 1 lXx̂d jcl (6)

for the quantum particle.Ĥ0 is the Hamiltonian of the
quantum particle (in this case, a harmonic oscillator) an
2Xstd is regarded as an external classical force. As state
above, the scheme [(5) and (6)] is unlikely to have a ver
wide range of validity.

Generally, for a quantum system with wave function
csxd, there will be a nonzero probability forx to take
any one of a range of values, and the expectation valu
kx̂l [as in Eq. (5)] will not be representative of the
distribution of x (unless the distribution just happens
to be peaked about its expectation value). One woul
therefore expect the classical system to be stochastica
influenced by the quantum system, and follow one of a
© 1998 The American Physical Society
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ensemble trajectories, with the probability distribution o
the ensemble determined by the dynamics and quant
state of the quantum particle.

The question of coupling classical variables to quantu
variables is, however, intimately connected to the que
tion of how certain variables become classical in the fir
place. In this Letter, we adopt the point of view that the
are nofundamentallyclassical systems in the world, only
quantum systems that are effectively classical under cert
conditions. The most comprehensive approach to obta
ing generalizations of the semiclassical scheme [(5) a
(6)] therefore consists of starting from the underlying qua
tum theory of the whole composite system and thenderiv-
ing the effective form of that theory under the condition
in which one of the subsystems is effectively classica
The most important condition that needs to be satisfied
a subsystem to be effectively classical isdecoherence—
interference between histories of certain types of variab
(in this case, position) must be destroyed (see, for e
ample, Ref. [10]). Decoherence is typically brought abo
by some kind of coarse-graining procedure, of which pe
haps the most commonly used procedure is to couple t
large environment (typically a heat bath) and then tra
it out. The resulting decoherent variables are often r
ferred to as quasiclassical, a nomenclature we shall ado
Quasiclassical variables follow classical trajectories, b
modified by fluctuations induced by the environment th
decohered them. For sufficiently massive particles, the
fluctuations have a negligible effect.

A derivation of an effective theory of coupled quas
classical and quantum variables therefore involves
three-component quantum system consisting of a (“to
quasiclassical”) particle with positionX, coupled to an en-
vironment which is traced out to renderX quasiclassical,
and also coupled to the positionx of another (“quantum”)
particle (not necessarily coupled to the environment).
particular class of models of this type was considered
Ref. [11]. Although the details are somewhat involve
the final form of the coupled quasiclassical-quantu
theory is reasonably simple and intuitively appealin
The quasiclassical variableX couples to a stochastic
c number x (instead of the deterministickx̂l) whose
probability distribution closely resembles the formula fo
continuous quantum measurement of the quantum s
tem’s positionx̂.

Emergent classicality is a widespread and generic ph
nomenon. It has been demonstrated in a wide variety
different circumstances using a variety of different ap
proaches to decoherence. This, together with the simp
ity of the above result, suggests that it should be possi
to abstract the essential features of the model of Ref. [1
and write down directly a phenomenological model d
scribing the coupling of the quasiclassical variableX to
the quantum variablex, but without having to appeal to
the full details of a specific decoherence calculation. Su
a scheme would also have the advantage that it may
valid when the underlying quantum theory is not particu
n
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larly manageable or even not known (as may be the ca
for gravity).

Our approach is to use the continuous quantum me
surement theory together with a heuristic appreciation
decoherence to write down the desired phenomenologi
scheme. The basic idea is to think of the quasiclassi
particle as in some sense “measuring” the quantum p
ticle’s position and responding to the measuredc num-
ber resultx. (A precursor to this idea may be found
in Ref. [12].) Quantum measurement theory is already
partial description of the interaction between quasiclas
cal and quantum systems, so its appearance in this con
should be no surprise (it is also strongly suggested by
results of Ref. [11]). We do not model the decoherence
the quasiclassical particle explicitly, but appeal to gene
known features of the decoherence process where ne
sary. In particular, the assumed decoherence ensures
the quasiclassical particle remains quasiclassical (althou
it may be stochastically influenced) even when it interac
with the quantum particle in a nontrivial superposition.

Consider, therefore, the consequences of standard qu
tum measurement theory for the evolution of the coupl
quasiclassical and quantum systems over a small interva
time dt. The statejcl of the quantum system will evolve,
as a result of the measurement, into the (unnormalize
state

jCxl ­ P̂xe2iĤdtjcl , (7)

where Ĥ ­ Ĥ0 1 lXx̂ and P̂x is a projection operator
which asks whether the position of the quantum partic
is x, to within some precision. [If the classical system
couples to some operator of the quantum system other t
position, e.g., momentum, then the projection operator
(7) is changed accordingly, e.g., to a momentum projecto
The probability that the measurement yields the resultx
is given bykCx j Cxl. It is then natural to suppose tha
the classical particle, in responding to the measured res
will evolve during this small time interval according to the
equation of motion

MẌ 1 V 0sXd 1 lx ­ 0 , (8)

with probability kCx j Cxl.
Now we would like to repeat the process for an arb

trary number of time steps and then take the continuu
limit. If P̂x is an exact projection operator, i.e., one fo
which P̂2

x ­ P̂x , the continuum limit is trivial and of no
interest (this is the watchdog effect). However, standa
quantum measurement theory has been generalized
well-defined and nontrivial process that acts continuous
in time by replacingP̂x with a positive operator-valued
measure (POVM) [12–15]. The simplest example, whic
we use here, is a Gaussian,

P̂x ­
1

s2pD2d1y2 exp

µ
2

sx̂ 2 xd2

2D2

∂
, (9)

and the continuum limit involves takingD ! ` asdt ! 0
in such a way thatD2dt is held constant. The evolution
of the wave function of the quantum system is the
2847
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conveniently expressed in terms of a path-integral expression for the unnormalized wave function:

Cfxstdgsx0, t0d ­
Z

D x exp

∑
i
h̄

Z t0

0
dt

µ
1
2

m Ùx2 2
1
2

mv2x2 2 lxX

∂∏
exp

µ
2

Z t0

0
dt

sx 2 xd2

4s2

∂
Csx0, 0d . (10)
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Here, the integral is over pathsxstd satisfyingxs0d ­ x0
andxst0d ­ x0. The classical particle at each moment o
time evolves according to Eq. (8), where the function
probability distribution of the entire measured pathxstd
takes the form

pfxstdg ­ kCfxstdg j Cfxstdgl . (11)

(The parameters in Eq. (10), representing the width
of the effective “measurement” of the particle by th
classical system, will be discussed below.)

The scheme is therefore as follows. We solve Eqs. (
and (10), wherexstd is regarded as a stochastic variab
whose probability distribution is given by (11). The
final result is an ensemble ofx-dependent classical and
quantum trajectories, respectively, for the two particle
with an interdependent probability distribution.

It turns out that this system [(8), (10), and (11)] ca
be rewritten in such a way that brings it closer to th
form of the naive mean field Eqs. (5) and (6). The bas
issue is that Eq. (11) gives the probability for an enti
history of measured alternatives,xstd. Yet, the naive
mean field Eqs. (5) and (6) are evolution equations defin
at each moment of time. Fortunately, the system [(8
(10), and (11)] may be rewritten as follows. Conside
the basic process (7) with the Gaussian projector (
but, in addition, let the state vector be normalized
each time step. Then denoting the normalized state
each time byjcl, and taking the continuum limit in the
manner indicated above, it is readily shown [15] thatjcl
obeys a stochastic nonlinear equation describing a sys
undergoing continuous measurement:

d
dt

jcl ­

µ
2

i
h̄

sĤ0 1 lXx̂d 2
1

4s2 sx̂ 2 kx̂ld2

∂
jcl

1
1

2s
sx̂ 2 kx̂ld jclhstd . (12)

Here,hstd is the standard Gaussian white noise, with line
and quadratic means,

Mfhstdg ­ 0, Mfhstdhst0dg ­ dst 2 t0d . (13)

where Ms· · ·d denotes stochastic averaging. The noi
terms are to be interpreted in the sense of Ito. T
measured valuex is then related toh by

x ­ kcjx̂jcl 1 shstd . (14)

Hence the final form of Eq. (8) [replacing Eq. (5)] is

MẌ 1 V 0sXd 1 lkcjx̂jcl 1 lshstd ­ 0 , (15)

and (6) is replaced by the stochastic nonlinear equ
tion (12).

We now turn to the question of the value of the pa
rameters. As discussed above, the quasiclassical partic
suffers fluctuations as a result of interacting with th
2848
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environment that decohered it. This must still be tru
even when it is not coupled to the quantum particle. W
can therefore fixs by demanding that, in Eq. (5), the term
lshstd, in the limit l ! 0, describe the environmentally
induced fluctuations suffered by the classical partic
This forces us to chooses to be proportional tol21.
Further information on the form ofs requires more
specific details about the environment. In the particu
but frequently studied case of a thermal environme
the random force should be

p
2MgkBT hstd, in order to

coincide with the standard Langevin equation of classic
Brownian motion. From this we deduce thats2 ­
2MgkBTyl2 (in agreement with Ref. [11]). The result is
not hard to understand. Because of the environmenta
induced fluctuations it suffers, the quasiclassical partic
is necessarily limited in the precision with which it ca
“measure” the quantum particle, hence the widths of
the measurement is related to the fluctuations of t
quasiclassical particle.

The formal solution to (12) describes a family of pur
states,jcl ­ jcfhstdgl, one for each choice of function
hstd. Correspondingly, in Eq. (15), withjcl ­ jcfhstdgl
inserted in the pure state expectation value, there
one evolution equation for eachhstd. For fixed initial
data, jc0l, X0, and ÙX0, Eqs. (12) and (15) therefore
describe an ensemble of quantum and classical trajecto
fjcfhstdgl, Xfhstdgstdg, with members labeled byhstd. The
probability for each member of the ensemble is th
implied by the probability distribution ofhstd [implicit
in Eq. (13)].

There are two differences between the system [(12
(15)] and the naive mean field Eqs. (5) and (6). One
the noise termh. In Eq. (15) [as compared to Eq. (5)
the noise clearly describes an additional (complete
uncorrelated) random force. This type of modification
the semiclassical Einstein equations has been conside
previously [3,16].

More important is the novelty that the statejcl evolves
according to the stochastic nonlinear equation (12), a
hence its evolution is very different to that under th
usual Schrödinger equation [Eq. (6)]. In particular, it ma
be shown that all solutions to (12) undergolocalization
[17,18] on a time scale which might be extremely sho
compared to the oscillator’s frequencyv. That is, ev-
ery initial state rapidly evolves to a generalized cohere
state centered around valueskx̂l, kp̂l undergoing classi-
cal Brownian motion. [The results cited above are read
extended to the case here in which the Hamiltonian co
tains a linear coupling to an external force2Xstd.] Which
particular solution the state becomes centered around
pends statistically on the initial state of the system. For
initial state consisting of a superposition of well-separat
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coherent states,

jcl ­ a1jx1p1l 1 a2jx2p2l , (16)

the state after localization time will, with probabilityja1j
2,

be as if the initial state were justjx1p1l and, with proba-
bility ja2j

2, will be as if the initial state were just
jx2p2l [18]. The localization time,1ys2sx1 2 x2d2 be-
comes, with our previous choices2 , MgkBTyl2, very
short indeed if the classical particle has a large massM.

Hence, in the new semiclassical Eqs. (12)–(15), wh
happens is that effectively we solve separately for th
two initial states jx1p1l and jx2p2l, and the classical
particle then follows the first solution with probability
ja1j

2 and the second with probabilityja2j
2. In simple

terms, therefore, an almost classical system interacti
through position with a quantum system in a superpositio
state (16) “sees” one or another of the superpositio
states, with some probability, and not the mean positio
of the entire state. This is the key case for which th
naive mean field equations fail to give intuitively sensibl
results [5,19].

As noted earlier, decoherence is essential in our a
proach to preserve the quasiclassical behavior of one
the subsystems. (The possible significance of decoh
ence here was also noted in Ref. [6].) Weaker notion
of classicality are sometimes used in this context. F
example, it is sometimes argued that a massive partic
starting out in a coherent state and evolved unitarily wi
behave “classically.” Aside from the fact that a specia
initial state is required, the “classical” system is really sti
quantum, and its quantum nature may be seen if it inte
acts with another subsystem in a nontrivial superpositio
state, for then the entire composite system would go in
a “nonclassical” superposition. The notion of classicalit
used here, which follows the standard decoherence lite
ture [10], is more comprehensive, and is the appropria
one for the real physical systems that we observe to
effectively classical.

We have presented a schemehEqs. (12)–(15) [or
Eqs. (8), (10), and (11)]j for coupling classical and quan-
tum variables which appears to be reasonable on physi
grounds and gives intuitively sensible results. It is base
on the premise that the interaction between the classi
and quantum variables may be regarded as a quant
measurement. The mathematics of continuous quantu
measurement theory then fixes the overall structure of t
scheme, but an additional physical argument is requir
to fix the parameters describing the precision of the
measurement. Our proposed scheme, including the va
of s, is in broad agreement with the detailed derivatio
of such a particular scheme starting from an underlyin
quantum theory [11]. The theory of continuous quantum
measurements is also closely related to the so-call
hybrid representation of composite quantum system
[8,20], and this provides another possible framework fo
examining the emergence of the scheme. We do n
claim, however, that our scheme eliminates all know
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controversies of the naive mean field method or o
nonlinear quantum theories generally [21]. See Ref. [22
for a more detailed discussion of this work.
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