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Coupling Classical and Quantum Variables using Continuous Quantum Measurement Theory
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Continuous quantum measurement theory is used to construct a phenomenological description of the
interaction of a quasiclassical variah¥e with a quantum variable, where the quasiclassical nature
of X is assumed to have come about as a result of decoherence. The state of the quantum subsystem
evolves according to the stochastic nonlinear Schrédinger equation of a continuously measured system,
and the classical system couples to a stochastiimberx(z) representing the imprecisely measured
value ofx. The theory gives intuitively sensible results even when the quantum system starts out in a
superposition of well-separated localized states. [S0031-9007(98)07285-8]

PACS numbers: 03.65.Bz, 04.62.+v, 05.40.+j, 42.50.Ar

A variety of problems in a number of different fields centrate on a simple model in which the scheme is easily
involve coupling quantum variables to variables that argresented and perhaps verified. Our attempt to describe
effectively classical. A case of particular interest isthe coupling of classical and quantum variables is of course
qguantum field theory in curved space-time, where on@ne of many [6—9].
would often like to understand how a quantized matter We consider a classical particle with positidh in
field affects a classical gravitational field. The mosta potentialV(X) coupled to a harmonic oscillator with
commonly postulated way of modeling this situation ispositionx, which will later be quantized. The action is

the semiclassical Einstein equations [1]: ., 1 )
= — — + — Y
Gy = 87G(T,.,) 1) s= [l 5w - veo + S
Here, the left-hand side is the Einstein tensor of the T AX 5
classical metric fieldz,, and the right-hand side is the p Mex ) @)

expectation value of the energy momentum tensor of
quantum field.

Yet, one cannot realistically expect that an equation MX +V'(X)+ Ax =0, 3
such as (1) could be valid in more than a very limited .. 2 _
set of circumstances. One would expect it to be valid, for mE + mo'x +AX =0. 4)
example, only when the fluctuations in energy density ard’he naive mean field approach involves replacing (3) with
small [2,3], and it is not difficult to produce situations in the equation
which its predictions are not physically reasonable [4,5]. 7 / . _
In particular, when the quantum state of the matter field MX + VI + Mylsly) = 0, ©)
consists of a superposition of two well-separated localize@nd replacing (4) with the Schrodinger equation
states, Eq. (1) suggests that the gravitational field couples d i
to the average energy density of the two states, while T ly) = ——(Ho + AXZ) |4) (6)

AR L ) t h

physical intuition suggests that the gravitational field feels
the energy of one or the other of the localized matterfor the quantum particle.H, is the Hamiltonian of the
states, with some probability. It therefore becomes ofjuantum particle (in this case, a harmonic oscillator) and
interest to ask, Is there a way of going beyond the—X(r) is regarded as an external classical force. As stated
naive mean field equations which sensibly accommodatesbove, the scheme [(5) and (6)] is unlikely to have a very
a wide class of nontrivial matter states, but withoutwide range of validity.
having to tackle the considerably more difficult question Generally, for a quantum system with wave function
of quantizing the gravitational field? ¥(x), there will be a nonzero probability for to take

In this Letter we will present a simple scheme forany one of a range of values, and the expectation value
coupling classical and quantum variables which goes fa¢t) [as in Eg. (5)] will not be representative of the
beyond the naive mean field equations, and produces irdistribution of x (unless the distribution just happens
tuitively sensible results in the key case of superpositiorio be peaked about its expectation value). One would
states. We will not address the full problem of the semi-therefore expect the classical system to be stochastically
classical Einstein equations (1), but rather we will con-influenced by the quantum system, and follow one of an

Hence the classical equations of motion are
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ensemble trajectories, with the probability distribution onlarly manageable or even not known (as may be the case
the ensemble determined by the dynamics and quantufor gravity).
state of the quantum patrticle. Our approach is to use the continuous quantum mea-
The question of coupling classical variables to quantunsurement theory together with a heuristic appreciation of
variables is, however, intimately connected to the quesdecoherence to write down the desired phenomenological
tion of how certain variables become classical in the firsscheme. The basic idea is to think of the quasiclassical
place. In this Letter, we adopt the point of view that thereparticle as in some sense “measuring” the quantum par-
are nofundamentallyclassical systems in the world, only ticle’s position and responding to the measutedum-
quantum systems that are effectively classical under certaimer resultx. (A precursor to this idea may be found
conditions. The most comprehensive approach to obtairin Ref. [12].) Quantum measurement theory is already a
ing generalizations of the semiclassical scheme [(5) angartial description of the interaction between quasiclassi-
(6)] therefore consists of starting from the underlying quan-cal and quantum systems, so its appearance in this context
tum theory of the whole composite system and teriv-  should be no surprise (it is also strongly suggested by the
ing the effective form of that theory under the conditionsresults of Ref. [11]). We do not model the decoherence of
in which one of the subsystems is effectively classicalthe quasiclassical particle explicitly, but appeal to general
The most important condition that needs to be satisfied foknown features of the decoherence process where neces-
a subsystem to be effectively classicaldiscoherence-  sary. In particular, the assumed decoherence ensures that
interference between histories of certain types of variablethe quasiclassical particle remains quasiclassical (although
(in this case, position) must be destroyed (see, for exit may be stochastically influenced) even when it interacts
ample, Ref. [10]). Decoherence is typically brought aboutwith the quantum particle in a nontrivial superposition.
by some kind of coarse-graining procedure, of which per- Consider, therefore, the consequences of standard quan-
haps the most commonly used procedure is to couple to mm measurement theory for the evolution of the coupled
large environment (typically a heat bath) and then tracguasiclassical and quantum systems over a small interval of
it out. The resulting decoherent variables are often retime §¢. The statdd) of the quantum system will evolve,
ferred to as quasiclassical, a nomenclature we shall adoms a result of the measurement, into the (unnormalized)
Quasiclassical variables follow classical trajectories, bustate
modified by fluctuations induced by the environment that |W=) = Pre i8]y )
decohered them. For sufficiently massive particles, these N N . AL D
fluctuations have a negligible effect. Wh_ereH = Ho + AX% and Px Is a projection operator
A derivation of an effective theory of coupled quasi- Wthh ask_s yvhether the position of the quantum particle
X, to within some precision. [If the classical system

classical and quantum variables therefore involves
three-component quantum system consisting of a (“to bgouples to some operator of the quantum system other than

quasiclassical”) particle with positioXi, coupled to an en- posjtion, e.g., momentum, then the projection operator in
vironment which is traced out to rend&rquasiclassical, (7)is changgq accordingly, e..,toa mo”?e”‘“m prOje_CtOI’.]
and also coupled to the positianof another (“quantum”) The probability that the measurement yields the result

particle (not necessarily coupled to the environment). AS given by(\I’;l‘_l%). . Itis then _natural 10 suppose that
particular class of models of this type was considered iﬁhe classical particle, in responding to the measured result,

Ref. [11]. Although the details are somewhat involved will evolve during this small time interval according to the

the final form of the coupled quasiclassical-quantumequatlon of motion

theory is reasonably simple and intuitively appealing: MX + V'(X) + xx =0, (8)
The quasiclassical variablg couples to a stochastic with probability (W | ¥5).
¢ numberX (instead of the deterministict)) whose Now we would like to repeat the process for an arbi-

probability distribution closely resembles the formula fortrary number of time steps and then take the continuum
continuous quantum measurement of the quantum sy$mit. If P; is an exact projection operator, i.e., one for
tem’s positiont. _ ~ which PZ = P, the continuum limit is trivial and of no
Emergent classicality is a widespread and generic phenterest (this is the watchdog effect). However, standard
nomenon. It has been demonstrated in a wide variety Qjyantum measurement theory has been generalized to a
different circumstances using a variety of different ap-ye||-defined and nontrivial process that acts continuously
proaches to decoherence. This, together with the simpliGn time by replacing®s with a positive operator-valued

ity of the above result, suggests that it should be possiblgeasure (POVM) [12-15]. The simplest example, which
to abstract the essential features of the model of Ref. [11}e yse here, is a Gaussian,

and write down directly a phenomenological model de- s =2

_ . : . : N 1 & —x)
scribing the coupling of the quasiclassical varialfleo Pr= ————Fexg ———=>—1, €C)]

; ; : (2w A2)1/2 2A2

the quantum variable, but without having to appeal to
the full details of a specific decoherence calculation. Sucland the continuum limit involves taking — o« asér — 0
a scheme would also have the advantage that it may da such a way that\?s¢ is held constant. The evolution
valid when the underlying quantum theory is not particu-of the wave function of the quantum system is then
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conveniently expressed in terms of a path-integral expression for the unnormalized wave function:
. t 1 . 1 t _ =\2
Yz, 1) = f Dx ex;{é fo dl(? mx? — Emw2x2 - AxX)}ex;(—fO dt %)W(X0,0). (20)

Here, the integral is over pathgr) satisfyingx(0) = x | environment that decohered it. This must still be true
andx(t') = x’. The classical particle at each moment ofeven when it is not coupled to the quantum particle. We
time evolves according to Eqg. (8), where the functionalcan therefore fixr by demanding that, in Eq. (5), the term
probability distribution of the entire measured paiti) Ao %(¢), in the limit A — 0, describe the environmentally
takes the form induced fluctuations suffered by the classical particle.
—(+)] — This forces us to choose to be proportional toA ™.
p[x(t_)] SOOI , (11_) Further information on the formpotrp requires more
(The parameters in Eq. (10), representing the width ghecific details about the environment. In the particular
of the effective “measurement” of the particle by thept frequently studied case of a thermal environment,
classical system, will be discussed below.) the random force should bg2MyksT 7(t), in order to
The scheme is therefore as follows. We solve Egs. (8}gincide with the standard Langevin equation of classical
and (10), wherex(z) is regarded as a stochastic variableg,gwnian motion. From this we deduce that? =
v_vhose prot_)ability distribution is given by (1;). The 2MykT /A% (in agreement with Ref. [11]). The result is
final result is an ensemble af-dependent classical and ot hard to understand. Because of the environmentally
quantum trajectories, respectively, for the two particlesiyqyced fluctuations it suffers, the quasiclassical particle
with an interdependent probability distribution. is necessarily limited in the precision with which it can
It turns out that this system [(8), (10), and (11)] can«measure” the quantum particle, hence the widthof
be rewritten in such a way that brings it closer to thehe measurement is related to the fluctuations of the
form of the naive mean field Egs. (5) and (6). The bas'cquasiclassical particle.
issue is that Eq. (11) gives the probability for an entire " The formal solution to (12) describes a family of pure
hlstory_ of measured aIternat|ve§(t).. Yet, th.e naive  states,|y) = l4rn), One for each choice of function,
mean field Egs. (5) an.d (6) are evolution equations deflnegl,(t)_ Correspondingly, in Eq. (15), withy) = |1, ()
at each moment of time. Fortunately, the system [(8)inserted in the pure state expectation value, there is
(10), and (11)] may be rewritten as follows. Consideryne evolution equation for each(r). For fixed initial
the pasm process (7) with the Gaussian projector (9)data, l0), Xo, and Xo, Egs. (12) and (15) therefore
but, in addition, let the state vector be normalized alyescrine an ensemble of quantum and classical trajectories

each time step. Then denoting the normalized state Eﬂzp ), Xt 1(£)], with members labeled b
) . . - , , y (7). The
each time byly), and taking the continuum limit in the pro[gg)k])ility[nf(g]r each member of the ensemble is that

manner indicated above, it is readily shown [15] that  mplied by the probability distribution ofy () [implicit
obeys a stochastic nonlinear equation describing a systejg Eq. (13)].
undergoing continuous measurement: There are two differences between the system [(12)—
d (i o L (15)] and the naive mean field Egs. (5) and (6). One is
dt|¢/f> N < ﬁ(HO T AX%) 402 (& = (&) )lw the noise termm. In Eqg. (15) [as compared to Eq. (5)]
| the noise clearly describes an additional (completely
+ 2—(;% — &) lY)n(r). (12)  uncorrelated) random force. This type of modification to
o the semiclassical Einstein equations has been considered
Here,n(z) is the standard Gaussian white noise, with lineapreviously [3,16].
and quadratic means, More important is the novelty that the statle) evolves
MIn(] =0,  M[n(On@)] =6 — ). (3) according to the stochastic nonlinear equation (12), and
here M denot tochasti . Th ._hence its evolution is very different to that under the
)[N ere ("3 beno_ ets so:: das. |ctﬁverag|ng. ¢ Ite n%'_f]eusual Schrédinger equation [Eq. (6)]. In particular, it may
erms arg OI oe Therprelet c;nt S sense ot lto. %e shown that all solutions to (12) underfpralization
measured valug IS then related toy by [17,18] on a time scale which might be extremely short
X = (ylzly) + o). (14)  compared to the oscillator’s frequenay. That is, ev-
Hence the final form of Eq. (8) [replacing Eq. (5)] is ery initial state rapidly evolves to a generalized coherent

.. , R B state centered around valué®, (p) undergoing classi-
MX + VI(X) + Mglflg) + Adon(1) =0, (15) (5 Brownian motion. [The results cited above are readily

and (6) is replaced by the stochastic nonlinear equaextended to the case here in which the Hamiltonian con-
tion (12). tains a linear coupling to an external fore&((r).] Which

We now turn to the question of the value of the pa-particular solution the state becomes centered around de-
rametero. As discussed above, the quasiclassical particlgpends statistically on the initial state of the system. For an
suffers fluctuations as a result of interacting with theinitial state consisting of a superposition of well-separated
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coherent states, controversies of the naive mean field method or of
_ nonlinear quantum theories generally [21]. See Ref. [22]
) = anlvipy) + aalnapa), (18)  for a more detailed discussion of this work.
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