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Open System Dynamics with Non-Markovian Quantum Trajectories
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A non-Markovian stochastic Schrödinger equation for a quantum system coupled to an environm
of harmonic oscillators is presented. The ensemble average recovers the reduced density matrix
out approximation and hence it allows one to determine open system dynamics with strong and
Markovian environmental effects in a very efficient way. We demonstrate the power of our appro
with several illustrative examples. First, we discuss a measurement-type situation, then a two-state
tem strongly coupled to a non-Markovian environment, exhibiting decays and revivals. Further ex
ples showing the remarkable features of our new approach to non-Markovian open system dynamic
discussed, for instance, the possibility to shift the “Heisenberg cut” between system and environm
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The dynamics of open quantum systems is a very time
problem, both to address fundamental questions (quant
decoherence, measurement problem) as well as to tac
the more practical problems of engineering the quantu
devices necessary for the emerging fields of nanotechn
ogy and quantum computing. Standard descriptions
open quantum systems very often rely on a weak syste
environment coupling, and the validity of the Markov
approximation: environmental correlation times are a
sumed negligibly short compared to the system’s chara
teristic time scale. With new experimental advances o
mesoscopic scales, these conditions are too restrictive
appropriate theoretical tools have to be developed to e
ciently describe quantum systems in either unavoidable
even designed contact with structured environments. T
spontaneous decay of an atom in a photonic band gap m
terial and the output coupling from a Bose Einstein con
densate necessary to create an atom laser are just two
of many current topics where standard Markov metho
are known to fail [1].

To motivate our result, let us first recall the Markov cas
For the numerical solution of a Markov master equation
Lindblad form
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rt ­ 2ifH, rtg 1
1
2

sfLrt , Lyg 1 fL, rtL
ygd , (1)

a breakthrough was achieved through the discovery
Monte Carlo wave function methods [2,3]. These ar
stochastic Schrödinger equations for statesctszd (quantum
trajectories), driven by a classical stochastic processzt ,
such that the ensemble meanMf· · ·g recovers the density
operator,

rt ­ Mfjctszdl kctszdjg . (2)

Hence, the solution of Eq. (1) is reduced from the matri
space ofrt to a much simpler Monte Carlo simulation of
quantum trajectoriesctszd in the space of pure states.

For the Markov master Eq. (1), several suchstochastic
unravelingsare known. Some involve jumps at random
times [2], others have continuous, diffusive solutions [3
Among the latter is thequantum state diffusion(QSD)
equation

d
dt

ct ­ 2iHct 1 sL 2 kLltdct ± szt 1 kLyltd

2
1
2

sLyL 2 kLyLltdct , (3)
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driven by complex white noisezt and here written as a
Stratonovich stochastic Schrödinger equation [4].

Stochastic unravelings of Markov density operator dy
namics have been used extensively over recent years, s
they provide useful insight into the dynamics of continu
ously monitored (individual) quantum processes [5] or int
the mechanism of decoherence [6]. Most importantly, the
provide a very efficient tool for the numerical solution o
the master Eq. (1). It is thus desirable to extend the po
erful concept of stochastic unravelings to the more gene
case of non-Markovian evolution, where the traditional re
duced density matrix approach leads to evolution equatio
that are very difficult to handle in practice [7].

Feynman and Vernon’s path integral approach to op
systems [8] might be regarded as one of the most fruitf
routes to describe open system dynamics beyond
weak-coupling and Markov approximation. In practic
this approach suffers from the difficulty of evaluating th
remaining double path integral [9], which is why in the
Markov case one rather prefers solving a master or ev
better, a stochastic Schrödinger equation.

As with Feynman and Vernon and most standard mo
els of open system dynamics—particularly in quantum o
tics—our starting point is a quantum “system” coupled t
a set of bosonic oscillators, the “environment,” such th
the total Hamiltonian reads

Htot ­ H 1
X
l

glsLa
y
l 1 Lyald 1

X
l

vla
y
lal .

(4)

Here,H is the Hamiltonian of the isolated system andL
a system operator describing the coupling to the enviro
mental degrees of freedom (operatorsal, a

y
l), gl denotes

the coupling strength, andvl is the frequency of environ-
mental oscillatorl. In Feynman and Vernon’s model we
haveL ­ q the position operator. The crucial quantity de
scribing the environmental influence on the system is t
response function [8,9]

ast, sd ­
X
l

g2
le2ivlst2sd (5)

here for a zero temperature environment, i.e., for an initi
stateCtotst ­ 0d ­ c0 ≠ j0l ≠ j0l . . . . We emphasize,
however, that finite temperature can easily be incorporat
in our approach [10,11].

We now present a Monte Carlo wave function metho
that recovers the reduced system dynamics of the mo
(4) without approximation, in particular, without Markov
approximation. A first step towards this goal was mad
in [11], where the authors derive a linear non-Markovia
stochastic Schrödinger equation

d
dt

ct ­ 2iHct 1 Lctzt 2 Ly
Z t

0
ast, sd

dct

dzs
ds ,

(6)
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which unravels the exact reduced dynamics of model (
In (6), ast, sd is the response function (5) andzt is colored
complex Gaussian noise of zero mean and correlati
Mfzp

t zsg ­ ast, sd andMfztzsg ­ 0.
Despite its crucial property of unraveling the reduc

dynamics of the model (4), the linear Eq. (6) is of littl
use from the point of view of applications for two rea
sons. First, we have to find a way to handle the functio
derivative appearing in the memory integral in (6). Se
ond, the linear equation (6) has the drawback of not be
norm preserving. In general, in fact, the normjctj tends
to zero. Thus, in Monte Carlo simulations we are fac
with the problem of importance sampling [12].

The first problem can be tackled by observing th
applying the functional derivative amounts to applying
operator to the state,

d

dzs
ct ; Ôst, s, zdct , (7)

where the explicit expression of̂Ost, s, zd can be compli-
cated but, in principle, can be determined consistently fr
Eq. (6). For specific relevant models, this task is solv
(see the examples below and [10]). In the general ca
further efforts have to be made to get a (possibly appro
mate) expression for thêO operator [13].

We solve the second problem similar to the Markov ca
[14] by going over to the normalized states and deri
the appropriate stochastic Schrödinger equation. Note
this step is far from trivial and requires a non-Markovia
dynamical adjustment of the distribution functional o
the stochastic processzt in order to preserve the correc
ensemble mean (2). It is maybe the most remarkable re
of this Letter that it is nevertheless possible to derive
closed evolution equation for these normalized and “noi
adjusted” states. The quite elaborate derivation can
found in [10] and leads to the desired non-Markovia
quantum state diffusion equation

d
dt

c̃t ­ 2iHc̃t 1 sL 2 kLltdc̃t z̃t

2
Z t

0
ast, sd fDLy

t Ôst, s, z̃d

2 kDLy
t Ôst, s, z̃dltg ds c̃t . (8)

Here,z̃t is the shifted noisẽzt ­ zt 1
Rt

0 apst, sd kLylsds,
and for brevity we useDL

y
t ­ Ly 2 kLylt . Thus, once

the operatorÔst, s, zd from (7) is known, the reduced
density operator of the model (4) can be calculated
computing quantum trajectories using the non-Markovi
QSD equation (8).

Notice an important property of non-Markovian QSD
there is no need to store the history of the entire traject
ctszd. Memory integrals over the past are extended ov
quantum expectation values only, allowing for a ve
efficient algorithm.
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Let us turn to concrete illustrative examples. First, w
consider an environment modeling energy measureme
i.e., the coupling in model (4) is through the energ
L ­ H. Using (6), it is easy to show that̂O ­ H in (7),
and hence the non-Markovian QSD equation (8) reads

d
dt

c̃t ­ 2iHc̃t 2 sH2 2 kH2ltdc̃t

Z t

0
ast, sd ds

1 sH 2 kHltdc̃t

√
z̃t 1

Z t

0
ast, sd ds kHlt

!
(9)

with z̃t ­ zt 1
Rt

0 ast, sdpkHls ds. Notice that indeed,
(9) reduces to the Markov QSD equation (3) forast, sd !
dst 2 sd.

If the environmental correlationast, sd goes to zero
fast enough asjt 2 sj ! `, the asymptotic solution is an
eigenstatefn of H, reached with the expected quantum
probabilityjkfn j c0lj2. Numerical solutions of (9) for the
2-dimensional caseH ­

v

2 sz and exponentially decaying
correlation are shown in Fig. 1(a) (grey lines). The asym
totic state is either the “up” or the “down” state. The en
semble meanMfkszlg remains constant (black solid line)
as expected from the analytical solution (black dashed lin
indistinguishable).

If, however, the environment consists of a finite numb
of oscillators only, represented by a quasiperiodic corre
tion functionast, sd, such a reduction to an eigenstate wi
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FIG. 1. Non-Markovian quantum trajectories (grey lines) fo
a spin-12 system H ­

v

2 sz with L ­ H, and initial jc0l ­
sj "l 1 j #ldy

p
2. In (a) we choose a decaying environment co

relation ast, sd ­
g

2 expf2gjt 2 sj 2 iVst 2 sdg, with g ­
V ­ v. We observe reduction to an eigenstate. In (b
the environment consists of just a single harmonic oscillato
ast, sd ­ expf2iVst 2 sdg with V ­ v, where the initial re-
duction is reversible. In both cases the ensemble mean va
over 10 000 runs (black solid line) is in very good agreeme
with the analytical result (black dashed line, indistinguishable
e
nt,
y

p-
-

e,

er
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ll

r

r-

)
r,
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not occur. Figure 1(b) shows non-Markovian QSD traje
tories for an environment consisting of a single harmon
oscillator only. As in Fig. 1(a), the initial superposition
of up and down first decays to either of the two state
Since the entire system is quasiperiodic, the initial superp
sition revives after one periodvt ­ 2p. A similar analy-
sis holds for Schrödinger cat states, where non-Markov
QSD trajectories show decays and revivals as in propo
experiments on reversible decoherence [10,15].

As a second example, we consider a dissipative spin1
2

system withH ­
v

2 sz and a couplingL ­ gs2 (g a cou-
pling constant), modeling the decay of a two-state ato
into a structured environment. For an exponentially d
caying correlation function with an environmental centr
frequencyV and memory timeg21, the non-Markovian
QSD equation (8) reads [10]

d
dt

c̃t ­ 2i
v

2
szc̃t 2 gFstd ss1s2 2 ks1s2ltdc̃t

1 gss2 2 ks2ltdc̃tfz̃t 1 ks1ltFstdg (10)

with z̃t ­ zt 1 g
Rt

0 ast, sdpks1ls ds, and Fstd deter-
mined throughfstd ­ exph2g

Rt
0 Fssd dsj, where

f̈ 1 fg 1 isV 2 vdg Ùf 1
gg2

2
f ­ 0 (11)

with initial conditionfs0d ­ 1, Ùfs0d ­ 0. Depending on
the parameters, this leads to overdamped [Fig. 2(a)]
underdamped [Fig. 2(b)] decay of the initial up state
the down state.

In Fig. 2(a) we show non-Markovian quantum trajecto
ries for a fairly short environmental memory time (g ­
5v), describing the nonexponential decay towards t
down state. In the limitg ! `, i.e., very short mem-
ory time, we recover the exponential decay as predic
by the Markov approximation. More interesting is th
case of long memory,g ­ 0.1v as shown in Fig. 2(b).
The oscillatory behavior shows how the two-state syste
first loses its energy into the environment, but how lat
some of it is fed back into the system, resulting in an o
cillating relaxation. From a traditional point of view, on
could look at this case as a two-state system coupled
one oscillator mode, which is then coupled to an enviro
ment (Jaynes-Cummings model). Here we show how t
problem can be described using quantum trajectories in
space of the two-state system alone. Interestingly, sin
at discrete times (vt ø 5, 15, 25, . . .) the reduced density
operator is the pure down state, each single quantum
jectory has to be the down state as well, as can clearly
seen in Fig. 2(b). We want to remark that this behavi
was wrongly described in [10], where we thought that a
trajectories remain in the down state once they reach it

Non-Markovian QSD (8) can be applied to many mo
standard models of open system dynamics, for instan
a harmonic oscillator (H ­ vaya) coupled to a finite
1803
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FIG. 2. Non-Markovian quantum trajectories (grey lines) for
damped spin-12 systemH ­

v

2 sz , L ­
p

2 s2, with an expo-
nentially decaying environment correlationast, sd ­

g

2 exp3

f2gjt 2 sj 2 iVst 2 sdg with V ­ v and jc0l ­ j "l. In
(a) we chooseg ­ 5v, i.e., fairly short memory and observe
an overdamped decay into the down state. In (b) we choo
long memory,g ­ 0.1v, resulting in an oscillatory relaxation.
Note that in this case all individual trajectories coincide at di
crete times (vt ø 5, 15, 25, . . .), when the reduced density op-
erator is in the pure down state. The ensemble mean value o
10 000 runs (black solid line) is in very good agreement wit
the analytical result (black dashed line, indistinguishable).

or infinite number of oscillators. In the rotating wave
coupling (L ­ a) this model is of current interest for
output coupling to create an atom laser [1]. The Feynma
Vernon coupling corresponds toL ­ q and leads to the
non-Markovian QSD equation for quantum Brownian mo
tion [10,13]. We emphasize that due to its rigorous deriv
tion from the microscopic model (4), our approach is vali
for arbitrary environmental correlationsast, sd. Thus, it
can be applied to realistic situations (photonic band gap
atom laser problem), where exponentially decaying corr
lations—tractable also by pseudomode techniques [1]
can merely serve as a simple first model.

Finally, we point out that non-Markovian QSD allows
one to shift the split (the “Heisenberg cut”) between sy
tem and environment naturally between various position
Since we treat the total model (4) exactly, we might choo
to include a distinguished “environmental” oscillator to b
part of the system. Non-Markovian QSD attributes sto
chastic pure states to a subsystem in a way which depe
on the position of the Heisenberg cut, but which is consi
tent for all possible choices of the cut (see [10] for furthe
elaboration on this property).

In conclusion, we present a non-Markovian unravelin
of the dynamics of a quantum system coupled to a
1804
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environment of harmonic oscillators. Conceptually, w
do not rely on a master equation for the reduced den
operator but derive our quantum trajectory method strai
from the total model including system and environment.
the Markov limit, standard quantum state diffusion (3)
recovered.

For measurementlike interactions, reduction to eige
states takes place whenever the environment correla
functionast, sd decreases fast enough. If the environme
consists of only a finite number of oscillators, we see dec
and revival of the initial superposed state. Non-Markovi
effects are visible in the nonexponential decay of a tw
state system. For very long environmental memory tim
the oscillatory relaxation to the down state is reproduc
by our quantum trajectory method. Finally, unravelin
corresponding to different positions of the Heisenberg
between system and environment are mutually compati
Most of these features are entirely new and have no co
terpart in any Markov unraveling. Our approach represe
a potentially very powerful tool for the numerical simula
tion of quantum devices, whenever non-Markovian effe
are relevant.
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