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A non-Markovian stochastic Schrédinger equation for a quantum system coupled to an environment
of harmonic oscillators is presented. The ensemble average recovers the reduced density matrix with-
out approximation and hence it allows one to determine open system dynamics with strong and non-
Markovian environmental effects in a very efficient way. We demonstrate the power of our approach
with several illustrative examples. First, we discuss a measurement-type situation, then a two-state sys-
tem strongly coupled to a non-Markovian environment, exhibiting decays and revivals. Further exam-
ples showing the remarkable features of our new approach to non-Markovian open system dynamics are
discussed, for instance, the possibility to shift the “Heisenberg cut” between system and environment.
[S0031-9007(99)08603-2]
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The dynamics of open quantum systems is a very timely d p. = —i[H, p.] + 1 (Lp., LTT+[L,p,LT]), (1)
problem, both to address fundamental questions (quantumd? 2
decoherence, measurement problem) as well as to tackie breakthrough was achieved through the discovery of
the more practical problems of engineering the quantunMonte Carlo wave function methods [2,3]. These are
devices necessary for the emerging fields of nanotechnostochastic Schrédinger equations for statgs) (quantum
ogy and quantum computing. Standard descriptions ofrajectorie9, driven by a classical stochastic process
open quantum systems very often rely on a weak systensuch that the ensemble mea#{- - -] recovers the density
environment coupling, and the validity of the Markov operator,
approximation: environmental correlation times are as-
sumed negligibly short compared to the system’s charac- pr = M) (2] 2)
teristic time scale. With new experimental advances orHence, the solution of Eq. (1) is reduced from the matrix
mesoscopic scales, these conditions are too restrictive agace ofp, to a much simpler Monte Carlo simulation of
appropriate theoretical tools have to be developed to effiquantum trajectorieg,(z) in the space of pure states.
ciently describe quantum systems in either unavoidable or For the Markov master Eq. (1), several sisthchastic
even designed contact with structured environments. Thenravelingsare known. Some involve jumps at random
spontaneous decay of an atom in a photonic band gap mémes [2], others have continuous, diffusive solutions [3].
terial and the output coupling from a Bose Einstein con-Among the latter is thequantum state diffusiofQSD)
densate necessary to create an atom laser are just two @tfuation
of many current topics where standard Markov methods
are known to fail [1].

To motivate our result, let us first recall the Markov case. .
For the numerical solution of a Markov master equation in I
Lindblad form y WL = LIL ®)

E Y = —iHy, + (L — (L)) o (z, + <L-]->t)
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driven by complex white noise; and here written as a which unravels the exact reduced dynamics of model (4).
Stratonovich stochastic Schrédinger equation [4]. In (6), a(z, s) is the response function (5) angdis colored

Stochastic unravelings of Markov density operator dy-complex Gaussian noise of zero mean and correlations
namics have been used extensively over recent years, sindf{z; z;] = a(z,s) andM[z,z;] = 0.
they provide useful insight into the dynamics of continu- Despite its crucial property of unraveling the reduced
ously monitored (individual) quantum processes [5] or intodynamics of the model (4), the linear Eq. (6) is of little
the mechanism of decoherence [6]. Mostimportantly, theyise from the point of view of applications for two rea-
provide a very efficient tool for the numerical solution of sons. First, we have to find a way to handle the functional
the master Eq. (1). Itis thus desirable to extend the powderivative appearing in the memory integral in (6). Sec-
erful concept of stochastic unravelings to the more generaind, the linear equation (6) has the drawback of not being
case of non-Markovian evolution, where the traditional re-norm preserving. In general, in fact, the nof#| tends
duced density matrix approach leads to evolution equation® zero. Thus, in Monte Carlo simulations we are faced
that are very difficult to handle in practice [7]. with the problem of importance sampling [12].

Feynman and Vernon's path integral approach to open The first problem can be tackled by observing that
systems [8] might be regarded as one of the most fruitfulpplying the functional derivative amounts to applying an
routes to describe open system dynamics beyond theperator to the state,
weak-coupling and Markov approximation. In practice s
this approach suffers from the difficulty of evaluating the
remaining double path integral [9], which is why in the 6z
Markov case one rather prefers solving a master or evelliare th licit ion @i( ) b -
better, a stochastic Schrodinger equation. where the explicit expression @, s, z) can be compll

As with Feynman and Vernon and most standard modg:ated but, in principle, can be determined consistently from

els of open system dynamics— particularly in quantum OIO_Eq. (6). For specific relevant models, this task is solved

tics—our starting point is a quantum “system” coupled to(see the examples below and [10]). In the general case,
a set of bosonic oscillators, the “environment,” such tha{urther efforts have to be made to get a (possibly approxi-
P mate) expression for th@ operator [13].
the total Hamiltonian reads L Lo
We solve the second problem similar to the Markov case
_ " " + [14] by going over to the normalized states and derive
Hio = H + ;gA(L“A + Llay) + ;“’A“W}\' the appropriate stochastic Schrédinger equation. Note that
(4) this step is far from trivial and requires a non-Markovian
dynamical adjustment of the distribution functional of
Here, H is the Hamiltonian of the isolated system ahd the stochastic process in order to preserve the correct

a system operator describing the coupling to the environensemble mean (2). Itis maybe the most remarkable result
mental degrees of freedom (Operatm;\sgj;), g, denotes of this Letter that it is nevertheless possible to derive a
the coupling strength, and, is the frequency of environ- closed evolution equation for these normalized and “noise-
mental oscillatorA. In Feynman and Vernon’s model we adjusted” states. The qUite elaborate derivation can be
haveL = g the position operator. The crucial quantity de-found in [10] and leads to the desired non-Markovian
scribing the environmental influence on the system is théluantum state diffusion equation

response function [8,9]

Y = 0(t,5,2)1 (7)

. ) _

gp = —iHP (L= (D)%

altis) = Y ghe ) ®)
A

t
- f a(t,s)[ALTO(1,5,7)
here for a zero temperature environment, i.e., for an initial 0

state W (r = 0) = 4o ® |0) ® [0).... We emphasize, —(ALYO(t,5,2))]ds . (8)
however, that finite temperature can easily be incorporated , ) ) .
in our approach [10,11]. Here,?, is the shifted nois¢, = z, + [, a*(t,s) (LT),ds,

We now present a Monte Carlo wave function methodand for brevity we use\Ll =t — (Lt),. Thus, once

that recovers the reduced system dynamics of the modéhe operatorO(t,s,z) from (7) is known, the reduced
(4) without approximation, in particular, without Markov density operator of the model (4) can be calculated by
approximation. A first step towards this goal was madecomputing quantum trajectories using the non-Markovian
in [11], where the authors derive a linear non-MarkovianQSD equation (8).

stochastic Schrodinger equation Notice an important property of non-Markovian QSD:
. there is no need to store the history of the entire trajectory
4 G = —iHY, + Linz, — Lff alt,s) Oy ds ¥:(z). Memory integrals over the past are extended over
dt 0 T8z quantum expectation values only, allowing for a very

(6) efficient algorithm.
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Let us turn to concrete illustrative examples. First, wenot occur. Figure 1(b) shows non-Markovian QSD trajec-
consider an environment modeling energy measurementipries for an environment consisting of a single harmonic
i.e., the coupling in model (4) is through the energyoscillator only. As in Fig. 1(a), the initial superposition
L = H. Using (6), it is easy to show th& = H in (7), of up and down first decays to either of the two states.
and hence the non-Markovian QSD equation (8) reads Since the entire system is quasiperiodic, the initial superpo-
J . sition revives after one periagds = 27. A similar analy-

d - s o o7 sis holds for Schrédinger cat states, where non-Markovian
dt Vo= ity — (H HE fo a(t, ) ds QSD trajectories show decays and revivals as in proposed
, experiments on reversible decoherence [10,15].
+ (H — <H>t)(7/t<zt + f alt,s)ds <H>t> Q) As a second eéample, we consider a dissipative $pin-
0 system withH = 5o, and a couplind. = go— (g a cou-

o . . . , pling constant), modeling the decay of a two-state atom
with 7, =z, + [y a(r,s)"(H),ds. Notice that indeed, inig 4 structured environment. For an exponentially de-
(9) reduces to the Markov QSD equation (3) &lr,s) = caying correlation function with an environmental central

8 — s). . . frequency() and memory timey !, the non-Markovian
If the environmental correlatior(z,s) goes to zero QSD equation (8) reads [10]

fast enough af — s| — o, the asymptotic solution is an
eigenstatep, of H, reached with the expected quantum ; _

probability [{¢, | #0)|>. Numerical solutions of (9) for the 7 = —i % o — gFt) (0ro- — (Tra-))i
2-dimensional cas# = 5 o, and exponentially decaying .
correlation are shown in Fig. 1(a) (grey lines). The asymp- + glo- = (o ))lz + (o) F()]  (10)

totic state is either the “up” or the “down” state. The en- .
semble mea[(o,)] remains constant (black solid line) With Z: = z; + g [y a(t,s)(o+)sds, and F(r) deter-
as expected from the analytical solution (black dashed linehined throughy (1) = exp{—g [; F(s) ds}, where
indistinguishable). ) 2

If, however, the environment consists of a finite number f+ly +iQ — w)]f + &f =0 (11)
of oscillators only, represented by a quasiperiodic correla- 2

tion functiona(z, s), such a reduction to an eigenstate will with initial condition £(0) = 1 j‘(o) — 0. Depending on

the parameters, this leads to overdamped [Fig. 2(a)] or
14 underdamped [Fig. 2(b)] decay of the initial up state to
— NMQsD the down state.
e In Fig. 2(a) we show non-Markovian quantum trajecto-
ries for a fairly short environmental memory time &
5w), describing the nonexponential decay towards the
@ down state. In the limity — <, i.e., very short mem-
ory time, we recover the exponential decay as predicted
0 1 2 3 4 by the Markov approximation. More interesting is the
ot case of long memoryy = 0.1w as shown in Fig. 2(b).
! The oscillatory behavior shows how the two-state system
 noso) first loses its energy into the environment, but how later
A - o0 some of it is fed back into the system, resulting in an os-
& o cillating relaxation. From a traditional point of view, one
could look at this case as a two-state system coupled to
one oscillator mode, which is then coupled to an environ-
' ment (Jaynes-Cummings model). Here we show how this
0 5 10 problem can be described using quantum trajectories in the
ot space of the two-state system alone. Interestingly, since
FIG. 1. Non-Markovian quantum trajectories (grey lines) forat dlscret_e timesds =~ 5,15,25,...) the re_zduced density
a spini systemH = %o, with L = H, and initial |y) =  Operator is the pure down state, each single quantum tra-
an+1 l>)/\/§ In (a) we choose a decaying environment Cor_jeCtory has to be the down state as well, as can Clearly be
relation a(t,s) = Fexd—ylt — sl — iQ@ — 5)], with y = seen in Fig. 2(b). We want to remark that this behavior
) = w. We observe reduction to an eigenstate. In (b)was wrongly described in [10], where we thought that all
the environment consists of just a single harmonic oscillatory aiectories remain in the down state once they reach it.
a(t,s) = exd—iQ(t — s)] with O = w, where the initial re- Non-Markovi SD (8 b lied
duction is reversible. In both cases the ensemble mean value 'YoN-Markovian Q (8) can be app 1ed to many more
over 10000 runs (black solid line) is in very good agreementStandard models of open system dynamics, for instance,
with the analytical result (black dashed line, indistinguishable).a harmonic oscillator §f = wata) coupled to a finite

<0z>
o

(b)
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— wroso environment of harmonic oscillators. Conceptually, we
— MINMQSD] do not rely on a master equation for the reduced density
w0 operator but derive our quantum trajectory method straight

from the total model including system and environment. In

the Markov limit, standard quantum state diffusion (3) is

recovered.

For measurementlike interactions, reduction to eigen-
0 1 > 3 states takes place whenever the environment correlation
ot functiona(z, s) decreases fast enough. If the environment
— NMOSD consists of only a finite number of oscillators, we see decay

- M[Ngﬂ(gsm and revival of the initial superposed state. Non-Markovian
effects are visible in the nonexponential decay of a two-

state system. For very long environmental memory time,
the oscillatory relaxation to the down state is reproduced

by our quantum trajectory method. Finally, unravelings
corresponding to different positions of the Heisenberg cut
0 10 20 30 between system and environment are mutually compatible.
ot Most of these features are entirely new and have no coun-

FIG. 2. Non-Markovian quantum trajectories (grey lines) for aterpart in any Markov unraveling. Our approach represents

damped spirk systemH = 2., L = v2 o, with an expo- & Potentially very powerful tool for the numerical simula-
nentially decaying environment correlatian(z, s) = %expx tion of quantum devices, whenever non-Markovian effects

[—ylt — s| — iQ(r — 5)] with Q = w and |¢o) = | 1). In  are relevant.
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