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Non-Markovian quantum-state diffusion: Perturbation approach
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We present a perturbation theory for non-Markovian quantum-state diffusion~QSD!, the theory of diffusive
quantum trajectories for open systems in a bosonic environment@Phys. Rev. A58, 1699~1998!#. We establish
a systematic expansion in the ratio between the environmental correlation time and the typical system time
scale. The leading order recovers the Markov theory, so here we concentrate on the next-order correction
corresponding to first-order non-Markovian master equations. These perturbative equations greatly simplify the
general non-Markovian QSD approach, and allow for efficient numerical simulations beyond the Markov
approximation. Furthermore, we show that each perturbative scheme for QSD naturally gives rise to a pertur-
bative scheme for the master equation which we study in some detail. Analytical and numerical examples are
presented, including the quantum Brownian motion model.@S1050-2947~99!03307-7#

PACS number~s!: 03.65.Bz, 05.40.2a, 42.50.Lc
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I. INTRODUCTION

Recently, a non-Markovian quantum trajectory theory
named non-Markovian quantum-state diffusion~QSD!— that
describes the dynamics of a quantum ‘‘system’’ coupled
an ‘‘environment’’ of harmonic oscillators has been pr
sented@1#. Many outstanding new experimental advanc
can be properly studied only if non-Markovian effects a
taken into account. These include experiments with highQ
microwave cavities, quantum optics in materials with a ph
tonic band gap, or output coupling from a Bose-Einstein c
densate to create an atom laser@2–6#, to name a few. Also,
the important phenomenon of decoherence, which ta
place on time scales that can be of the same order as
correlation time of the environment, requires theories bey
the standard Markov approximation. Further motivation
more fundamental questions about the proper descriptio
individual open systems in quantum mechanics. Indeed,
infamous problem of the ‘‘Heisenberg cut’’~understood here
as the cut between the system and the environment! is inti-
mately related to the non-Markovian evolution of the syst
when the environment is ignored.

In the Markov regime, quantum trajectory approaches
ing stochastic Schro¨dinger equations for pure states of th
system play an important role in quantum optics, particula
for numerical simulations@7–13#. These Markov models
also have many appealing features from a theoretical
conceptual point of view@8–10,14–16#. It is therefore desir-
able to generalize the powerful quantum trajectory appro
from the Markov regime to the more general case of n
Markovian evolution. Several attempts have been made
cently from different perspectives. The linear non-Markovi
unraveling underlying our theory was developed in@18–20#
—see also@17# for a related attempt. Alternatively, a non
Markovian theory based on pseudomodes and a n
Markovian jump approach have been developed rece
@21–25#.

In Ref. @1#, the ultimate nonlinear non-Markovian QS
PRA 601050-2947/99/60~1!/91~13!/$15.00
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equation relevant to this paper has been derived directly f
a microscopic model. In this framework, the reduced den
matrix of the subsystem obtained by tracing over the en
ronmental degrees of freedom is unraveled into an ensem
of continuous trajectories which correspond to the vario
realizations of the driving complex Gaussian process. N
Markovian QSD has been applied to interesting and ph
cally relevant models where both computational power a
many new features have been demonstrated@1#. However,
many issues are still to be addressed. In particular, fur
applications of non-Markovian QSD to a variety of realis
problems are desirable. In addition, the theoretical impli
tions of this new approach remain to be explored. Clearly
full exploration of non-Markovian QSD is an extensiv
project. The purpose of the present paper is a step tow
this extensive project.

So far, although being a general theory, it is difficult
implement non-Markovian QSD directly on a computer in
generality. It has been applied to a variety of model proble
in @1#. However, in this paper we show how the no
Markovian QSD approach allows us to find a systematic
pansion of the reduced system dynamics in powers of
ratio between the environmental correlation time and typi
system time scales. Thus, in order for non-Markovian Q
to have more applications, we establish a useful and pra
cally relevant perturbative approach that is directly amena
to computer simulations. Our first and most important mo
vation for this paper is to present a systematic perturba
approach for non-Markovian QSD around the Markov lim
This perturbative ‘‘post-Markovian’’ QSD scheme is a tim
dependent approach which preserves the non-Markovian
ture of the problem in each order of approximation.

The second purpose of the present paper is to establish
relationship between the non-Markovian QSD equation a
non-Markovian master equations. Such a relation is w
known in the Markov regime, where one generally sta
from the standard Lindblad Markov master equation to re
off the Markov QSD equation@9,10#. For non-Markovian
91 ©1999 The American Physical Society
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92 PRA 60YU, DIÓSI, GISIN, AND STRUNZ
dynamics, closed master equations are rare and, thus
direct link between non-Markovian QSD and the correspo
ing master equation is of great interest. In order to obtain
master equation from its non-Markovian QSD counterp
one has to take the ensemble mean over the stochastic
cess driving the QSD trajectories analytically~see also Ref.
@1#!. In general, this is only possible for simple models.
our pertubative scheme, however, we are able to derive m
ter equations directly from non-Markovian QSD which tur
out to be useful from both theoretical and practical points
view. It is important to note that a master equation derived
this way will necessarily preserve the positivity because s
density matrices can be decomposed into pure states a
times. We thus also address the problem of how to ens
positivity for non-Markovian master equations—a difficu
subject in itself.

The third motivation of the paper, therefore, is to pres
a perturbation approach to non-Markovian master equati
Using an example, we show that the resultant approxim
master equation preserves positivity. We also analyze
approximations leading to the Caldeira-Leggett model@26#
—which is known to violate positivity for certain initial con
ditions on short time scales.

The organization of this paper is as follows. In Sec. II w
briefly review the basic concepts and equations of n
Markovian QSD. The aim of this section is twofold: first,
act as a brief introduction for readers not familiar with t
subject; second, to serve as the natural starting point of
new development. In Sec. III we develop the formal tim
dependent perturbation theory for non-Markovian QSD.
Sec. IV, we present a systematic method of deriving the m
ter equation from non-Markovian QSD. We show that a p
turbative QSD scheme naturally leads to a perturba
scheme for the master equation. We will apply the appro
mation schemes developed in this paper to some exampl
Sec. V. In Sec. VI we take quantum Brownian motion a
typical model to illustrate the perturbative schemes based
QSD for the master equation. We conclude the paper in S
VII, while some useful material can be found in the Appe
dixes.

II. NON-MARKOVIAN QUANTUM-STATE DIFFUSION

Both Markov and non-Markovian QSD are based on t
related stochastic dynamical equations, a linear one an
nonlinear one. The linear one is mathematically simp
However, it does not preserve the norm of the state vec
which in general tends to zero. Hence, only the nonlin
equation, which preserves the norm, can be interpreted
distribution of time-dependent pure states with given pr
abilities ~i.e., as an unraveling!: the density matrix is then
given by the ensemble mean of the pure states, at all tim
Moreover, only this nonlinear equation is suitable for n
merical simulation@1,20#. Nevertheless, we start our prese
tation with the simpler linear equation, leaving the nonline
one for the following subsection.

A. Linear non-Markovian quantum-state diffusion

Our quantum trajectory theory is based on a stand
model of open system dynamics: a quantum system inter
ing with a bosonic environment with total Hamiltonian
the
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H tot5H1(
l

gl~Lal
†1L†al!1(

l
vlal

†al , ~2.1!

whereH is the Hamiltonian of the system of interest andL, a
system operator coupling to environment, is called here
Lindbald operator~as it plays the role of a ‘‘Lindblad opera
tor’’ in the Markov limit!. The linear non-Markovian QSD
equation@18–20# unravelling the reduced dynamics of mod
~2.1! takes the form1

d

dt
c t52 iHc t1Lztc t2L†E

0

t

a~ t,s!
dc t

dzs
ds, ~2.2!

wherezt is a colored complex Gaussian process with z
mean and correlations

M @zt* zs#5a~ t,s!, M @ztzs#50. ~2.3!

The bath correlation functiona(t,s) in Eq. ~2.2! has to be a
positive Hermitian kernel:a(t,s)5a(s,t)* . This non-
Markovian unraveling is ensured to be consistent with
reduced density operator approach since the ensemble m
of the solutions of Eq.~2.2! over the noisezt will reproduce
the density matrix of the system,

r t[Trenv~e2 iH tottuc0&^c0u ^ r0
enveiH tott!

5M @ uc t~z!&^c t~z!u#. ~2.4!

Here M @ # denotes theensemble averageover the classical
driving noisezt .

From Eq.~2.2!, we see clearly that the evolution of th
statec t at t depends on the whole history of the noisez.
Equation~2.2! can be written in the more appealing form

d

dt
c t52 iHc t1Lztc t2L†E

0

t

a~ t,s!Ô~ t,s,z!dsc t

~2.5!

by defining an operator2 Ô(t,s,z) in Eq. ~2.5! such that

Ô~ t,s,z!c t[
dc t

dzs
. ~2.6!

It turns out thatÔ(s,s,z)5L. The t dependence of the op
eratorÔ(t,s,z) can be determined by the consistency con
tion

d

dt

d

dzs
c t5

d

dzs

d

dt
c t ~2.7!

together with the linear non-Markovian QSD equation~2.5!.
The appeal of Eq.~2.5! @or Eq. ~2.2!# is its linearity,

which is often useful in the mathematical analysis of o

1For simplicity, we choose\51 throughout the paper.
2The notationÔ(t,s,z), rather thanÔ(t,s,zt), reflects that the

operatorÔ(t,s,z) contains the noisez in a nonlocal way, that is, it
might be dependent on the whole histories of the noise$zs :0<s
<t%.
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PRA 60 93NON-MARKOVIAN QUANTUM-STATE DIFFUSION: . . .
QSD approach~see Sec. IV!. Its use as a simulation tool i
severely undermined since, for an infinite heat bath, the n
uuc tuu of the solutions of Eq.~2.2! goes to zero with prob-
ability 1 and to infinity with probability zero. For this reaso
an unraveling in terms of normalized states is crucial
non-Markovian QSD to be truly useful for numerical sim
lations.

B. Nonlinear non-Markovian quantum-state diffusion

The non-Markovian QSD unraveling based on normaliz
states

c̃ t~z!5
c t~z!

uuc t~z!uu
~2.8!

has been derived recently@1# from the linear non-Markovian
QSD equation~2.5! by making use of a Girsanov transfo
mation of the noise. We get

d

dt
c̃ t52 iH c̃ t1~L2^L& t!c̃ tz̃t

2E
0

t

a~ t,s!@~L†2^L†& t!Ô~ t,s,z̃!

2^~L†2^L†& t!Ô~ t,s,z̃!& t#ds c̃ t , ~2.9!

wherez̃t is the shifted noise,

z̃t5zt1E
0

t

a~ t,s!* ^L†&sds, ~2.10!

and ^L& t[^c̃ tuLuc̃ t& denotes thequantum average. Again
here, theensemble averageof the solution to Eq.~2.9! re-
covers the density matrix of the system,

r t5M @ uc̃ t~z!&^c̃ t~z!u#. ~2.11!

This nonlinear non-Markovian QSD equation can be rew
ten in a more compact form:

d

dt
c̃ t52 iH c̃ t1D t~L !c̃ tz̃t2D t~L†!Ō~ t,z̃!c̃ t

1^D t~L†!Ō~ t,z̃!& tc̃ t , ~2.12!

whereD t(A)[A2^A& t for any operatorA and

Ō~ t,z!5E
0

t

a~ t,s!Ô~ t,s,z!ds. ~2.13!

Equation~2.9! @or Eq.~2.12!# is the fundamental equation o
non-Markovian QSD,3 and is our starting point for the per
turbative approach in Sec. III. Numerical simulations of no
Markovian open system dynamics using this equation can

3From now on, unless otherwise emphasized, non-Markov
QSD refers to Eq.~2.9! or Eq. ~2.12!, not to the linear equation
~2.2!.
m

r

d

-

-
e

found in Ref.@1#. Note that the non-Markovian QSD equa
tion ~2.9! reduced to the standard Markov QSD equation@10#
for a(t,s)→d(t2s).

To conclude this section, we would like to make two r
marks about the non-Markovian QSD approach. First,
derivation of both the linear and nonlinear non-Markovi
QSD equations are based on the assumptions that the
ronment is bosonic, and that initially the state of the to
system1environment is factorabler05r0

S
^ r0

env , where the
initial state of the systemr0

S5uc0&^c0u is independent of the
noise zt . In fact, if LÞL†, Eq. ~2.9! is valid for a zero
temperature environment only and the equation for fin
temperature gets two additional terms, see@1#. Second, since
Eq. ~2.2! and hence Eq.~2.9! are derived directly from the
microscopic model, these QSD equations can be read
automatically from the total Hamiltonian~2.1!. This suggests
that the non-Markovian QSD approach also represent
brand new way to derive the quantum master equation
open quantum systems~see Sec. IV!.

III. TIME-DEPENDENT PERTURBATION THEORY

The non-Markovian QSD approach offers a very prom
ing method to handle quantum systems whenever n
Markovian effects are relevant. However, many interest
problems which arise in open quantum systems are such
the operatorÔ(t,s,z) appearing in Eq.~2.9! cannot be deter-
mined exactly. Moreover, the nonlocal noise contained in
fundamental equation~2.12! might cause difficulties in nu-
merical simulations. In this section, we aim for a form
perturbation scheme for the non-Markovian QSD equat
~2.9!. Applications of the general perturbative method dev
oped here will be presented in Sec. V.

A. First-order approximation of the operator Ô„t,s,z…

We need to know the operatorÔ(t,s,z) from Eq. ~2.6! in
order to solve the non-Markovian QSD equation~2.9! on a
computer. Notice thatÔ enters Eq.~2.9! under the memory
integral*0

t a(t,s)Ô(t,s,z̃) ds only. Therefore, if the correla-
tion time of the environment is not too long, onlys values in
the vicinity of the upper integration range are relevant, a
thus we consider the expansion of the operatorÔ(t,s,z) in
Eq. ~2.9! in powers of (t2s),

Ô~ t,s,z!5Ô~s,s,z!1
]Ô~ t,s,z!

]t
U

t5s

~ t2s!

1
1

2

]2Ô~ t,s,z!

]t2 U
t5s

~ t2s!21•••. ~3.1!

Substituting Eq.~3.1! into Eq. ~2.9! or Eq. ~2.12!, we get a
hierarchy of approximate QSD equations by truncating
above expansion. The validity of the corresponding appro
mation depends on the environment correlation timet deter-
mined by the correlation functiona(t,s). In fact, it turns out
that Ô changes onsystemtime scales as a function of (t
2s) and, thus, the expansion~3.1! corresponds to a system
atic expansion of the non-Markovian QSD equation in po

n
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94 PRA 60YU, DIÓSI, GISIN, AND STRUNZ
ers of the numbervt, wherev is a typical ‘‘system’’ fre-
quency and t the environmental correlation time. Fo
example, the zeroth-order term leads to the standard Ma
QSD, whent→0. The first-order term is the most importa
correction to the Markov dynamics. Therefore, in what f
lows we will work out the approximation up to the first ord
in some detail.

By using the consistency condition~2.7!, one can work
out the following expressions for the operatorÔ(t,s,z) at
time point t5s, without knowing its explicit form~for de-
tails, see Appendix A!:

Ô~s,s,z!5L, ~3.2!

]Ô~ t,s,z!

]t
U

t5s

52 i @H,L#2E
0

s

a~s,u!du@L†,L#L,

~3.3!

whereH is the Hamiltonian andL is the Lindblad operator
as specified in the preceding section. Now, we are in a p
tion to write out the non-Markovian QSD equation up to t
first order. Indeed, the first two terms in the expansion~3.1!,
substituted, respectively, by Eqs.~3.2! and ~3.3!, yield Ō(t)
in Eq. ~2.13! in the following form:

Ō~ t !5g0~ t !L2g1~ t !i @H,L#2g2~ t !@L†,L#L, ~3.4!

where

g0~ t !5E
0

t

a~ t,s!ds, ~3.5!

g1~ t !5E
0

t

a~ t,s!~ t2s!ds, ~3.6!

g2~ t !5E
0

tE
0

s

a~ t,s!a~s,u!~ t2s!du ds. ~3.7!

Note thatg0 is of the order 1, yetg1 andg2 are of the order
of the environmental correlation timet. Substituting Eq.
~3.4! into Eq.~2.12!, the first-order non-Markovian nonlinea
QSD equation is obtained:

d

dt
c̃ t52 iH c̃ t1D t~L !c̃ tz̃t

2g0~ t !@D t~L†!L2^D t~L†!L& t#c̃ t

1 ig1~ t !@D t~L†!@H,L#2^D t~L†!@H,L#& t#c̃ t

1g2~ t !@D t~L†!@L†,L#L

2^D t~L†!@L†,L#L& t#c̃ t , ~3.8!

where z̃t is the shifted noise,D t(L)5L2^L& t , and ^L& t

5^c̃ tuLuc̃ t& is the quantum expectation value.
The HamiltonianH defines a typical system frequencyv;

the combinationL†L defines a typical system relaxation ra
G. We thus see that the zeroth-order term in Eq.~3.4! gives
rise to a term of the orderG @second line in Eq.~3.8!#,
whereas the two first-order terms in Eq.~3.4! lead to correc-
ov

i-

tions which are smaller by a factorvt or Gt, respectively
@third and fourth lines in Eq.~3.8#, where t is again the
environment correlation time. Therefore, we expect Eq.~3.8!
to be valid for non-Markovian situations where the enviro
mental correlation time may be finite but no larger than ty
cal system time scales. The Markov case emerges fort→0,
where the first-order correction becomes negligible and o
the zeroth-order term remains. Then Eq.~3.8! reduces to the
standard Markov QSD equation fort.0.

We also see that non-Markovian properties are encode
the time-dependent coefficientsgi(t), which change on the
very fast environmental correlation time scalet. The absence
of the noisez in the first-order expansion~3.4! is remarkable;
the resulting first-order QSD equation~3.8! hence contains
only local noisezt @higher-order expansions contain th
noise, consequently Eq.~3.8! will also contain the noisez in
a nonlocal way#. Note that the approximate non-Markovia
QSD equation~3.8! still preserves the norm of the wav
function. Equation~3.8! is the main result of this section. A
stated before, applicability of non-Markovian QSD lies in t
determination of the operatorÔ(t,s,z). As we have already
pointed out, the difficulties in handling non-Markovian u
ravelings are often the nonlocal noisez appearing either in
the functional derivative@see Eq.~2.2!# or in the integrand
operatorÔ(t,s,z) @see Eqs.~2.5! and~2.9!#. We see that the
above approximate QSD equation greatly simplifies the n
Markovian QSD equation~2.12!.

In addition, Eq.~3.8! is explicitly written in terms of the
Hamiltonian of the systemH, the Lindblad operatorL, and
their various commutators. All of these can be obtained
tomatically once the physical model is specified. The o
work left is to calculate the coefficientsgi(t) ( i 50,1,2)
from the environment correlation functiona(t,s).

After working out the formal perturbative QSD equatio
it is useful to see the concrete form of the coefficientsgi(t).
For simplicity, we assume here that the system is driven
Ornstein-Uhlenbeck noise, characterized by the exponen
correlation function

a~ t,s!5
g

2
e2gut2su, ~3.9!

where g215t defines the finite environmental memory
correlation time. Note that this corresponds to a Lorentz
spectrum. In the limitg→`, the Ornstein-Uhlenbeck nois
reduces to simple complex white noise:

a~ t,s!5d~ t2s!. ~3.10!

In the case of the Ornstein-Uhlenbeck process, the co
cientsgi(t) can be easily obtained from Eqs.~3.5!–~3.7!:

g0~ t !5
1

2
~12e2gt!, ~3.11!

g1~ t !5
1

2g
~12e2gt2gte2gt!, ~3.12!

g2~ t !5
1

4g S 12e2gt2gte2gt2
1

2
g2t2e2gtD . ~3.13!
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In the long-time limitt@t, we see that the coefficients of th
non-Markovian QSD ~3.8! become constant:g051/2,g1
51/2g,g251/4g, which also confirms thatg0 is of the order
1 whereasg1 and g2 are of the order of the environment
correlation timet5g21.

In the Markov limit g→`, g0(t)→1/2 andg1(t),g2(t)
→0 for t.0 and the non-Markovian QSD equation~3.8!
reduces to the standard Markov QSD equation@10# ~note
here we write it in the Stratonovich form@27,28#!:

d

dt
c̃ t52 iH c̃ t1D t~L !c̃ ts~zt1^L†& t!2

1

2
D t~L†L !c̃ t

~3.14!

with zt the standard complex white noise, as expected.
Our formal perturbation approach can be carried out

any desired order of approximation.~For the details of the
second-order expansion and the coefficients, see Appe
B.! It is important to note, however, that the higher-ord
derivatives ofÔ(t,s,z) at t5s may contain the noisez.

Since the linear non-Markovian QSD equation~2.2! is
often simpler to use in deriving the corresponding mas
equation~see Sec. IV!, we also give its first-order approxi
mation:

ċ t52 iHc t1Lc tzt2g0~ t !L†Lc t1 ig1~ t !L†@H,L#c t

1g2~ t !L†@L†,L#Lc t , ~3.15!

where the coefficientsg0(t),g1(t),g2(t) are given by Eqs.
~3.5!, ~3.6!, and~3.7!.

B. Functional expansion ofÔ„t,s,z…

In this subsection, we consider another kind of pertur
tive expansion, the functional expansion of the opera
Ô(t,s,z) in terms of noisezv :

Ô~ t,s,z!5Ô0~ t,s!1E
0

t

Ô1~ t,s,v !zvdv

1E
0

tE
0

t

Ô2~ t,s,v1 ,v2!zv1
zv2

dv1dv21•••

1E
0

t

•••E
0

t

Ôn~ t,s,v1 , . . . ,vn!

3zv1
•••zvn

dv1•••dvn1•••, ~3.16!

where the operatorsÔn(t,s,v1 , . . . ,vn) are independent o
the noisez and are symmetric in theirn last variables@e.g.,
Ô2(t,s,v1 ,v2)5Ô2(t,s,v2 ,v1)]. The initial condition is
Ô(t,t,z)5L. The expansion~3.16! takes into account the
generally nonlocal dependence of the operatorÔ(t,s,z) on
the noisez.

From the consistency condition~2.7! and the QSD equa
tion ~2.2!, we get a hierarchy of equations for the operat
Ôn(t,s,v1 , . . . ,vn) ~see Appendix A!. Of particular interest
is the zeroth-order termÔ0(t,s), which satisfies the follow-
ing equation~ignoring the first-order term!:
o

ix
r

r

-
r

s

]

]t
Ô0~ t,s!5@2 iH ,Ô0~ t,s!#2@L†Ō0~ t !,Ô0~ t,s!#.

~3.17!

For the approximationÔ(t,s,z)'Ô0(t,s), the approximate
non-Markovain QSD equation then takes form:

d

dt
c̃ t52 iH c̃ t1D t~L !c̃ tz̃t2D t~L†!Ō0~ t !c̃ t

1^D t~L†!Ō0~ t !& tc̃ t . ~3.18!

The justification of this approximation is that whenever t
open quantum system deviates slightly from the Markov
namics, then the first termÔ0(t,s) of the expansion
~3.16! plays the dominant role. This can be easily se
from the fact that all Ōn(t,v1 , . . . ,vn)
[*0

t a(t,s)Ôn(t,s,v1 , . . . ,vn)ds,n>1 go to zero in the

Markov limit: a(t,s)→d(t2s), except the first termŌ0(t)
[*0

t a(t,s)Ô0(t,s)ds, which goes to1
2 L. Physically this can

be understood as follows. In the Markov case, the qua
coupled from the system to the environment never co
back to the system, whereas in the non-Markovian case,
emitted quanta will re-couple from the environment to t
system.

Similarly, one can build the higher-order approximatio
which usually contain the noisez. One obtains then a serie
of approximate QSD equations. The master equation co
sponding to the zeroth-order approximation~3.18! is derived
in the next section.

IV. NON-MARKOVIAN QSD VERSUS NON-MARKOVIAN
MASTER EQUATION

In this section, we discuss how to derive the master eq
tion from the non-Markovian QSD equation. Our motiv
tions are as follows. First, the master equation approach
a long tradition and is fundamental in open quantum sys
dynamics, and the reduced density operator contains
mean values of the ‘‘system’’ that can be directly observ
and measured. Second, although it is clear in principle
each perturbative scheme for non-Markovian QSD gives
to a perturbative scheme for the non-Markovian master eq
tion, it is very difficult in practice to carry out this program
without a systematic way to derive the non-Markovian m
ter equation from its QSD counterpart. The aim of this s
tion is to show how to derive the quantum master equat
directly from the non-Markovian QSD. Based on this resu
we establish explicitly the relation between the perturbat
QSD equations and perturbative master equations.

A. General master equation

The starting point of the derivation of the general mas
equation is the unnormalized projection operatorPt ,

Pt5uc t~z!&^c t~z!u. ~4.1!

Recall that the reduced density operator can be reprodu
by taking the statistical means over the noise:r t5M @Pt#
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5M@uct(z)&^ct(z)u#. Accordingly, the temporal evolution
equation forPt can then be obtained from Eq.~2.5!:

d

dt
Pt52 i @H,Pt#1LPtzt1PtL

†zt*

2L†E
0

t

a~ t,s!Ô~ t,s,z!ds Pt

2PtE
0

t

a~ t,s!* Ô~ t,s,z!†ds L. ~4.2!

The above equation is, of course, a stochastic differen
equation with time-dependent coefficients. Accordingly,
master equation corresponding to Eq.~2.2! may be obtained
by taking statistical mean values of Eq.~4.2!.

To this end, we note that for any complex Gaussian no
zt , the following relations hold~see Appendix C!:

M @Ptzt#5E
0

t

ds M@ztzs* #M F dPt

dzs*
G , ~4.3!

M @Ptzt* #5E
0

t

ds M@zt* zs#M FdPt

dzs
G . ~4.4!

From Eqs.~4.3! and ~4.4!, the following identities are ob-
tained:

M @LPtzt#5LE
0

t

a~ t,s!* M @PtÔ~ t,s,z!†#ds, ~4.5!

M @PtL
†zt* #5E

0

t

a~ t,s!M @Ô~ t,s,z!Pt#ds L†. ~4.6!

Here we used the following relations:

M F d

dzs
PtG5M F d

dzs
uc t&^c tuG5M @Ô~ t,s,z!Pt#, ~4.7!

M F d

dzs*
PtG5M F uc t&

d

dzs*
^c tuG5M @PtÔ~ t,s,z!†#,

~4.8!

and we take advantage of the definition of theÔ operator
~2.6!. The validity of the above two identities~4.7! and~4.8!
is ensured by the fact that the solutionc t of Eq. ~2.2! is an
analytic function ofz and is thus independent ofz* . Accord-
ingly, duc t&/dzt* 50, d^c tu/dzt50.

Hence, using Eqs.~4.5! and ~4.6!, the exact non-
Markovian master equation corresponding to non-Markov
QSD ~2.2! can be obtained:

d

dt
r t52 i @H,r t#1†L,M @PtŌ~ t,z!†#‡2†L†,M @Ō~ t,z!Pt#‡,

~4.9!

where as beforeM @ # stands for the ensemble average, a
Ō(t,z) is defined in Eq.~2.13!.

Equation~4.9! is the exact equation on which our pertu
bation approach is based. As an evolution equation,
above master equation does not look very nice since the
al
e

e

n

d

e
st

two terms appearing in the equation have not yet been w
ten in terms ofr. It seems quite difficult to write this equa
tion into a closed evolution equation in full generality, if n
impossible. We shall see, however, that in many interes
and physically relevant situations, a closed form for th
equation can be found~see below!. Notably, the use of the
relations~4.3! and ~4.4! can make a tremendous simplifica
tion in deriving the master equation of an open quant
system from its QSD counterpart. In fact, it enables us to fi
out an exact or an approximate non-Markovian master eq
tion by directly using the techniques of a stochastic proce

The non-Markovian master equation~4.9!, by design, will
always preserve the positivity, trace, and Hermiticity.

B. Approximate master equations

Since the master equation~4.9! cannot, in general, be
written in a closed form, some kind of approximation has
be made to determine the operatorÔ(t,s,z). The Markov
approximation emerges for a vanishing environment corre
tion time, a(t,s)5d(t2s). In this case, from Eq.~3.4!
Ō(t,z)5 1

2 L, and Eq.~4.9! reduces to the Markov Lindblad
master equation,

d

dt
r t52 i @H,r t#1Lr tL

†2
1

2
$LL†,r t%. ~4.10!

where $ , % denotes the anticommutator. Another interesti
case is when the dependence of the operatorŌ(t,z) on the
noise zt is negligible, that is,Ō(t,z)'Ō0(t). Recall from
Eq. ~3.16! that this is indeed the case when the dynamics
not far from Markov or the driving noise is very small. Un
der this approximation, the master equation takes the follo
ing simple form:

d

dt
r t52 i @H,r t#1@L,r tŌ0~ t !†#1@Ō0~ t !r t ,L†#.

~4.11!

The notationŌ0(t) is the same as before@see Eqs.~3.16! and
~2.13!#. The master equation~4.11! will serve as a good ap
proximation to the exact non-Markovian master equat
~4.9! in many situations of interest. In particular, if the o
eratorÔ(t,s,z) is independent of noisezt , then Eq.~4.11!
becomes exact. Interestingly, there are many physically
evant examples that satisfy this condition@1#.

More importantly for this paper, this condition is alway
satisfied in the first-order perturbative approximation~3.4!
developed in Sec. III A. Then the master equation~4.9! takes
the following form:

d

dt
r t52 i @H,r t#1@g0~ t !1g0* ~ t !#Lr tL

†2g0~ t !L†Lr t

2g0* ~ t !r tL
†L1 ig1~ t !†L†,@H,L#r t‡

2 ig1* ~ t !†r t@L†,H#,L‡1g2~ t !†L†,@L†,L#Lr t‡

1g2* ~ t !†r tL
†@L†,L#,L‡. ~4.12!

This master equation is the main result of this subsection
provides a systematic evolution for first-order no
Markovian systems. Hence it could be called the ‘‘po
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Markov’’ master equation. As for the first-order QSD equ
tion ~3.8!, g1(t) andg2(t) terms are smaller by a factorvt
or Gt compared to the first line~recall thatv is the typical
‘‘system’’ frequency determined byH, G is a typical ‘‘sys-
tem’’ relaxation time scale determined byL†L, andt is the
environmental correlation time!.

Note that this ‘‘post-Markov’’ equation in general re
mains non-Markovian even wheng1(t)50,g2(t)50, be-
cause of theg0(t) term. However, for long timeg0(t) tends
to a constant.

Equations~3.8! and ~4.12! will be applied to some ex-
amples in Sec. V. In addition, Sec. VI presents a perturba
analysis of the quantum Brownian motion model.

Finally, it should be noted that we have not addres
issues such as mathematical conditions for the converg
of the expansions~3.1! and ~3.16!. Also, we are not able to
prove, in full generality, that Eq.~4.12! always yields a posi-
tive density operator. However, in this paper, we shall illu
trate in several examples that the resulting approximate Q
and master equations around the Markov limit~i.e., t is not
too large! are mathematically consistent. We will come ba
to these issues in future publications.

V. EXAMPLES AND APPLICATIONS

The perturbative approach developed in the previous
tions allows us to apply first-order non-Markovian QSD
any open quantum system once the Hamiltonian of the
tem H, the Lindblad operatorL, and the environment corre
lation functiona(t,s) are specified. All of these are dete
mined by the physical model itself, as illustrated in th
section using some typical models. For simplicity, we
sume that the complex processzt entering the non-
Markovian QSD equation~3.8! has a Lorentzian spectrum
i.e., is of the Ornstein-Uhlenbeck type with the correlati
function a(t,s)5(g/2)e2gut2su, whereg215t is the envi-
ronmental correlation time, unless otherwise stated.

A. Dissipative model

In this subsection, we consider a dissipative two-le
model characterized by

H5
v

2
sz , L5ls2 . ~5.1!

Since this model can be solved exactly@1#, we are able to
compare the perturbation approach with the exact n
Markovian QSD and master equations. Note that the mo
defines two ‘‘system’’ time scales through the parameters
v ~oscillation! andl2 ~damping!. Here we assume that the
are of the same order of magnitude.

The first-order non-Markovian QSD equation can be o
tained from Eq.~3.8!:

d

dt
c̃ t52 i

v

2
szc̃ t1l~s22^s2& t!c̃ tz̃t

2@l2g0~ t !1 il2vg1~ t !1l4g2~ t !#

3~s1s22^s1& ts22^s1s2& t1^s1& t^s2& t!c̃ t

~5.2!
-

n

d
ce

-
D

c-

s-

-

l

-
el
y

-

and the first-order non-Markovian master equation can
obtained from Eq.~4.12!:

d

dt
r t52 i

v

2
@sz ,r t#1l2g0~ t !~2s2r ts12$s1s2 ,r t%!

2 il2vg1~ t !@s1s2 ,r t#2l4g2~ t !$s1s2 ,r t%

12l4g2~ t !s2r ts1 , ~5.3!

whereg1(t) gives the time-dependent frequency shift. Th
the master equation is of the Lindblad form with tim
dependent coefficients. As seen in the next subsection,
property cannot be regarded as a generic feature of a
Markovian master equation. Note that the first-order mas
equation~5.3! respects the Hermiticity, normalization, an
positivity for any initial states and time scales. We can eas
identify the first-order non-Markovian correction terms
the orderv/g andl2/g in Eqs. ~5.2! and ~5.3!. We expect
these equations to be a good approximation for the ex
solution as long as terms of the order (v/g)2 and (l2/g)2

are negligible.
In Fig. 1, the average of̂sW & for v5l51 andg510 is

plotted. The results given by the perturbation QSD equat
over 2000 realizations~solid curve! are in remarkable agree
ment with the exact master equation~dotted curve!.

To illustrate the limits of the Markov approximation, Fig
2 presents the ensemble average^sx& for the first-order QSD
~solid curve! for the same parameters as Fig. 1 except for
memory timeg51, and compares this with the Markov ma
ter equation~dotted curve! and the exact master equatio
~dashed curve!. Clearly, the ensemble average ofsx over
1000 trajectories still gives a good approximation to the
act master equation. The result is fully in accordance w
our expectation as for relatively long memory times the M
kov approximation is no longer valid. It should be noted th
in general, the accuracy of the first-order QSD is also limi
to relatively short memory times, but not as severely as

FIG. 1. Ensemble average of the Bloch vector^sW & over 2000
trajectories of the first-order QSD~solid curve!, and by the exact
master equation~dotted curve! with HamiltonianH5(v/2)sz , L
5ls2 , anda(t,s)5(g/2)e2gut2su. Here we choosev5l51 and
g510. The initial state is chosen asuc0&5u2&1 i u1&.
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Markov approximation. Then the higher-order approxim
tions or an alternative expansion such as Eq.~3.16! should be
used.

B. Two-level model

Let us consider a driven two-level atomic system intera
ing with a dissipative environment. The Hamiltonian of t
system,H, and the Lindblad operator,L, which represents
the influence of the environment are given by

H5
v

2
sx , L5lsz , ~5.4!

respectively, where the parameterl is a coupling constant
For this model, it can be shown that the expansion~3.16! will
not terminate at any finite order. The application of the p
turbative approach is thus necessary. The first-order n
Markovian QSD equation can be readily obtained from E
~3.8!:

d

dt
c̃ t52 i

v

2
sxc̃ t1l~sz2^sz& t!c̃ tz̃t1l2g0~ t !~^sz& tsz

2^sz& t
2!c̃ t2vl2g1~ t !~ isx1^sz& tsy2 i ^sx& t

2^sz& t^sy& t!c̃ t , ~5.5!

where the coefficientsg0(t),g1(t) are given by Eqs.~3.11!
and ~3.12!, respectively.g0(t) terms in the above equatio
are expected from the Markov QSD picture.g1(t) terms rep-
resent the non-Markovian correction and are smaller b
factor vt5v/g.

Similarly, the first-order non-Markovian master equati
can be obtained directly from Eq.~4.12!:

FIG. 2. Ensemble average of^sx& over 1000 realizations by
using the first-order non-Markovian QSD~solid curve! for the same
model as Fig. 3. Here,g51, v5l51, and uc0&5u2&13u1&.
The dashed curve is the exact master equation for the same c
of parameters, and the dotted curve is the master equation in
Markov limit.
-

t-

-
n-
.

a

d

dt
r t52 i

v

2
@sx ,r t#12l2g0~ t !szr tsz22l2g0~ t !r t

2 il2vg1~ t !@sx ,r t#2l2vg1~ t !szr tsy

2l2vg1~ t !syr tsz . ~5.6!

There are some new features about the master equation~5.6!.
First, it is obviously not in the Lindblad form due to th
presence of the cross termszrsy and its conjugate. Second
the master equation derived in this way naturally preser
the Hermiticity, trace, and positivity. The preservation
trace and Hermiticity is obvious. It is known that positivit
of any two-dimensional density matrix is equivalent to t
condition uu^sW &uu<1, where^sW &5Tr(sW r) is the Bloch vec-
tor @29,30#. In Fig. 3 we have plotted the norms of the Bloc
vector using the time-dependent master equation~5.6! ~solid
curve! and the long-time limit master equation~LME! ~dot-
ted curve!, in which the coefficients of the master equatio
become constant:g0(t)51/2,g1(t)51/2g. Clearly, LME
loses positivity for some initial states at short time scal
whereas the time-dependent master equation~5.6! preserves
positivity at all times~providedt is not too large!. Note that
this simple model is the two-level analog of the Caldei
Leggett master equation studied in Sec. VI below.

We also solved numerically the first-order QSD equat
~5.5!. The average ofsW obtained through many realization
of Eq. ~5.5! ~solid line! and through the first-order maste
equation~5.6! ~dotted curve! is plotted in Fig. 4. Taking the
ensemble mean over 500 realizations, we see from Fig. 4
the first-order QSD equation is in good agreement with
first-order master equation, for the short memory timeg
510).

ice
he

FIG. 3. Illustration of the norm of the Bloch vector of a two
level system withH5(v/2)sx , L5lsz and exponentially decay
ing correlation functiona(t,s)5(g/2)e2gut2su. The initial state is
chosen as the excited stateuc0&5u1&. The parameters are chose
as v5l51, g5

1
2 . The solid curve represents the norm of th

Bloch vector by the master equation, and the dotted line repres
the norm of Bloch vector from the long-time limit master equati

~LME!. We seeuu^sW &uu.1 for the Bloch vector by LME for the
chosen initial state at short times. Accordingly, LME loses the po
tivity at short times for some initial states.
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VI. QUANTUM BROWNIAN MOTION: PERTURBATIVE
ANALYSIS

The transition from non-Markovian to Markov process
is an outstanding problem. It is debated how to take
correct Markov limit for a non-Markovian process. Certa
approximations of the exact dynamics can lead to ma
equations with bad properties such as nonpositivity. A no
rious example is the Caldeira-Leggett master equa
@26,31,32#, which may violate positivity of the density op
erator at short time scale@33–36#. Consequently, it is impos
sible to simulate friction in the manner of Caldeira-Legg
with stochastic Schro¨dinger equations. The aim of this se
tion is to apply the time-dependent perturbation approach
the master equation developed in the previous sections to
quantum Brownian motion~QBM! model @26,31,32,37#. In
particular, we shall show that our first-order non-Markovi
master equation recovers the Caldeira-Leggett master e
tion in the Fokker-Planck and long-time (t@t) limit. The
Hamiltonian of the system and the Lindblad operator are
follows:

H5
1

2
p21V~q!, L5q, ~6.1!

where we choose a unit mass particle moving in a gen
potentialV(q). For the sake of simplicity, we consider th
case of the Ohmic heat bath,I (v);v. The bath correlation
function is then given by

a~ t,s!5
h

pE0

L

dv vFcothS v

2kTD cos@v~ t2s!#

2 i sin@v~ t2s!#G , ~6.2!

FIG. 4. Ensemble average of^sW & over 500 realizations~solid
curve! for the same model as Fig. 3. Here we choosev5l51,
g510, and the initial stateuc0&5u2&1A3u1&. The dotted curve is
an average by the first-order master equation for the same choi
parameters.
e
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whereL is the cutoff frequency of the bath which characte
izes the correlation timet5L21 andh is the friction coef-
ficient.

From Eq.~3.4!, we get

Ō~ t !5g0~ t !q2g1~ t !p, ~6.3!

where the coefficientsg0(t),g1(t) are defined as before Eqs
~3.5! and ~3.6!.

The zeroth-order master equation can be obtained f
Eq. ~4.12! by settingg1(t)5g2(t)50:

d

dt
r t52 i @H,r t#2g0R~ t !†q,@q,r t#‡2 ig0I~ t !@q2,r t#.

~6.4!

This master equation preserves positivity for all times,
gardless of the initial states, as it is of the standard Lindb
form with time-dependent coefficients.~This is of course not
a generic feature for non-Markovian master equation!
However, Eq.~6.4! does not take the energy dissipation in
account. More relevant is therefore the first-order approxim
tion. The master equation in this case can be obtained f
Eq. ~4.12!,

d

dt
r t52 i @H,r t#2g0R~ t !†q,@q,r t#‡2 ig0I~ t !@q2,r t#

1g1R~ t !†q,@p,r t#‡1 ig1I~ t !@q,$p,r t%#, ~6.5!

where the coefficientsgiR(t),giI (t) ( i 50,1) are the real and
imaginary parts ofgi(t) ( i 50,1), respectively. The coeffi
cient g0R(t) induces diffusion and the decoherence in po
tion q while g0I(t) gives rise to a time-dependent frequen
shift. The coefficientg1R(t) is responsible for further diffu-
sion, and the last coefficientg1I(t) gives the friction. All of
these time-dependent coefficients vanish att50 due to the
assumption that initially the state of bath1system is factor-
able. In the special case whenV(q) is a quadratic potential
it is reassuring that our non-Markovian master equatio
~6.4! and ~6.5! coincide with the zeroth- and, respectivel
first-order expansions of the exact Hu-Paz-Zhang ma
equation@32#.

In the Ohmic case~6.2!, there exists a special high
temperature limit~Fokker-Planck limit! which results in a
Markov master equation. We take the high-temperature li
in such a way thatkT@L. For timest@t5L21, the time-
dependent coefficients in Eq.~6.5! approach constant value
and we get the Markov ‘‘Caldeira-Leggett’’ master equati
for Brownian motion:

d

dt
r t52 i @H8,r t#2 i

h

2
@q,$p,r t%#2hkT†q,@q,r t#‡,

~6.6!

whereH8 is the cutoff-dependent renormalized Hamiltonia
This is a Markov master equation with constant coefficien
It does not belong to the Lindblad class and it may viola
the positivity of the density operator. We mention casua
that a next-order high-temperature expansion improves
situation and replaces the Caldeira-Leggett equation~6.6! by
a proper Markov Lindblad equation@36#. This 1/T

of
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asymptotic expansion has nothing to do with the perturba
approach in our present work. Note that the Fokker-Pla
limit of the zeroth-order non-Markovian equation~6.4! does
not contain the dissipative~friction! term on the right-hand
side so it is a Lindblad master equation.

It is instructive to look at the nonpositivity of th
Caldeira-Leggett master equation~6.6! from the QSD point
of view. It is clear from the derivation that the QSD mas
equation ~6.5! differs from the standard Caldeira-Legg
master equation~6.6! for short times of the order of the en
vironmental correlation time. During this short time, an a
bitrary initial condition, which might lead to positivity vio
lation when propagated with the non-Lindblad mas
equation~6.6!, evolves towards an effective, modified ‘‘in
tial’’ density operator for the long time master equation~6.6!
@35#.

Our QSD master equation~6.5! is also a non-Lindblad
equation but with time-dependent coefficients. As in the c
of the spin model in Sec. V B, their time dependence c
assure the preservation of the state’s positivity. In the ma
equation~6.5!, the coefficientg1I(t) of the dissipative term is
zero att50 and its time derivative vanishes, too. The diff
sion coefficientg0R(t) also vanishes but its initial derivativ
is positive. Thus the initial phase of the evolution is dom
nated by diffusion. This mechanism may, as is well known
the exact model of Ref.@32#, guarantee the positivity of the
density matrix at short times as well as at later times wh
the dissipation enters. In contrast, in the Caldeira-Leg
master equation~6.6! the constant dissipative term will im
mediately violate the positivity of a distinguished class
initial density matrices.

In summary, we have presented the zeroth-order ma
equation ~6.4! and the first-order non-Markovian mast
equations~6.5! based on the QBM model. After an initia
‘‘slip’’ time, of the order of the environmental correlatio
time, we recover the standard QBM master equation.
note that both decoherent histories and environment-indu
decoherence are discussed using the QBM model, but ma
in the Markov regimes@15,38–40#. It would be interesting to
study these approaches with a non-Markovian master e
tion like Eq. ~6.5!. We shall discuss these topics elsewhe

VII. CONCLUSIONS

Non-Markovian QSD offers a brand new avenue to e
plore non-Markovian dynamics of open quantum syste
Such situations appear in a variety of practical problem
such as, e.g., materials with photonic band gaps or ou
coupling from a Bose-Einstein condensate. In this paper
present a systematic perturbation approach to n
Markovian QSD.

Our perturbation approach makes non-Markovian Q
more amenable to computer simulations. In particular, a
tailed analysis of first-order ‘‘post-Markov’’ QSD equation
and the corresponding ‘‘post-Markov’’ master equations
presented in Secs. III and IV. It is noteworthy that the
equations depend only on the system Hamiltonian, the Li
blad operator, and the environment correlation function. T
equations can thus be read off directly from the total sys
1environment Hamiltonian. We have illustrated the pert
e
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bation approach with some typical examples.
In the Markov regime, it is well-known that each Lind

blad master equation can be unraveled by either continu
or jump trajectories which decompose the density matrix i
pure states at all times. The reverse is also true; each stoc
tic unraveling uniquely yields a positive density matrix.
the present paper, we have shown that this corresponden
even more fruitful in the non-Markovian regime. We sho
explicitly how the non-Markovian QSD equation gives ri
to the corresponding non-Markovian master equation. As
most important application, we have shown that each per
bative QSD equation naturally gives rise to a perturbat
master equation. We have shown numerically that the res
ing master equation naturally respects the properties of
miticity, normalization, and, more importantly, positivity.

Admittedly, many issues remain to be solved in this su
ject. In this paper we have exclusively discussed the fi
order ‘‘post-Markov’’ perturbation theory for QSD withou
touching the perturbative QSD based on the functional
pansion~3.16!. It is important to note that these two expa
sions~3.1! and ~3.16! are of rather different physical mean
ing. The former expansion, on which we concentrate in t
paper, is an expansion in the environmental correlation ti
whereas the latter is the expansion for the ‘‘small noise
Clearly, the comparison of these two expansions will be
teresting. Another important project in the next step is
apply the non-Markovian QSD to some realistic physic
problems, such as non-Markovian atom-field interaction a
in particular, the superradiance near a photonic band gap
which the non-Markovian interaction is essential~e.g., see
@5#!. Also, it is known in the Markov regime@41,42# that
localization of quantum trajectories—typically in pha
space—is of great significance in accelerating the numer
simulations. Therefore, investigations into localization
non-Markovian QSD would be useful in both theoretical a
practical respects.
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APPENDIX A: PERTURBATION EXPANSION OF THE
OPERATOR Ô„t,s,z…

Let us consider the following expansion of the opera
Ô(t,s,z):



f
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Ô~ t,s,z!5Ô0~ t,s!1E
0

t

Ô1~ t,s,v !zvdv

1E
0

tE
0

t

Ô2~ t,s,v1 ,v2!zv1
zv2

dv1dv21•••

1E
0

t

•••E
0

t

Ôn~ t,s,v1 , . . . ,vn!
3zv1
•••zvn

dv1•••dvn1•••, ~A1!

where the operatorsÔn(t,s,v1 , . . . ,vn) are independent o
the noisez and are symmetric in theirn last variables@e.g.,
Ô2(t,s,v1 ,v2)5Ô2(t,s,v2 ,v1)]. The initial condition is
Ô(t,t,z)5L.

Accordingly, we get
d

dt

dc t

dzs
5] tÔ0~ t,s!c t1S Ô1~ t,s,t !zt1E

0

t

] tÔ1~ t,s,v !zvdv Dc t1S 2E
0

t

Ô~ t,s,t,v2!ztzv2
dv2

1E
0

tE
0

t

] tÔ2~ t,s,v1 ,v2!zv1
zv2

dv1dv2Dc t1•••1S nE
0

t

•••E
0

t

Ô~ t,s,t,v2 , . . . ,vn!ztzv2
•••zvn

dv2•••dvn

1E
0

t

•••E
0

t

] tÔn~ t,s,v1 , . . . ,vn!zv1
•••zvn

dv1•••dvnDc t1•••1Ô~ t,s,z!
d

dt
c t ~A2!
ing
and

d

dzs

d

dt
c t5~2 iH 1Lzt!

dc t

dzs
2L†Ō~ t,z!

dc t

dzs

2L†S Ō1~ t,s!12E
0

t

Ō2~ t,s,v2!zv2
dv21•••

1nE
0

t

•••E
0

t

Ōn~ t,s,v2 , . . . ,vn!

3zv2
•••zvn

dv2•••dvnDc t1•••, ~A3!

whereŌn(t,v1 , . . . ,vn)[*0
t a(t,s)Ôn(t,s,v1 , . . . ,vn)ds.

Consequently, from the consistency condition

d

dt

d

dzs
c t5

d

dzs

d

dt
c t ~A4!

one obtains the following hierarchy of equations:

]

]t
Ôn~ t,s,v1 , . . . ,vn!

5@2 iH ,Ôn~ t,s,v1 , . . . ,vn!#2
1

n! (
PnPSn

(
k50

n

3@L†Ōk~ t,vPn(1) , . . . ,vPn(k)!,

3Ôn2k~ t,s,vPn(k11) , . . . ,vPn(n)!#

2~n11!L†Ōn11~ t,s,v1 , . . . ,vn! ~A5!
with initial conditions

Ô0~ t,t !5L, ~A6!

Ôn~ t,t,v1 , . . . ,vn!50 for all n>1, ~A7!

nÔn~ t,s,t,v2 , . . . ,vn!5@L,Ôn21~ t,s,v2 , . . . ,vn!#,
~A8!

whereSn is the permutation group andPn is the permutation
operators acting on the indicesv1 ,v2 , . . . ,vn .

Of particular interest isn50. We get

]

]t
Ô0~ t,s!5@2 iH ,Ô0~ t,s!#2@L†Ō0~ t !,Ô0~ t,s!#

2L†Ō1~ t,s!. ~A9!

From this the derivative ofÔ0 can be easily worked out.
For simplicity, we assume here exponentially decay

correlations:

a~ t,s!5
g

2
e2gut2su. ~A10!

The evolution equations for theŌn(t,v1 , . . . ,vn) read
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]

]t
Ōn~ t,v1 , . . . ,vn!

5
g

2
Ôn~ t,t,v1 , . . . ,vn!2gŌn~ t,v1 , . . . ,vn!

1@2 iH ,Ōn~ t,v1 , . . . ,vn!#2
1

n! (
PnPSn

(
k50

n

3@L†Ōk~ t,vPn(1) , . . . ,vPn(k)!,

3Ōn2k~ t,vPn(k11) , . . . ,vPn(n)!#2~n11!L†

3E
0

t

a~ t,s!Ōn11~ t,s,v1 , . . . ,vn!ds, ~A11!

where nŌn(t,t,v2 , . . . ,vn)5@L,Ōn21(t,v2 , . . . ,vn)# for
n>1 andŌn(0,v1 , . . . ,vn)50 for all n.

Equations~A5! and~A11! are very useful in the determi
nation of the operatorÔ(t,s,z).

APPENDIX B: SECOND-ORDER QSD EQUATION

In this appendix, we present the second-order n
Markovian QSD equation.

By using the functional expansion ofÔ(t,s,z) and the
consistency condition~See Appendix A!, we can work out an
expansion of the operatorÔ(t,s,z) at points to any desired
order. In what follows, for simplicity, we only give the
second-order expansion of the operatorÔ0(t,s), which con-
tains no nonlocal noisez.

Ô0~s,s!5L, ~B1!

]1Ô0~s,s!52 i @H,L#2g0~s!@L†,L#L, ~B2!

]1
2Ô0~s,s!52†H,@H,L#‡1 ig0~s!†H,@L†,L#L‡

2a~s,s!@L†,L#L1 ig0~s!†L†@H,L#,L‡

1g0
2~s!†L†@L†,L#L,L‡1 ig0~s!†L†L,@H,L#‡

1g0
2~s!†L†L,@L†,L#L‡. ~B3!

Note that all derivatives above are kinds of approximatio
in particular, the second-order derivative might contain m
terms. Taking the first three terms of the expansion~3.1!, and
making the approximationÔ(t,s,z)'Ô0(t,s), one obtains

Ō0~ t !5g0~ t !L2 ig1~ t !@H,L#2g2~ t !@L†,L#L

2g3~ t !†H,@H,L#‡2g4~ t !@L†,L#L

1 ig5~ t !~†H,@L†,L#L‡1†L†@H,L#,L‡

1†L†L,@H,L#‡!1g6~ t !~†L†@L†,L#L,L‡

1†L†L,@L†,L#L‡!, ~B4!

where the coefficients are as follows:
-

,
e

g0~ t !5E
0

t

a~ t,s!ds, ~B5!

g1~ t !5E
0

t

a~ t,s!~ t2s!ds, ~B6!

g2~ t !5E
0

tE
0

s

a~ t,s!a~s2u!~ t2s!ds du, ~B7!

g3~ t !5
1

2E0

t

a~ t,s!~ t2s!2ds, ~B8!

g4~ t !5
1

2E0

t

a~ t,s!a~s,s!~ t2s!2ds, ~B9!

g5~ t !5
1

2E0

tE
0

s

a~ t,s!a~s2u!~ t2s!2du ds, ~B10!

g6~ t !5E
0

tE
0

sE
0

u

a~ t,s!a~s,u!a~s,v !~ t2s!2dv du ds.

~B11!

Then the second-order QSD equations can be obtained
substituting Eq.~B4! into Eq. ~2.12!. Notice that, in prin-
ciple, we could obtain any order approximate QSD equati
by directly using the consistency condiiton and the fun
tional expansion ofÔ(t,s,z).

APPENDIX C: DERIVATION OF THE RELATIONS „4.3…
AND „4.4…

In this appendix, we shall prove the relations~4.3! and
~4.4!. We take Eq.~4.3!, for instance,

M @Ptzt#5E ds M@ztzs* #MF dPt

dzs*
G . ~C1!

Suppose the complex Gaussian measure takes the form

P~z!dm5N expF2E dsE dt zs* ztb~s,t!Gdm, ~C2!

whereN is the normalization constant andb(s,t) is a kernel
reciprocal to the correlation functiona(l,t), which is de-
fined by

M @zt* zs#5a~ t,s!. ~C3!

Note that the correlation functiona(t,s) satisfiesa(t,s)
5a(s,t)* . We then have the following relation:

E a~ t,t!* b~t,s!dt5d~ t2s!. ~C4!

Now, we consider the right-hand side of Eq.~C1!:



line

e

PRA 60 103NON-MARKOVIAN QUANTUM-STATE DIFFUSION: . . .
E ds M@ztzs* #MF dPt

dzs*
G

5NE dmE dsa~ t,s!*
dPt

dzs*
P~z!

52NE dmE dsa~ t,s!* Pt

d

dzs*
P~z!. ~C5!
.

tic

pt

v.
Here, integration by parts has been used from the second
to the third line. Note that

d

dzs*
P~z!52E dt ztb~s,t!P~z!. ~C6!

Inserting Eq.~C6! into Eq. ~C5!, changing the integration
order *ds and *dt, and using the relation~C4!, we obtain
Eq. ~C1!. The relation~4.4! can be obtained by taking th
Hermitian conjugate of Eq.~C1!.
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