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Quantum approach to coupling classical and quantum dynamics
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We present a consistent framework of coupled classical and quantum dynamics. Our result allows us to
overcome severe limitations of previous phenomenological approaches, such as evolutions that do not preserve
the positivity of quantum states or that allow one to activate quantum nonlocality for superluminal signaling.
A ‘‘hybrid’’ quantum-classical density is introduced, and its evolution equation derived. The implications and
applications of our result are numerous: it incorporates the back-reaction of quantum on classical variables, and
it resolves fundamental problems encountered in standard mean-field theories, and remarkably, also in the
quantum measurement process; i.e., the most controversial example of quantum-classical interaction is consis-
tently described within our approach, leading to a theory of dynamical collapse.

PACS number~s!: 03.65.Bz, 03.65.Sq, 42.50.Lc
on
ua
sy
lly
r

y

or

io
lu
io

an
in

on
le
ic
e

-

cti
fin
hi
l,
d
c
o

h

le
rid

to
io

al
an-
l-

l

r

a

eld
n-
ion

me
to

ot
on-

s an

e

e

Opinions varyabout the coexistence of and interacti
between classical and quantum systems. In orthodox q
tum theory, classical macrosystems and quantized micro
tems coexist; their interaction is described asymmetrica
The influence of macrovariables upon microsystems is p
cisely taken into account as external forces. Theback-
reactionof quantized microsystems upon classical macros
tems is largely ignored, except fordetector variableswhich
are typically sensitive to certain microvariables. The the
of this specific back-reaction, called measurement theory@1#,
predicts the statistics of the final states after the interact
However, the interpretation of quantized dynamics is exc
sively based on this nondynamical model of back-react
~cf. collapse of the quantum state!; without it we could not
test the validity of quantized dynamics at all. Possibly, qu
tization extends to macrosystems, indeed the criteria of be
macroscopic or microscopic are loosely if ever defined. C
trary to quantized microvariables, quantized macrovariab
may have significant back-reactions on generic class
macrovariables as well. This becomes apparent in the wid
used mean-field approximation@2# which, however, has sev
eral fundamental drawbacks@3#, as we shall recall in this
paper. The measurement theory also describes back-rea
but only for idealized detectors. In some attempts to de
quantum gravity, matter and some fields are quantized, w
other fields~gravity in particular! are treated as classica
thus requiring a definitehybrid—i.e., a coupled classical an
quantum—dynamics. Thus a general model of the ba
reaction is desirable. Such a theory would describe the ‘‘c
lapse’’ of the wave function dynamically@4#, would replace
mean-field approximations in a systematic way@5–7#, and
could have deep implications for quantum cosmology. T
first conceptual attempts@4–6# were followed by ups and
downs@8#, until severe limitations were clarified@9#. In this
paper we use a straightforward transformation of the prob
which automatically leads to a consistent model of hyb
dynamics.

The difficultiesto overcome in our paper are unrelated
the high complexity of the emblematic mean-field equat
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of quantum cosmology. Actually, they lie in foundation
principles. To illustrate these difficulties, we assume a qu
tum Pauli spinŝ interacting with a classical harmonic osci
lator of HamiltonianHC(x,p)5 1

2 (p21x2). The spin inter-
acts with the ‘‘magnetic’’ field of the oscillator via the
Hamiltonian

ĤI5kŝ3p. ~1!

RegardingĤ5HC1ĤI as the total Hamiltonian, it is natura
to prescribe the Heisenberg equation of motion] tŝ

5 i @Ĥ,ŝ#5 ikp@ŝ3 ,ŝ# to the spin. The classical oscillato
momentum satisfies the Hamilton equation] tp52]xĤ

52x, but the coordinate cannot satisfy] tx5]pĤ5p

1kŝ3 sincex, being a real number, should not evolve into
matrix. The obvious way out is to replace the operatorŝ3 by
its quantum expectation value, i.e., to apply some mean-fi
approximation. Yet, if taken literally, this implies that qua
tum expectations can be deduced with arbitrary precis
from a measurement of the classical variablesx andp. Hence
the message is that the classical oscillator should, in so
way, inherit quantum fluctuations from the spin. It comes
one’s mind thatx andp should be random variables, but n
arbitrary ones. As we shall demonstrate, mathematical c
sistency imposes that the classical variablesx or p must
never take sharp values: The consistent theory assume
unremovable coarse-graining@10,11#.

The mathematical issueis the following. The phase-spac
densityrC(x,p) of a classical canonical systemC satisfies the
Liouville equation of motion

] trC~x,p!5$HC~x,p!,rC~x,p!%P , ~2!

where HC(x,p) is the Hamilton function and$ f ,g%P
5]xf ]pg2]pf ]xg stand for the Poisson bracket. On th
other hand, the density operatorr̂Q of a ~canonical, or maybe
discrete! quantum systemQ evolves according to the von
Neumann equation
©2000 The American Physical Society08-1
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] tr̂Q52 i @ĤQ ,r̂Q#, ~3!

whereĤQ is the Hamilton operator. To introduce interactio
betweenQ and C, we assume ahybrid Hamiltonian in the
form

Ĥ~x,p!5ĤQ1HC~x,p!1ĤI~x,p!, ~4!

where the interaction term~and thus the total Hamiltonian
too! is a Hermitian operator forQ, depending on the phase
space coordinates ofC.

The mean-fieldapproach assumes sharp classical coo
natesxt , and pt at each time, and the current quantum e
pectation value HMF(x,p;t)5tr @Ĥ(x,p) r̂Q(t)# of the
Hamiltonian is regarded as the effective Hamilton functi
for the classical subsystemC. The coupled evolution equa
tions then take this forms:

] tr̂Q~ t !52 i @Ĥ~xt ,pt!,r̂Q~ t !#, ~5!

] txt5]pHMF~xt ,pt!, ] tpt52]xHMF~xt ,pt!. ~6!

This approach has well-known deficiencies. In particular
gives no account of the indeterminacy of the classical st
x and p inherited from the quantum uncertainties ofr̂Q .
There is thus an essential nonlinearity in the mean-field
Neumann equation~5! which leads to fundamental conflict
with principles of locality@12#. Furthermore, the mean-fiel
effective Hamilton functionHMF(x,p) will never be the
proper representative of the interaction when quantum un
tainties inr̂Q are large.

A promisingconceptualapproach@5# uses thehybrid den-

sity r̂(x,p) to represent the state of the composite systemC
3Q. If the subsystems are uncorrelated, then the hybrid d
sity simply factorizes asrC(x,p) r̂Q . In the general case, th
hybrid densityr̂(x,p) should be an (x,p)-dependent non-
negative operator, satisfying an overall normalization con
tion tr *r̂(x,p)dxdp51. One interprets the marginal distr
bution rC(x,p)[tr r̂(x,p) as the phase-space density of t
classical subsystemC, while the density operatorr̂Q
[*r̂(x,p)dxdp represents the unconditional state of t
quantum subsystemQ. Conditional quantum statesare natu-
ral to introduce at fixed canonical coordinates (x,p) of the
classical subsystem@10#:

r̂xp[r̂~x,p!/rC~x,p!. ~7!

Aleksandrov@5# proposed the following evolution equatio
for the hybrid density:

] tr̂~x,p!52 i @Ĥ~x,p!,r̂~x,p!#1
1

2
$Ĥ~x,p!,r̂~x,p!%P

2
1

2
$r̂~x,p!,Ĥ~x,p!%P . ~8!

If ĤI(x,p)50, then this equation splits into the standa
equations~2! and ~3!.
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Let us test Aleksandrov’s equation on the spin-oscilla
system~1!. The generic form of the hybrid state is

r̂~x,p!5 1
2 @11sW~x,p!sŴ #rC~x,p!, usWu<1, ~9!

wheresW(x,p) is the spin vector correlated with the oscilla
tor’s state. We read off the conditional quantum state~7! of

the spin:r̂xp5 1
2 @11sW(x,p)sŴ #. For the hybrid state~9! and

interaction Hamiltonian~1!, Aleksandrov’s equation~8!
reads

] tr̂5~x]p2p]x!r̂2 ikp@ŝ3 ,r̂ #2 1
2 k@ŝ3 ,]xr̂ #1 . ~10!

This equation easily violates the positivity conditionusWu<1
on r̂. That is, the initial normalized polarization vector

sW5
1

x21p211
~2x,2p,x21p221!, ~11!

leads tousWu.1 for all x.0 under the evolution@Eq. ~10!#.
So, the naive Eq.~8! is inconsistent since it does not gua
antee the positivity of the hybrid densityr̂(x,p) @6#. One
sees that the mathematical textures of the classical (C) and
quantum (Q) systems, though well understood separate
are not at all trivial to couple.

A royal road offers itself nonetheless. Let us quantiz
canonicallyC as well. We do so temporarily and, at the e
of the day, we regard it classical again. The hybrid Ham
tonian ~4! transforms into the total Hamilton operator of th
fully quantized systemC^ Q

:Ĥ~ x̂,p̂!ªĤQ1:HC~ x̂,p̂!:1:ĤI~ x̂,p̂!:, ~12!

where : . . . : stand for normal ordering in terms of the us
annihilation and creation operators (x̂6 i p̂)/A2, respec-
tively. Let the equation of motion for the total system’s de
sity operatorr̂ be the standard von Neumann one:

] tr̂52 i @ :Ĥ~ x̂,p̂!:,r̂ #. ~13!

Our royal road is based on coherent states@13#. Coherent
statesux,p& are eigenstates of the annihilation operator:

~ x̂1 i p̂ !ux,p&5~x1 ip !ux,p&. ~14!

Using Bargmann’s convention@13#, the coherent states sa
isfy the following differential relation:

~]x2 i ]p!ux,p&5~ x̂2 i p̂ !ux,p&, ~15!

~]x1 i ]p!ux,p&50. ~16!

The latter relation expresses the fact that the brasux,p& are
entire analytic functions of the complex canonical variab
x1 ip, a crucial fact as we shall see. The coherent sta
form an overcomplete basis, with normalization
8-2
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I 5E ux,p&^x,pu
exp„2 1

2 ~x21p2!…

2p
dxdp. ~17!

It follows from Eqs.~14! and ~15! that

: f ~ x̂,p̂!:ux,p&5: f S x1 ip1]x2 i ]p

2
,
p2 ix1]p1 i ]x

2 D :ux,p&

~18!

for an arbitrary normal ordered function of the quantiz
variables on the left-hand side. On the right-hand side,
same symbols : . . . : mean that all derivations must be d
first.

We apply a projection to the density operatorr̂ of the
fully quantized systemC^ Q, and thus reintroduce thehybrid
density

r̂~x,p![tr@~ ux,p&^x,pu ^ I !r̂#
exp@2 1

2 ~x21p2!#

2p
. ~19!

Indeed, this can formally be considered the hybrid density
the composite systemC3Q as if C were unquantized~i.e.,
classical! again. This is what we are going to do. We c
thusderive the closed equation of motion of the hybrid de
sity ~19! from the exact von Neumann equation~13!. Using
the basic relation~18! and the identity~16!, we obtain the
desired evolution equation

] tr̂~x,p!52 i :ĤS x1
]x1 i ]p

2
,p1

]p2 i ]x

2 D : r̂~x,p!1H.c.

~20!

This hybrid dynamic equationis our proposal to couple clas
sical systems to quantum ones canonically. Note that
hybrid densityr̂(x,p) incorporates our statistical knowledg
of Q’s quantum state, ofC’s classical state, and of the
correlations. IfĤI(x,p)50, then by integrating both sides o
Eq. ~20! over x andp we obtain the standard von Neuman
equation~3!, as it should be. The trace of both sides, ho
ever, doesnot lead to the standard classical dynamics@Eq.
~2!#. Instead, we obtain~for obvious reasons! the evolution
equation of a Husimi function@14#. To lowest order in the
derivatives, however, this is the classical Liouville equat
~2!. Hence classical dynamics is recovered if both the Ham
ton function and the state distribution change slowly withx
andp ~see, e.g., Ref.@15# and references therein!.

Consistencyof the hybrid equation of motion~20! is, con-
trary to the case of the naive Eq.~8!, assured by construction
It preserves the positivity of the hybrid densityr̂(x,p) along
with a certain analyticity property. In fact, projection~19!
always leads to hybrid densities of the form

r̂~x,p!5
exp@2 1

2 ~x21p2!#

2p (
n

wn~x2 ip !wn
†~x1 ip !,

~21!

wherewn(x2 ip) are unnormalized nonorthogonal state ve
tors for Q, being complex entire functions of the combin
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tions x2 ip of C’s classical variables. This positive form i
then preserved by our hybrid equation~20!. The analyticity
condition ~21! restricts the possible hybrid states: sharp v
ues ofx andp and, generally, characteristic phase-space
pendences inside single Planck cells, are excluded.

In particular, the ‘‘pure state’’ form of Eq.~21!, i.e. with
a single ww† dyadic term, is also preserved. The hybr
Schrödinger equation of the hybrid state vectorw(x2 ip)
follows from Eq. ~20! @16#. For completeness, we mentio
that the polarization~11! can be reproduced byw(x2 ip)
5@(x2 ip)u1&1u2&]/A3, whereŝ3u6&56u6&.

A post-mean-field approximation, incorporating some of
the fluctuations of systemQ into its back-reaction on the
systemC, is worth deriving. Consider the first-order expa
sion of Eq.~20! in the derivatives ofĤ(x,p):

] tr̂~x,p!52 i @Ĥ~x,p!,r̂~x,p!#1
1

2
$Ĥ~x,p!,r̂~x,p!%P

2
1

2
$r̂~x,p!,Ĥ~x,p!%P

2
i

2
@]xĤ~x,p!,]xr̂~x,p!#

2
i

2
@]pĤ~x,p!,]pr̂~x,p!#. ~22!

This equation has two additional terms with respect to~math-
ematically inconsistent! Eq. ~8!. These two additional terms
reduce the domain of inconsistency. More importantly, it c
be shown that the above equation is equivalent to the e
Eq. ~20! if C is harmonic and its coupling toQ is linear inx
andp. In particular, Eq.~22! gives a mathematically consis
tent theory of fully quantized atomic systems (Q) interacting
with the fully developedclassicalradiation field (C). More-
over, its physics is equivalent to the true fully quantiz
radiation theory@11#.

By taking the trace of Eq.~22! one can show that the
evolution of the classical states is a flow:

] tx5^]pĤ~x,p!&xp , ] tp52^]xĤ~x,p!&xp , ~23!

where^•••&xp stands for the expectation values in the cu
rent conditional quantum stater̂xp . Obviously this flow re-
sembles locally the naive mean-field equation~6!. Here,
however, the classical state is randomly distributed: it inh
its the quantum fluctuations ofQ. On the other hand, the
deterministic evolution of the state’s distribution is a rema
able fact with significant consequences being discussed e
where.

Dynamical collapseof the quantum state is encoded
our hybrid evolution equation~20!. It is a most spectacula
feature. The ‘‘presence’’ of standard collapse will be de
onstrated on the spin-oscillator model. For the hybrid st
@Eq. ~9!#, our evolution equation~20! reads
8-3
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] tr̂5~x]p2p]x!r̂2 ikp@ŝ3 ,r̂ #

2
1

2
k@ŝ3 ,]xr̂ #12

i

2
k@ŝ3 ,]pr̂ #, ~24!

which differs from the naive Eq.~10! by the presence of the
fourth term on the right-hand side. This term guarantees
positivity of the hybrid stater̂(x,p) for all times. The oscil-
lator plays the role of the Stern-Gerlach apparatus detec
the quantized spin-componentŝ3. The pointer variable of
the apparatus isx, it is set initially to zero with precisionD
51. Accordingly, we chooserC

0(x,p)5(2p)21exp„2 1
2 (x2

1p2)… for the oscillator’s initial state. We shall switch on th
interaction Hamiltonian att50 for a short timet compared
to the oscillator period, keeping the effective coupling
strong asg5kt@1. Actually, we replacek by gd(t) @1#.
Let us assume that the spin’s initial state is the superposi
uc&5c1u1&1c2u2&, and the initial hybrid state~9! is the
uncorrelateduc&^curC

0(x,p). Immediately after the interac

tion the hybrid stater̂(x,p) becomes

uc1u2u1&^1urC
0~x1g,p!1uc2u2u2&^2urC

0~x2g,p!

1c1c2
! u1&^2uexpS 2

1

2
g22 igpD rC

0~x,p!1H.c. ~25!

The trace yields the pointer’s state distribution

rC~x,p!5uc1u2rC
0~x2g,p!1uc2u2rC

0~x1g,p!. ~26!

Since g@1, we shall ignore the overlap between the tw
terms on the right-hand side, so we can say that the pointx
has swung out tog6D or to 2(g6D) with the probabilities
predicted by the standard measurement theory. Invoking
~7!, we can easily read out the conditional quantum state
the spin from Eq.~25! @since the off-diagonal terms ar
damped by exp(21

2g
2), we ignore them#:
02210
e

g

s

n

r

q.
of

r̂xp5u6&^6u, x'6g, p'0. ~27!

This shows the standard collapse of the spin’s quantum s
the quantum state is correlated with the classical point
position.

Discussing this paper’s results, we repeat that we a
aware of the ambiguous contemporary views concerning
concept of genuine hybrid systems. Nevertheless, the
Copenhagen interpretation as well as recent quantum gra
and quantum cosmological models assume such hybrid
tems. We made the necessary compromises to neutr
strict no-go theorems. Our Eq.~20! is an example of hybrid
dynamics which is both mathematically consistent and ph
cally relevant. The applications of our equation are num
ous, for example as phenomenological models whenever
mean-field approximation is poor. Moreover, we derive po
mean-field equations which describe the back-reaction
quantum fluctuations to first order. On the foundational lev
we point out that our hybrid dynamics@Eq. ~20!# reproduces
the ideal quantum measurement, including the collapse of
wave functionand the motion of the classical pointer. Let u
also stress the close connection to current phenomenolo
theories of dynamic collapse whichfollow from our hybrid
dynamics@16#. Our hybrid theory is likely to be an integrat
ing concept for treating quantum measurement dynamic
and to overcome the inconsistent mean-field method in qu
tum cosmology.

We are grateful to Jonathan Halliwell, Ian C. Perciv
and Ting Yu for useful conversations. L.D. was partly su
ported by EPSRC and by OTKA T016047, N.G. by th
Swiss National Science Foundation, and W.T.S. by the De
sche Forschungsgemeinschaft through the SFB 237 ‘‘Un
dnung und große Fluktuationen.’’
to
s,

y
.

,
c-
@1# J. von Neumann,Mathematische Grundlagen der Quanten
mechanik~Springer, Berlin, 1932!.

@2# L. Rosenfeld, Nucl. Phys.40, 353 ~1963!.
@3# T. W. Kibble, in Quantum Gravity 2: A Second Oxford Sym

posium, edited by C. J. Isham, R. Penrose, and D. W. Sciam
~Oxford University Press, New York, 1981!.

@4# T. N. Sherry and E. C. G. Sudarshan, Phys. Rev. D18, 4580
~1978!.

@5# I. V. Aleksandrov, Z. Naturforsch.36A, 902 ~1981!.
@6# W. Boucher and J. Traschen, Phys. Rev. D37, 3522~1988!.
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