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We present a perturbation theory for non-Markovian quantum-state diff¢@8D), the theory of diffusive
guantum trajectories for open systems in a bosonic environfRérys. Rev. A58, 1699(1998]. We establish
a systematic expansion in the ratio between the environmental correlation time and the typical system time
scale. The leading order recovers the Markov theory, so here we concentrate on the next-order correction
corresponding to first-order non-Markovian master equations. These perturbative equations greatly simplify the
general non-Markovian QSD approach, and allow for efficient numerical simulations beyond the Markov
approximation. Furthermore, we show that each perturbative scheme for QSD naturally gives rise to a pertur-
bative scheme for the master equation which we study in some detail. Analytical and numerical examples are
presented, including the quantum Brownian motion mold&L050-2947®9)03307-7

PACS numbegs): 03.65.Bz, 05.40-a, 42.50.Lc

[. INTRODUCTION equation relevant to this paper has been derived directly from
a microscopic model. In this framework, the reduced density
Recently, a non-Markovian quantum trajectory theory—matrix of the subsystem obtained by tracing over the envi-
named non-Markovian quantum-state diffusi@BD— that  ronmental degrees of freedom is unraveled into an ensemble
describes the dynamics of a quantum “system” coupled toof continuous trajectories which correspond to the various
an “environment” of harmonic oscillators has been pre-realizations of the driving complex Gaussian process. Non-
sented[1]. Many outstanding new experimental advancesMarkovian QSD has been applied to interesting and physi-
can be properly studied only if non-Markovian effects arecally relevant models where both computational power and
taken into account. These include experiments with IgQgh- many new features have been demonstraigd However,
microwave cavities, quantum optics in materials with a pho-many issues are still to be addressed. In particular, further
tonic band gap, or output coupling from a Bose-Einstein conapplications of non-Markovian QSD to a variety of realistic
densate to create an atom laf2+6], to name a few. Also, problems are desirable. In addition, the theoretical implica-
the important phenomenon of decoherence, which takesons of this new approach remain to be explored. Clearly, a
place on time scales that can be of the same order as thell exploration of non-Markovian QSD is an extensive
correlation time of the environment, requires theories beyongroject. The purpose of the present paper is a step towards
the standard Markov approximation. Further motivation arethis extensive project.
more fundamental questions about the proper description of So far, although being a general theory, it is difficult to
individual open systems in quantum mechanics. Indeed, thignplement non-Markovian QSD directly on a computer in all
infamous problem of the “Heisenberg cuttinderstood here generality. It has been applied to a variety of model problems

as the cut between the system and the environnignnti- in [1]. However, in this paper we show how the non-
mately related to the non-Markovian evolution of the systemMarkovian QSD approach allows us to find a systematic ex-
when the environment is ignored. pansion of the reduced system dynamics in powers of the

In the Markov regime, quantum trajectory approaches usratio between the environmental correlation time and typical
ing stochastic Schringer equations for pure states of the system time scales. Thus, in order for non-Markovian QSD
system play an important role in quantum optics, particularlyto have more applications, we establish a useful and practi-
for numerical simulationd7-13. These Markov models cally relevant perturbative approach that is directly amenable
also have many appealing features from a theoretical antb computer simulations. Our first and most important moti-
conceptual point of vie8—10,14—18& It is therefore desir- vation for this paper is to present a systematic perturbative
able to generalize the powerful quantum trajectory approachpproach for non-Markovian QSD around the Markov limit.
from the Markov regime to the more general case of non-This perturbative “post-Markovian” QSD scheme is a time-
Markovian evolution. Several attempts have been made redependent approach which preserves the non-Markovian na-
cently from different perspectives. The linear non-Markovianture of the problem in each order of approximation.
unraveling underlying our theory was developed 18—2Q The second purpose of the present paper is to establish the
—see alsd 17] for a related attempt. Alternatively, a non- relationship between the non-Markovian QSD equation and
Markovian theory based on pseudomodes and a nomon-Markovian master equations. Such a relation is well-
Markovian jump approach have been developed recentlknown in the Markov regime, where one generally starts
[21-25. from the standard Lindblad Markov master equation to read

In Ref. [1], the ultimate nonlinear non-Markovian QSD off the Markov QSD equatiof9,10]. For non-Markovian
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dynamics, closed master equations are rare and, thus, the

direct link between non-Markovian QSD and the correspond- Hog=H+2 gy(Lal+LTa)+ > waala,, (2.0

ing master equation is of great interest. In order to obtain the » .

master equation from its non-Markovian QSD counterpart,yhereH is the Hamiltonian of the system of interest dnch
one has to take the ensemble mean over the stochastic prgysiem operator coupling to environment, is called here the
cess driving the QSD trajectories analyticalee also Ref. | jnqpald operatoras it plays the role of a “Lindblad opera-
[1]). In general, this is only possible for simple models. Ny, i the Markov limit). The linear non-Markovian QSD

our pertubative scheme, however, we are able to derive magyyatior{ 18—20 unravelling the reduced dynamics of model
ter equations directly from non-Markovian QSD which turns 1) takes the forrh

out to be useful from both theoretical and practical points of
view. It is important to note that a master equation derived in d _ [ Su
this way will necessarily preserve the positivity because such gt THg Lz L Jo a(t,s) = —ds, (2.2
density matrices can be decomposed into pure states at all s
times. We thus also address the problem of how t0 ensurgnere 7 is a colored complex Gaussian process with zero
positivity for non-Markovian master equations—a difficult jyean and correlations
subject in itself.

The third motivation of the paper, therefore, is to present M[zfz]=a(t,s), M[zz]=0. (2.3
a perturbation approach to non-Markovian master equations.
Using an example, we show that the resultant approximat&he bath correlation function(t,s) in Eq. (2.2) has to be a
master equation preserves positivity. We also analyze thpositive Hermitian kernel: a(t,s)=a(s,t)*. This non-
approximations leading to the Caldeira-Leggett md@s| Markovian unraveling is ensured to be consistent with the
—which is known to violate positivity for certain initial con- reduced density operator approach since the ensemble mean
ditions on short time scales. of the solutions of Eq(2.2) over the noise; will reproduce

The organization of this paper is as follows. In Sec. Il wethe density matrix of the system,
briefly review the basic concepts and equations of non-

Markovian QSD. The aim of this section is twofold: first, to pi=Trend € Mot o) b @ pie'Hiot)
act as a brief introduction for readers not familiar with the
subject; second, to serve as the natural starting point of our =ML4(2)){¢n(2)]]. 2.4

new development. In Sec. Il we develop the formal tlme'HereM[] denotes theensemble averagever the classical
dependent perturbation theory for non-Markovian QSD. Indriving noisez
t .

Sec. IV, we present a systematic method of deriving the mas- From Eq.(2.2), we see clearly that the evolution of the

ter equation from non-Markovian QSD. We show that a p.er'statet//t att depends on the whole history of the noise

scheme for the master equation. We will apply the approxi%‘quatlon(z'z) can be written in the more appealing form

mation schemes developed in this paper to some examples in 4 t R
Sec. V. In Sec. VI we take quantum Brownian motion as a a‘//‘: —iH i+ thwt—L*f a(t,s)O(t,s,z)ds ¥,
typical model to illustrate the perturbative schemes based on 0

QSD for the master equation. We conclude the paper in Sec. (2.9
?j/il)l(é\évhne some useful material can be found in the Appen-by defining an operat6r©(t,s,z) in Eq. (2.5 such that
~ _ 5$t
Il. NON-MARKOVIAN QUANTUM-STATE DIFFUSION O(t,s,2) p= 52 (2.6)
S

Both Markov and non-Markovian QSD are based on two .
related stochastic dynamical equations, a linear one and laturns out thatO(s,s,z)=L. Thet dependence of the op-
nonlinear one. The linear one is mathematically simplereratorO(t,s,z) can be determined by the consistency condi-
However, it does not preserve the norm of the state vectotjon
which in general tends to zero. Hence, only the nonlinear
equation, which preserves the norm, can be interpreted as a d 6 6 d
distribution of time-dependent pure states with given prob- at 5_Zs¢t:5—zsa¢t 2.7
abilities (i.e., as an unravelingthe density matrix is then
given by the ensemble mean of the pure states, at all timesogether with the linear non-Markovian QSD equati@rb).
Moreover, only this nonlinear equation is suitable for nu- The appeal of Eq(2.5 [or Eq. (2.2)] is its linearity,
merical simulatior{1,20]. Nevertheless, we start our presen-which is often useful in the mathematical analysis of our
tation with the simpler linear equation, leaving the nonlinear
one for the following subsection.

IFor simplicity, we choosé =1 throughout the paper.
A. Linear non-Markovian quantum-state diffusion 2The notationO(t,s,z), rather thanO(t,s,z), reflects that the
Our quantum trajectory theory is based on a Standardperatoré(t,s,z) contains the noise in a nonlocal way, that is, it
model of open system dynamics: a quantum system interactright be dependent on the whole histories of the nége0<s
ing with a bosonic environment with total Hamiltonian <t}.
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QSD approachlisee Sec. V. Its use as a simulation tool is found in Ref.[1]. Note that the non-Markovian QSD equa-
severely undermined since, for an infinite heat bath, the norrtion (2.9) reduced to the standard Markov QSD equafibd]
||4]| of the solutions of Eq(2.2) goes to zero with prob- for a(t,s)— &(t—s).

ability 1 and to infinity with probability zero. For this reason,  To conclude this section, we would like to make two re-
an unraveling in terms of normalized states is crucial formarks about the non-Markovian QSD approach. First, the
non-Markovian QSD to be truly useful for numerical simu- derivation of both the linear and nonlinear non-Markovian

lations. QSD equations are based on the assumptions that the envi-
ronment is bosonic, and that initially the state of the total
B. Nonlinear non-Markovian quantum-state diffusion system-environment is factorablp,= pg® p§™ , where the

Jnitial state of the systemS=|o)( 1| is independent of the
noise z,. In fact, if L#L", Eq. (2.9 is valid for a zero
temperature environment only and the equation for finite
(2 temperature gets two additional terms, EE Second, since

D] (2.9  Eq. (2.2 and hence Eq(2.9 are derived directly from the

t

microscopic model, these QSD equations can be read off
has been derived recenfly] from the linear non-Markovian automatically from the total Hamiltoniaf2.1). This suggests
QSD equation(2.5 by making use of a Girsanov transfor-

The non-Markovian QSD unraveling based on normalize
states

Tﬂt(z) =

that the non-Markovian QSD approach also represents a
mation of the noise. We get brand new way to derive the quantum master equation of
open quantum systengsee Sec. V.

d-~ o~ ~—
git= T IHGH (L= (L)) Ill. TIME-DEPENDENT PERTURBATION THEORY
t R o - The non-Markovian QSD approach offers a very promis-
- fo a(t,s)[(L"=(L"))O(t,s,2) ing method to handle quantum systems whenever non-
Markovian effects are relevant. However, many interesting
—((LT—<LT>t)©(t sE))t]dsTm (2.9 problems which arise in open quantum systems are such that
the operato©(t,s,z) appearing in Eq(2.9) cannot be deter-
wherez, is the shifted noise, mined exactly. Moreover, the nonlocal noise contained in the

fundamental equatiof2.12 might cause difficulties in nu-
~ t merical simulations. In this section, we aim for a formal
Zt=Zt+J a(t,s)*(LT)ds, (210 perturbation scheme for the non-Markovian QSD equation
0 (2.9). Applications of the general perturbative method devel-

and (L)=(¥|L|) denotes thequantum averageAgain oped here will be presented in Sec. V.

here, theensemble averagef the solution to Eq(2.9 re-

covers the density matrix of the system, A. First-order approximation of the operator O(t,s,z)
o~ ~ We need to know the operat@x(t,s,z) from Eq.(2.6) in
pe=ML[$n(2))(d(2)]]. (2.1 order to solve the non-Markovian QSD equati@9 on a
This nonlinear non-Markovian QSD equation can be rewrit-COmputer. Notice thaD enters Eq(2.9) under the memory
ten in a more compact form: integral [ a(t,s)O(t,s,z) ds only. Therefore, if the correla-

tion time of the environment is not too long, ordyalues in
the vicinity of the upper integration range are relevant, and
thus we consider the expansion of the oper&d¢t,s,z) in

Eqg. (2.9 in powers of (—5),

d- - _— —
alﬂt: —iH ‘/ft+At(L)‘ﬁtzt_At(LT)o(taZ) i

+(A(LNHO(1,2)) (2.12 i
~ ~ J0(t,s,z)
whereA(A)=A—(A), for any operatoA and O(t,s,z2)=0(s,s,z)+ o (t—s)
t=s
— [t R )a
O(t,z)—foa(t,s)O(t,s,z)ds. (2.13 +%,9 O;I'ZS’Z) (o9t (B
t=s

Equation(2.9) [or Eq.(2.12] is the fundamental equation of

non-Markovian QSD,and is our starting point for the per- Substituting Eq(3.1) into Eq. (2.9) or Eq. (2.12, we get a

turbative approach in Sec. Ill. Numerical simulations of non-hierarchy of approximate QSD equations by truncating the

Markovian open system dynamics using this equation can babove expansion. The validity of the corresponding approxi-
mation depends on the environment correlation tinuketer-
mined by the correlation function(t,s). In fact, it turns out

SFrom now on, unless otherwise emphasized, non-Markoviathat O changes orsystemtime scales as a function of (
QSD refers to Eq(2.9) or Eq. (2.12, not to the linear equation —S) and, thus, the expansidB.1) corresponds to a system-
(2.2. atic expansion of the non-Markovian QSD equation in pow-
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ers of the numbew 7, wherew is a typical “system” fre-

PRA 60

tions which are smaller by a factes+ or I' 7, respectively

quency and 7 the environmental correlation time. For [third and fourth lines in Eq(3.8], where 7 is again the
example, the zeroth-order term leads to the standard Markoenvironment correlation time. Therefore, we expect B®)
QsSD, whenr—0. The first-order term is the most important to be valid for non-Markovian situations where the environ-
correction to the Markov dynamics. Therefore, in what fol- mental correlation time may be finite but no larger than typi-
lows we will work out the approximation up to the first order cal system time scales. The Markov case emerges-fe0,

in some detail.
By using the consistency conditidi2.7), one can work

out the following expressions for the opera(t,s,z) at

time pointt=s, without knowing its explicit form(for de-

tails, see Appendix A
O(s,s,2)=L, (3.2

30(t,s,2)
at

= —i[H,L]_ fosa(s,u)du[LT,L]L,
(3.3

t=s

whereH is the Hamiltonian and. is the Lindblad operator,

where the first-order correction becomes negligible and only
the zeroth-order term remains. Then E8.8) reduces to the
standard Markov QSD equation for-0.

We also see that non-Markovian properties are encoded in
the time-dependent coefficiengs(t), which change on the
very fast environmental correlation time scalélhe absence
of the noisez in the first-order expansio8.4) is remarkable;
the resulting first-order QSD equati@B.8) hence contains
only local noisez; [higher-order expansions contain the
noise, consequently E¢3.8) will also contain the noise in
a nonlocal way. Note that the approximate non-Markovian
QSD equation(3.9) still preserves the norm of the wave
function. Equation(3.8) is the main result of this section. As

as specified in the preceding section. Now, we are in a pOS§tated before, applicability ofAnon-Markovian QSD liesin the
tion to write out the non-Markovian QSD equation up to thedetermination of the operat@(t,s,z). As we have already

first order. Indeed, the first two terms in the expangi®n),

substituted, respectively, by Eq8.2) and (3.3), yield O(t)
in Eq. (2.13 in the following form:

O(t)=go()L—gs(D)iI[H,L]-g(D[LT,LIL, (3.9
where
t
go(t)=J a(t,s)ds, (3.5
0
t
gl(t)zf a(t,s)(t—s)ds, (3.6
0
go(t)= ftfsa(t,s)a(s,u)(t—s)du ds (3.7
0JO

Note thatg, is of the order 1, yey); andg, are of the order
of the environmental correlation time. Substituting Eq.

(3.4) into Eq.(2.12), the first-order non-Markovian nonlinear

QSD equation is obtained:
d-~ o~ ~~
a'//t: —iH g+ A(L) iz,

~go(O[A(LNL—(A(LNL)J¥y
+iga(D[A(LDIH, L] = (A(LNH,L]) ¥
+g2(D[A(LNLT,LIL
—(A(LDILTLIL) ¥,

wherez, is the shifted noiseA(L)=L—(L);, and (L),

=(yn|L|¥) is the quantum expectation value.
The HamiltoniarH defines a typical system frequeney

(3.9

the combinatiorL'L defines a typical system relaxation rate

I'. We thus see that the zeroth-order term in B34) gives
rise to a term of the ordel’ [second line in Eq(3.8)],
whereas the two first-order terms in E§.4) lead to correc-

pointed out, the difficulties in handling non-Markovian un-
ravelings are often the nonlocal noigeappearing either in
the functional derivativgdsee Eq.(2.2)] or in the integrand

operatorO(t,s,z) [see Eqs(2.5) and(2.9)]. We see that the
above approximate QSD equation greatly simplifies the non-
Markovian QSD equatiori2.12).

In addition, Eq.(3.8) is explicitly written in terms of the
Hamiltonian of the systeri, the Lindblad operatot, and
their various commutators. All of these can be obtained au-
tomatically once the physical model is specified. The only
work left is to calculate the coefficientg;(t) (i=0,1,2)
from the environment correlation functian(t,s).

After working out the formal perturbative QSD equation,
it is useful to see the concrete form of the coefficiag(g).

For simplicity, we assume here that the system is driven by
Ornstein-Uhlenbeck noise, characterized by the exponential
correlation function

a(t,s)= %e—ﬂ‘—sl, (3.9

where y~ 1= 7 defines the finite environmental memory or

correlation time. Note that this corresponds to a Lorentzian

spectrum. In the limity—oo, the Ornstein-Uhlenbeck noise

reduces to simple complex white noise:
a(t,s)=6(t—s). (3.10

In the case of the Ornstein-Uhlenbeck process, the coeffi-

cientsg;(t) can be easily obtained from Eg8.5—(3.7):

1
go(t)= 5(1—e*’t), (3.1

gl(t)=%(1—e"t—7te‘y‘), (3.12

1 —yt —yt 1 242 A— yt
gz(t)zﬂ l-e "—qyte 7—Eyt e 7. (3.13
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In the long-time limitt> 7, we see that the coefficients of the J . R = .
non-Markovian QSD(3.8) become constantg,=1/2g; 5100(t,8)=[—iH,O0(t,8) ]~ [LTOq(1),O0(t,8)].
=1/2y,9,= 1/4y, which also confirms thai, is of the order (3.17

1 whereasy, andg, are of the order of the environmental
correlation timer=y 1.

In the Markov limit y—o, go(t)—1/2 andg,(t),g(t)
—0 for t>0 and the non-Markovian QSD equati®8.8)
reduces to the standard Markov QSD equatji@f] (note

here we write it in the Stratonovich forfi27,28): %@tz —IH P+ A(L) Pz~ A(LHOG(1) ¥

For the approximatiorO(t,s,z)~0Oy(t,s), the approximate
non-Markovain QSD equation then takes form:

d~ ~ ~ 1 - — ~
allft:_iH ¢t+At(L)¢tO(Zt+<LT>t)_EAt(LTL)lﬁt +<At(LT)Oo(t)>t¢t- (3-1&

(3.14 The justification of this approximation is that whenever the
with z; the standard complex white noise, as expected. open quantum system deviates slightly from the Markov dy-

Our formal perturbation approach can be carried out tg)@mics, then the first termOq(t,s) of the expansion
any desired order of approximatiofor the details of the (3.16 plays the dominant role. This can be easily seen

second-order expansion and the coefficients, see Appendfrom the fact that all 6n(t,v1, e 3Un)
B.) It is important to note, however, that the higher—orderEftoa(t,s)@n(tls,vl, ...v,)dsn=1 go to zero in the
derivatives ofO(t,s,z) att=s may contain the noise Markov limit: a(t,s)— 8(t—s), except the first tern50(t)

Since the linear non-Markovian QSD equati¢®?) is
often simpler to use in deriving the corresponding maste
equation(see Sec. IV, we also give its first-order approxi-

Ef})a(t,s)f)o(t,s)ds, which goes tc; L. Physically this can
be understood as follows. In the Markov case, the quanta
coupled from the system to the environment never come

mation: back to the system, whereas in the non-Markovian case, the
. ) + i + emitted quanta will re-couple from the environment to the
= —1H i+ Lipzi—go(t)L 'L ip+iga ()L '[H,L ] system.
+go(OLTLY, LIl ¢, (3.15 Similarly, one can build the higher-order approximations

which usually contain the noise One obtains then a series
where the coefficientsgy(t),g4(t),g,(t) are given by Egs. of approximate QSD equations. The master equation corre-
(3.5), (3.6), and(3.7). sponding to the zeroth-order approximati@18 is derived
’ ’ in the next section.

B. Functional expansion ofO(t,s,z)
IV. NON-MARKOVIAN QSD VERSUS NON-MARKOVIAN

In this subsection, we consider another kind of perturba- MASTER EQUATION
tive expansion, the functional expansion of the operator _ . _ _
O(t,s,z) in terms of noisez, : . In this section, we dISCU.SS how to der|v<_a the master equa-

tion from the non-Markovian QSD equation. Our motiva-
. . t . tions are as follows. First, the master equation approach has
O(t,s,2) =Oo(t,s) + fool(t,&v)zudv a long tradition and is fundamental in open quantum system

dynamics, and the reduced density operator contains all

t[t, mean values of the “system” that can be directly observed
+f f Oa(t,s,01,02)2,,2, dvdvot - - - and measured. Second, although it is clear in principle that
0oJo . . . .

each perturbative scheme for non-Markovian QSD gives rise
t t,. to a perturbative scheme for the non-Markovian master equa-
+ fo"'foon(t,S,vl, Un) tion, it is very difficult in practice to carry out this program

without a systematic way to derive the non-Markovian mas-

Xz, -z, dvg---dogt---, (3.16 ter equation from its QSD counterpart. The aim of this sec-
! " tion is to show how to derive the quantum master equation
; . directly from the non-Markovian QSD. Based on this result,
where the operator®,(t,s,v, ... ,v,) are independent of y Q

we establish explicitly the relation between the perturbative

the noisez and are symmetric in theim last variablege.g., QSD equations and perturbative master equations.

O,(t,5,01,02)=0,(t,S,v,,v1)]. The initial condition is
O(t,t,2)=L. The expansion3.16 takes into account the

. A. General master equation
generally nonlocal dependence of the oper&dt,s,z) on

The starting point of the derivation of the general master

the noisez S . -
From the consistency conditidi2.7) and the QSD equa- equation is the unnormalized projection operzigr
tion (2.2), we get a hierarchy of equations for the operators P.=|4(2)4(2)]. (4.1)

O, (t,s,v1, ... v, (see Appendix A Of particular interest

is the zeroth-order ter@(t,s), which satisfies the follow- Recall that the reduced density operator can be reproduced
ing equation(ignoring the first-order terjn by taking the statistical means over the noipg= M[P,]
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=M[|(2)X(2)|]. Accordingly, the temporal evolution two terms appearing in the equation have not yet been writ-
equation forP, can then be obtained from E(R.5): ten in terms ofp. It seems quite difficult to write this equa-
tion into a closed evolution equation in full generality, if not
impossible. We shall see, however, that in many interesting
and physically relevant situations, a closed form for this
. equation can be fountsee beloyw. Notably, the use of the
_L‘rf a(t,s)0O(t,s,2)ds P relations(4.3) and (4.4) can make a tremendous simplifica-
0 tion in deriving the master equation of an open quantum
system from its QSD counterpart. In fact, it enables us to find
_ Ptfta(t $)*O(t,s,2)Tds L 4.2) out an exact or an approximate non-Markovian master equa-
o ” tion by directly using the techniques of a stochastic process.
The non-Markovian master equati¢h9), by design, will

The above equation is, of course, a stochastic differentiahiways preserve the positivity, trace, and Hermiticity.
equation with time-dependent coefficients. Accordingly, the

master equation corresponding to E2.2) may be obtained B. Approximate master equations
by taking statistical mean values of B¢.2).

To this end, we note that for any complex Gaussian noise .S'nC? the master equano(m.g) cannot, in .gengral, be
. ) : written in a closed form, some kind of approximation has to
z;, the following relations holdsee Appendix €

be made to determine the operafb(t,s,z). The Markov
P } approximation emerges for a vanishing environment correla-

d .
aPt: —i[H,P]+LPz+P.L"Z

(4.3 ti_on time, a(t,s)=45(t—s). In this case, from Eq(3.4)
O(t,z)=3L, and Eq.(4.9) reduces to the Markov Lindblad
master equation,

t 5P,
M[Ptzt]zfods M[ztz’;]M[g
S

. 4.9

t 5P,
M[Ptz{‘]=f ds M[z{ z, M| —
0 525

d 1
—p=—i[Hpl+LpL"=S{LLTp}. (410
From Egs.(4.3) and (4.4), the following identities are ob- dt”™ ' t 2 t

tained: where{,} denotes the anticommutator. Another interesting

case is when the dependence of the oper@drz) on the

noise z; is negligible, that is,O(t,z)=~0Oy(t). Recall from

Eq. (3.16 that this is indeed the case when the dynamics is
t . not far from Markov or the driving noise is very small. Un-

M[PtLTZ?FI a(t,s)M[O(t,s,2)P,Jds L". (4.6)  der this approximation, the master equation takes the follow-
0 ing simple form:

M[LPtzt]=Ljota(t,s)*M[Pté(t,s,z)T]ds, (4.5

Here we used the following relations: d _ _
giP= ~ilH.pd+[L.pOo()1+[Oo(t)py L.

M =M =M[O(t,s,2)P,], (4.7 (4.12)

)
—SPt 5—ZS|1M><¢/&|

5 5 The notationO,(t) is the same as befofsee Eqs(3.16) and
2 5l 9 _ A t (2.13]. The master equatiof#.11) will serve as a good ap-
M[ézg Pt} M[wj& 8z <¢/t|} MLPO(ts.2)1], proximation to the exact non-Markovian master equation
(4.8 (4.9 in many situations of interest. In particular, if the op-

eratorO(t,s,z) is independent of noise,, then Eq.(4.11)

and we take advantage of the definition of Beoperator  pecomes exact. Interestingly, there are many physically rel-
(2.6). The validity of the above two identitigg.7) and (4.8 evant examples that satisfy this conditigi.

is ensured by the fact that the solutigh of Eq. (2.2) is an More importantly for this paper, this condition is always
analytic function ofz and is thus independent af . Accord-  satisfied in the first-order perturbative approximati@9)
ingly, &|¢)/ 627 =0, &(yll62,=0. developed in Sec. Il A. Then the master equaiir9) takes

Hence, USing Eq3(45) and (46), the exact non- the fo”owing form:
Markovian master equation corresponding to non-Markovian

SD (2.2) can be obtained: d .
esbz2 Sip=—iTHp+[00(0)+ 85 (D ]1Lp T~ Go(OL Ly

d —_ _
Friday —i[H,pJ+[L,M[PO(t,2)"]]-[L",M[O(t,2) P]], — gt (V) pLTL+ig (DL [H,L]p]

4.9 :

49 ~igi (OIpLH] LT+ g0 LT LILpd
where as beford[ ] stands for the ensemble average, and * ter
— +9g5(t)[pL"TL,L],L] 4.1
O(t,2) is defined in Eq(2.13. 9z (D[P LTLLLLL] (412

Equation(4.9) is the exact equation on which our pertur- This master equation is the main result of this subsection. It

bation approach is based. As an evolution equation, therovides a systematic evolution for first-order non-
above master equation does not look very nice since the lastarkovian systems. Hence it could be called the “post-
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Markov” master equation. As for the first-order QSD equa- ' ' ' ' ' ' ' ' '

tion (3.8), g4(t) andg,(t) terms are smaller by a factesr sk i
or I'r compared to the first linérecall thatw is the typical
“system” frequency determined bi, I' is a typical “sys- oo (M ]

tem” relaxation time scale determined hyL, and r is the
environmental correlation time
Note that this “post-Markov” equation in general re-  °2r
mains non-Markovian even wheg,(t)=0,,(t)=0, be-
cause of theyy(t) term. However, for long timgg(t) tends [\ 7/ ™
to a constant. -02r ]
Equations(3.8) and (4.12 will be applied to some ex- | |
amples in Sec. V. In addition, Sec. VI presents a perturbatior
analysis of the quantum Brownian motion model. -06- 1
Finally, it should be noted that we have not addressed
issues such as mathematical conditions for the convergenc
of the expansion$3.1) and (3.16). Also, we are not able to e e
prove, in full generality, that Eq4.12 always yields a posi- ot
tive density operator. However, in this paper, we shall illus-
trate in several exf':lmples that the resuilting gp_proxi_mate QSIRajectories of the first-order QSBolid curve, and by the exact
and master equations a}round the,MarkOV I'mﬂ?" 7 1S not master equatioridotted curve with HamiltonianH = (w/2)o,, L
too large are mathematically consistent. We will come back:)\gi‘ anda(t,s) = (y/2)e~ "5, Here we choose=\=1 and

to these issues in future publications. y=10. The initial state is chosen fo)=|—)+i|+).

<o>
=

.81 M<c > 4
z

FIG. 1. Ensemble average of the Bloch vecter) over 2000

V. EXAMPLES AND APPLICATIONS and the first-order non-Markovian master equation can be

The perturbative approach developed in the previous seé)-btained from Eq(4.12:
tions allows us to apply first-order non-Markovian QSD to

any open quantum system once the Hamiltonian of the sys- — | _ _; e N20a(1)(2 _

temH, the Lindblad operatok, and the environment corre- dt” 2 Loz.pd 9o(D)(20-pis {0 upi})
lation function «(t,s) are specified. All of these are deter- 2 4

mined by the physical model itself, as illustrated in this Vw0 pd = Mgt {o 0 o1}
section using some typical models. For simplicity, we as- +2\4g,(t)o_pro, (5.3

sume that the complex procesy entering the non-

Markovian QSD equatiori3.8) has a Lorentzian spectrum, \yhereg,(t) gives the time-dependent frequency shift. Thus
i.e., is of the Ornstein-Uhlenbeck type with the correlationihe master equation is of the Lindblad form with time-
function a(t,s)=(y/2)e" """, wherey *=r is the envi-  gependent coefficients. As seen in the next subsection, this

ronmental correlation time, unless otherwise stated. property cannot be regarded as a generic feature of a non-
Markovian master equation. Note that the first-order master
A. Dissipative model equation(5.3) respects the Hermiticity, normalization, and
In this subsection, we consider a dissipative two-levelPOSitivity for any initial states and time scales. We can easily
model characterized by identify the first-order non-Markovian correction terms of

the orderw/y and\?/y in Egs.(5.2) and(5.3). We expect

1) these equations to be a good approximation for the exact
H=50;, L=ho-. (5. solution as long as terms of the ordes/)? and (\%/y)2
are negligible.
Since this model can be solved exadtly, we are able to In Fig. 1, the average o(f&) for o=A=1 andy=10 is

compare the perturbation approach with the exact nonplotted. The results given by the perturbation QSD equation
Markovian QSD and master equations. Note that the modadver 2000 realizationésolid curve are in remarkable agree-
defines two “system” time scales through the parameters bynent with the exact master equatitdotted curve

o (oscillation and\? (damping. Here we assume that they  To illustrate the limits of the Markov approximation, Fig.

are of the same order of magnitude. 2 presents the ensemble averégg) for the first-order QSD
The first-order non-Markovian QSD equation can be ob<(solid curve for the same parameters as Fig. 1 except for the
tained from Eq(3.8): memory timey=1, and compares this with the Markov mas-

ter equation(dotted curvé and the exact master equation
(dashed curve Clearly, the ensemble average @f over
1000 trajectories still gives a good approximation to the ex-
act master equation. The result is fully in accordance with

d~ O ~~
a‘/ft: _|§Uz¢t+)\(0—7_<o-f>t)‘//tzt

2 iy 2 4
~[A"Go(t) 1M wga(t) + N7ga(1)] our expectation as for relatively long memory times the Mar-
_ _ ~ kov approximation is no longer valid. It should be noted that,
X(040-=(0 )0 =(0 0 )+ (T )l )) in general, the accuracy of the first-order QSD is also limited

(5.2  to relatively short memory times, but not as severely as the



98 YU, DIéSI, GISIN, AND STRUNZ PRA 60

08 E|

ll<>Il

0 s . e e

0 0.5 1 15 2 25 3 35 4 0 1 2 3 4 5 6 7 8
ot ot
FIG. 2. Ensemble average ¢b-,) over 1000 realizations by FIG. 3. lllustration of the norm of the Bloch vector of a two-
using the first-order non-Markovian QSBolid curve for the same  level system withH = (w/2)oy, L=\0o, and exponentially decay-
model as Fig. 3. Herey=1, w=\=1, and|yp)=|-)+3|+).  ing correlation functiona(t,s)=(y/2)e" "=, The initial state is

The dashed curve is the exact master equation for the same choigRosen as the excited staig,)=|+). The parameters are chosen
of parameters, and the dotted curve is the master equation in thg w=N=1, ’}/:%- The solid curve represents the norm of the
Markov limit. Bloch vector by the master equation, and the dotted line represents
the norm of Bloch vector from the long-time limit master equation
Markov approximation. Then the higher-order approxima-(LME). We seel|(a)||>1 for the Bloch vector by LME for the
tions or an alternative expansion such as@dL6) should be chosen initial state at short times. Accordingly, LME loses the posi-

used. tivity at short times for some initial states.
d W ) )
B. Two-level model giP= E[Ux P+ 2N go(t) oypi0,— 2N“go(t) py
Let us consider a driven two-level atomic system interact- o )
ing with a dissipative environment. The Hamiltonian of the —iINwgi(D[ oy, p] =N wgi(t)opoy

system,H, and the Lindblad operatot,, which represents

32
the influence of the environment are given by Nogi(Doypo. (5.6

® There are some new features about the master equation
H=—-0o,, L=\o,, (5.4)  First, it is obviously not in the Lindblad form due to the
2 presence of the cross termpo, and its conjugate. Second,
the master equation derived in this way naturally preserves
respectively, where the parameteris a coupling constant. the Hermiticity, trace, and positivity. The preservation of
For this model, it can be shown that the expan$8]m6) will trace and HermItICIty is obvious. It is known that pOSItIVIty
not terminate at any finite order. The application of the perOf any two-dimensional density matrix is equivalent to the
turbative approach is thus necessary. The first-order norgondition||(o)||<1, where(o)=Tr(ap) is the Bloch vec-
Markovian QSD equation can be readily obtained from Eqtor[29,30. In Fig. 3 we have plotted the norms of the Bloch
(3.9: vector using the time-dependent master equato® (solid
curve and the long-time limit master equati¢bhME) (dot-
d © ted curve, in which the coefficients of the master equation
_;Zt: =i _O'xTWt+ No,— <0'z>t)h‘%it+ )\Zgo(t)«‘fz)t‘fz become (.:(.)r!StantQO(t) ~ ]?/2.’91(0 =1/2y. ClearlY' LME
dt 2 loses positivity for some initial states at short time scales,
whereas the time-dependent master equafo®) preserves

A 2 ; .
~(020) = oM g1 (D10 H (T)oy— {0 positivity at all times(provided is not too large. Note that
- )y (6.5 his simple model is the two-level analog of the Caldeira-
CARCHNITE ' Leggett master equation studied in Sec. VI below.

We also solved numerically the first-order QSD equation

where the coefficientgy(t),g,(t) are given by Eqs(3.1) (5.5. The average ofr obtained through many realizations
and (3.12, respectively.go(t) terms in the above equation of Eq. (5.5 (solid line) and through the first-order master
are expected from the Markov QSD pictugg(t) terms rep-  equation(5.6) (dotted curvgis plotted in Fig. 4. Taking the
resent the non-Markovian correction and are smaller by @&nsemble mean over 500 realizations, we see from Fig. 4 that
factor o 7= wl/y. the first-order QSD equation is in good agreement with the

Similarly, the first-order non-Markovian master equationfirst-order master equation, for the short memory time (
can be obtained directly from E.12: =10).
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1 ' T ' ' ' ' T ' ' whereA is the cutoff frequency of the bath which character-
izes the correlation time=A "1 and 7 is the friction coef-
ficient.

1 From Eg.(3.4), we get

O(t)=go()g—g1(t)p, (6.3

where the coefficientgy(t),g41(t) are defined as before Egs.
(3.5 and(3.6).

02} 1 The zeroth-order master equation can be obtained from
A v | Eq. (4.12 by settingg,(t) =g(t)=0:

d
T _i[Hth]_QOR(t)[Q-[qut]]_i90|(t)[q21Pt]-
(6.4

; e
et s s 8 7 & ° 1% This master equation preserves positivity for all times, re-

. gardless of the initial states, as it is of the standard Lindblad
FIG. 4. Ensemble average ¢f) over 500 realizationgsolid  form with time-dependent coefficient& his is of course not
curvg for the same model as Fig. 3. Here we choaseA=1, 3 generic feature for non-Markovian master equatjons.
=10, and the initial statfjo) =| —)+ V3| +). The dotted curve is  However, Eq.(6.4) does not take the energy dissipation into
an average by the first-order master equation for the same choice gf-count. More relevant is therefore the first-order approxima-
parameters. tion. The master equation in this case can be obtained from

Eq. (4.12),

VI. QUANTUM BROWNIAN MOTION: PERTURBATIVE d
) ARALYSIS P —ilH.pd—go(DIA[a,pd 1= igai(D P pi)
The transition from non-Markovian to Markov processes
is an outstanding problem. It is debated how to take the +g1r[a,[p.pd]+igy (D[ a.{p.p ], (6.5
correct Markov limit for a non-Markovian process. Certain
approximations of the exact dynamics can lead to mastewhere the coefficientg;z(t),g; (t) (i=0,1) are the real and
equations with bad properties such as nonpositivity. A notoimaginary parts ofg;(t) (i=0,1), respectively. The coeffi-
rious example is the Caldeira-Leggett master equatiomient ggr(t) induces diffusion and the decoherence in posi-
[26,31,33, which may violate positivity of the density op- tion q while gq,(t) gives rise to a time-dependent frequency
erator at short time scal@3-3¢. Consequently, it is impos-  shift. The coefficieng;g(t) is responsible for further diffu-
sible to simulate friction in the manner of Caldeira-Leggettsion, and the last coefficient (t) gives the friction. All of
with stochastic Schiinger equations. The aim of this sec- these time-dependent coefficients vanisii=ad due to the
tion is to apply the time-dependent perturbation approach foassumption that initially the state of batBystem is factor-
the master equation developed in the previous sections to thgle. In the special case wh¥ffq) is a quadratic potential,
quantum Brownian motiotQBM) model[26,31,32,3]. In it is reassuring that our non-Markovian master equations
particular, we shall show that our first-order non-Markovian(6.4) and (6.5) coincide with the zeroth- and, respectively,

master equation recovers the Caldeira-Leggett master equfirst-order expansions of the exact Hu-Paz-Zhang master
tion in the Fokker-Planck and long-timés¢ 7) limit. The equation[32].

Hamiltonian of the system and the Lindblad operator are as In the Ohmic case(6.2), there exists a special high-
follows: temperature limit(Fokker-Planck limit which results in a
Markov master equation. We take the high-temperature limit
in such a way thakT>A. For timest>7=A "1, the time-
dependent coefficients in E¢.5) approach constant values
and we get the Markov “Caldeira-Leggett” master equation
for Brownian motion:

1
H=Zp*+V(a), L=q, (6.2)

where we choose a unit mass particle moving in a general i TV _
potential V(q). For the sake of simplicity, we consider the dtPt IH"p] i 2 [a.{p.pid] = nkTLa.[q.pe]]
case of the Ohmic heat bath,w) ~ . The bath correlation (6.6)

function is then given by ) ] o
whereH’ is the cutoff-dependent renormalized Hamiltonian.

This is a Markov master equation with constant coefficients.
o It does not belong to the Lindblad class and it may violate
cotk( TI’) cod w(t—-s)] the positivity of the density operator. We mention casually
that a next-order high-temperature expansion improves this
situation and replaces the Caldeira-Leggett equdtos) by
, (6.2 a proper Markov Lindblad equationf36]. This 1T

A
a(t,s)= ;jo do o

—isifw(t—s)]
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asymptotic expansion has nothing to do with the perturbativéation approach with some typical examples.
approach in our present work. Note that the Fokker-Planck In the Markov regime, it is well-known that each Lind-
limit of the zeroth-order non-Markovian equati¢f.4) does  blad master equation can be unraveled by either continuous
not contain the dissipativériction) term on the right-hand  or jump trajectories which decompose the density matrix into
side so it is a Lindblad master equation. pure states at all times. The reverse is also true; each stochas-
It is instructive to look at the nonpositivity of the tic unraveling uniquely yields a positive density matrix. In
Caldeira-Leggett master equatiéf.6) from the QSD point  {he present paper, we have shown that this correspondence is
of vieyv. Itis clegr from the derivation that the Q_SD master ayen more fruitful in the non-Markovian regime. We show
equation (6.5 differs from the standard Caldeira-Legget gypjicitly how the non-Markovian QSD equation gives rise

".‘aSter equation6.6) 'for ghort tlmgs of the order .Of the en- to the corresponding non-Markovian master equation. As the
V'TO””‘?W?" correl_a_tlon time. Du_rlng this short time, an ar-p, o important application, we have shown that each pertur-
b|t_rary initial condition, whlch_ might lead to positivity vio- bative QSD equation naturally gives rise to a perturbative
lation when propagated with the non-Lindblad master : .

equation(6.6), evolves towards an effective, modified “ini- master equation. .We have shown numerically that Fhe result-
tial” density operator for the long time master equatiérb) |n.g.rrl1aster equ.auo.n naturally respects the propert_n_as_ of her-
[35]. miticity, normallzatlon, and, more importantly, positivity.

Our QSD master equatiof6.5) is also a non-Lindblad Admlttgdly, many issues remaln'to be s_,olved in this spb—
equation but with time-dependent coefficients. As in the caséCt: In this paper we have exclusively discussed the first-
of the spin model in Sec. V B, their time dependence carPrder “post-Markov” perturbation theory for QSD without
assure the preservation of the state’s positivity. In the mastdpuching the perturbative QSD based on the functional ex-
equation(6.5), the coefficient, () of the dissipative term is Pansion(3.16). It is important to note that these two expan-
zero att=0 and its time derivative vanishes, too. The diffu- Sions(3.1) and(3.16) are of rather different physical mean-
sion coefficienggr(t) also vanishes but its initial derivative ing. The former expansion, on which we concentrate in this
is positive. Thus the initial phase of the evolution is domi-paper, is an expansion in the environmental correlation time,
nated by diffusion. This mechanism may, as is well known inwhereas the latter is the expansion for the “small noise.”
the exact model of Ref32], guarantee the positivity of the Clearly, the comparison of these two expansions will be in-
density matrix at short times as well as at later times wheneresting. Another important project in the next step is to
the dissipation enters. In contrast, in the Caldeira-Leggethpply the non-Markovian QSD to some realistic physical
master equatioi6.6) the constant dissipative term will im- problems, such as non-Markovian atom-field interaction and,
mediately violate the positivity of a distinguished class ofin particular, the superradiance near a photonic band gap, in
initial density matrices. which the non-Markovian interaction is essentialg., see

In summary, we have_presented the zeroth—_order mastes])  Also, it is known in the Markov regimé41,47 that
equation (6.4) and the first-order non-Markovian master |ocgjization of quantum trajectories—typically in phase
equations(6.5) based on the QBM model. After an initial gna0e_ s of great significance in accelerating the numerical

slip” time, of the order of the environmental correlation simulations. Therefore, investigations into localization in

time, we recover the standard .QBM master equation. W% n-Markovian QSD would be useful in both theoretical and
note that both decoherent histories and enwronment-mducepf
y

- - . tical ts.
decoherence are discussed using the QBM model, but main actical respects
in the Markov regime$15,38—4Q. It would be interesting to
study these approaches with a non-Markovian master equa-

tion like Eq. (6.5. We shall discuss these topics elsewhere. ACKNOWLEDGMENTS
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more amenable to computer simulations. In particular, a de-

tailed analysis of first-order “post-Markov” QSD equations
and the corresponding “post-Markov” master equations are
presented in Secs. lll and IV. It is noteworthy that these
equations depend only on the system Hamiltonian, the Lind-
blad operator, and the environment correlation function. The ) ] .
equations can thus be read off directly from the total system L&t us consider the following expansion of the operator
+environment Hamiltonian. We have illustrated the pertur-O(t,s,z):

APPENDIX A: PERTURBATION EXPANSION OF THE
OPERATOR O(t,s,2)
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O(t,s,z)=Oo(t,s)+J O4(t,s,v)z,dv

0

t [t
+J’ f Oz(t,s,vl,Uz)zvlzvzdvldU2+' ..
0oJo

t t,
+f J On(t,8,01, ... vp)
0 0

Oy

dt 52 atoo(t S) i+

t [t
+J f &toz(t,s,vl,vz)ZuleZdvldvz
0JO

J fc?t tSUl,...

Un)Z vy’

and

5 d
5—25&% (— |H+th)%—LTO(t )ﬁ

S

_ t__
- LT( Ol(t,s)+2f Oz(t,S,UQ)ZUZdU2+ e
0

+nf f (.S 00, ... U0

bt (A3)

Xz, ~zvndv2- --dv,

whereO(t,v1, . .. vn)=/a(t,5)On(t,5,v1, . .. vn)ds.
Consequently, from the consistency condition

d ¢ 6 d

a5_zs¢t:5_zs gt (A4)

one obtains the following hierarchy of equations:

e n(t S, U1, ...,Upn)

1 n
ol 22

PneS, k=0

=[_iH,©n(t,S,Ul, ..

X[LTOk(t,UPn(l), C ,l)pn(k)),

~

Xon,k(t,S,UPn(k+1), s ;UPn(n))]

—(N+1)LTO,,1(t,5,01, ... vp) (A5)

Al(t,s,t)zt+f 8,04(t,s,0)z,dv
Pt -

Zvndvl~ .
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Xz, 2, dvy--

vy .dvn+...,

(A1)

where the operator®,(t,s,vy, ... v,) are independent of
the noisez and are symmetric in their last variableqe.g.,

O,(t,5,01,0,)=0,(t,5,0,,01)]. The initial condition is
O(t,t,2)=L.
Accordingly, we get

Pt

t
f O(t St Uz)ZtZ dl}2

f fO(tstvz,... n)ZZ

L2, duge - doy

. d
-dv, ¢t+~-+0(t,s,z)m¢t (A2)
[
with initial conditions
Oo(t,t) =L, (A6)
On(t,t,vy, ... vy)=0 forall n=1, (A7)
nOL(t,S,t,v5, ... vn)=[L,0n_1(t,5,05, ... 0],
(A8)

whereS, is the permutation group ari, is the permutation
operators acting on the indiceg,v,, ... v,.
Of particular interest im=0. We get

J A A — A
~Oo(t,s)=[—iH ,O0(t,8)]1-[L"Oq(1),00(t,5)]

—L1O4(t,9). (A9)

From this the derivative o@o can be easily worked out.

For simplicity, we assume here exponentially decaying
correlations:

a(t,s)=%e‘7“‘s|.

(A10)

The evolution equations for tr@n(t,vl, ...,0,) read
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—O,(t,vg, ... vp) go(t)=J a(t,s)ds, (BS)
at 0
V4 — t
= EOn(t,t,vl, e n)—YOa(t,ug, .0 g1(t)= foa(t,s)(t—s)ds, (B6)
1 n
+[—iH,On(t,v1, ... w)]— = t(s
[=iH On(tos, . wn)l= 20 2 9x(1)= f f at,s)a(s-u)(t-s)dsdy  (B7)
0Jo
X[LTOk(t,UPn(l), C ,Upn(k)),
1t
. _ - _o\2
Xon—k(tiUPn(k+1)! L !UPn(n))]_(n+ 1)LT gs(t)= Zfoa’(t,s)(t s)<ds, (B8)
t _
X t,s)O t,S,v1, ...0p)ds, All 1t
foa( JOn+a(t, 8,02 Un) (ALD g4(t)=§f a(t,s)a(s,s)(t—s)%ds, (B9)
0
where n6_n(t,t,v2, o ,vn)z[L,En,l(t,vz, ...un] for

n=1 andO,(Opv4, ..., v,) =0 for all n.
Equations(A5) and(A11) are very useful in the determi-

nation of the operato®(t,s,z).

APPENDIX B: SECOND-ORDER QSD EQUATION

In this appendix, we present the second-order non-

Markovian QSD equation.

By using the functional expansion (@(t,s,z) and the
consistency conditiofSee Appendix A we can work out an

expansion of the operat@(t,s,z) at points to any desired
order. In what follows, for simplicity, we only give the

second-order expansion of the operafhy(t,s), which con-
tains no nonlocal noise

Oo(s,9)=L, (B1)

9100(s,8)=—i[H,L]—go(s)[L,L]L, (B2)

930(s,8)=—[H,[H,L]]+ige(s)[H,[LT,L]L]
—a(s,s)[LT,L]L+igo(s)[LT[H,L],L]
+g3(s)[LTLT,LIL, L]+igo(s)[LL,[H,L]]

+g3(s)[LTL,[LT,L]L]. (B3)

1t (s
g5(t)=Efofoa(t,s)a(s—u)(t—s)zdu ds (B10)

ge(t)= fotf:J:a(t,s)a(s,u)a(s,v)(t—s)2dv duds
(B11)

Then the second-order QSD equations can be obtained by

substituting Eq.(B4) into Eq. (2.12. Notice that, in prin-

ciple, we could obtain any order approximate QSD equations
by directly using the consistency condiiton and the func-

tional expansion 0D(t,s,z).

APPENDIX C: DERIVATION OF THE RELATIONS
AND (4.9

4.3

In this appendix, we shall prove the relatio@3) and
(4.4). We take Eq(4.3), for instance,
P,
ozt |

Suppose the complex Gaussian measure takes the form

M[Ptzt]:f ds M[zz5 M (CD

du, (C2

P(Z)d,u=NeX|:{—f daj drziz.B(o,7)

Note that all derivatives above are kinds of approximations,
in particular, the second-order derivative might contain more,nereN is the normalization constant af{o, 7) is a kernel

terms. Taking the first three terms of the expang&i), and
making the approximatio®(t,s,z)~Oy(t,s), one obtains

Oo(t) =go(t)L—igy()[H,L]—go()[ LT LIL
—ga(O[H,[H,L]]-ga(D[LT,L]L
+igs(t)([H,[LT,LIL]+[LTH,L],L]
+[LTL,[H,LTD +ge(t)([LTTLT,LIL, L]

+[LTL,[LT,LILD), (B4)

where the coefficients are as follows:

reciprocal to the correlation functioa(\,7), which is de-
fined by
M[z{f zs]= a(t,s). (C3

Note that the correlation functiom(t,s) satisfies«(t,s)
=a(s,t)*. We then have the following relation:

f a(t,7)* B(7,5)d7=8(1—5s). (C4

Now, we consider the right-hand side of EG.1):
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5P, Here, integration by parts has been used from the second line
f ds M[z;z5 M —] to the third line. Note that
8z}
é
5P, " P(z)=—f drz.8(s,7)P(2). (Co)
=Nf d,u,f dsa(t,s)* 5—*P(Z) 0zg
z

S

Inserting Eq.(C6) into Eqg. (C5), changing the integration
S order fds and fd, and using the relatiofC4), we obtain
=—Nf d,uf dsa(t,s)* P,—P(2). (CH Eq. (C1). The relation(4.4) can be obtained by taking the
*
0zZg Hermitian conjugate of Eq(C1).
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