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Kinematics and dynamics of independent pion emission
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Multiparticle boson states, proposed recently for ‘‘independently’’ emitted pions in heavy-ion collisions, are
reconsidered in standard second quantized formalism and shown to emerge from a simplistic chaotic current
dynamics. Compact equations relate the density operator, the generating functional of multiparticle counts, and
the correlator of the external current to each other. ‘‘Bose-Einstein condensation’’ is related to the external
pulse. A quantum master equation is advocated for future Monte Carlo simulations.

PACS number~s!: 24.10.Jv, 21.65.1f, 24.85.1p, 25.75.2q
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Multiparticle production in high-energy particle collision
is dominated by classical statistics. Bose-Einstein statis
of pions, nevertheless, proved to lead to quantum cohere
effects which survive in the final multiparticle states@1#. The
corresponding mechanism can be handled within stand
quantum statistics. Yet, some recent works@2,3# continued,
mainly for historic reasons as Weiner@4# points out, to use
the ‘‘traditional’’ method of wave function with tedious ex
plicit Bose-Einstein symmetrization. We will see how sta
dard second quantization methods lead to the correct re
in a shorter and clearer way. I discuss the dynamical co
tions of Bose-Einstein condensation, and I outline a ma
equation suitable for Monte Carlo simulations.

For the concentrated study of the effects of Bose statis
a simple scheme of ‘‘independent’’ emission has been p
posed@3,5–7#. I recapitulate the features of these multipa
ticle states, sparing the burden of separate ‘‘symmetr
tion.’’ I then introduce the generating functional of th
measured counts@8# directly in second quantized formalism
Introducing chaotic classical currents, advocated, e.g.,
Ref. @1# and used, e.g., in@9,10#, I construct the simples
quantum dynamics reproducing the corresponding multip
ticle quantum states. The measured multidetector counts
out to be identical to the corresponding spectral intensitie
the effective current. I show that the existence of a Bo
Einstein condensate imposes explicit analytic constraints
the intensity and on the spectrum of the external effec
current. Finally, I generalize the simple quantum dynam
and propose a quantum master equation suitable to the
cient Monte Carlo simulation of the multiparticle densi
matrix itself. The paper concludes with a summary.

When searching for a class of multiparticle density ope
tors r̂ representing independent bosons, consider first
Gibbs canonical state for noninteracting bosons at inve
temperatureb. The bosons remain independent if, formal
we assign different instantaneous temperaturesbk to each
mode k, i.e., we assumer̂;exp(2(kbkâk

†âk). Moreover,
the bosons remain independent if we assign different t
peratures to a generic~maybe nonstationary! set of orthogo-
nal modes instead of the momentum eigenstates. Hence
arrive at the following class of ‘‘independent multiboso
states’’ ~IMS!:
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r̂5det~12e2b!expS 2(
k,k8

bk8kâk8
† âkD , ~1!

whereb is a positive matrix. Let us define the one-partic
density matrix from the above state:

rk8k5
^k8ur̂uk&

(
k

^kur̂uk&

. ~2!

Using Eq.~1!, we find the following matrix relation:

e2b5nr ~n5tr e2b!. ~3!

The IMS ~1! can be rewritten in terms of the one-partic
density matrixr and the parametern ~whose physical inter-
pretation remains a bit involved!:

r̂5det~12e2nr!expS n(
k,k8

rk8kâk8
†

^ âkD r̂0 . ~4!

This form might give an insight into the kinematics of th
particle creation from the vacuumr̂0.

We have to note that the IMS are nonstationary quant
states. Yet, the measured quantitiesn̂k5âk

†âk are not sensi-

tive to the time evolution of the IMSr̂. This will be formu-
lated later in the paper.

We introduce generating functionals for the multipartic
final-state momentum distributions. A compact heuris
form of definition is the following:

G@u#5trS r̂)
k

~uk! n̂kD , ~5!

whereuk are auxiliary variables andn̂k5âk
†âk . If we intro-

duce the diagonal matrixu by uk8k5dk8kuk then, using the
IMS density operator~4!, the generating functional takes th
following form:

G@u#5
det~12nr!

det~12nur!
. ~6!

The logarithmic generating functionalg5 ln G can be ex-
pressed through its Taylor expansion in a transparent
@5,7#:
©2000 The American Physical Society02-1
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g@u#5(
r 51

`
n r

r
@ tr~ur!r2tr r r #. ~7!

For uk[u, it yields the~logarithmic! multiplicity generating
function

g~u!5(
r 51

`
n r

r
trr r~ur21! ~8!

whose Taylor coefficients are the combinants~cf. @11#!.
The derivatives of the generating functionals atu50

yield the exclusivedistribution/correlation functions. In ex
periments, we can easily measure theinclusivedistributions
instead, which are the derivatives atu51 @8#. To make these
derivations more convenient, let us substitutenr in the gen-
erating functionals~6!–~8! by nr5a/(11a), wherea will
be the correlation matrix of currents mentioned later:

G@u#5
1

det@12~u21!a!]
, ~9!

g@u#5(
r 51

`
1

r
tr~ua2a!r , ~10!

g~u!5(
r 51

`
1

r
tr a r~u21!r . ~11!

Comparing these expressions with Eqs.~6!–~8! we see that
the inclusive distributions/correlations will depend on t
current correlation matrixa exactly the same way as th
exclusive distributions/correlations depend on (n times! the
one-particle density matrixr.

Multiparticle production cannot be derived from ‘‘firs
principles.’’ I can certainly not overcome the well-know
difficulties. Instead, I present the simplest quantum dynam
which produces exactly the class~1! of IMS. I postulate the
following effective Hamiltonian:

Ĥ5d~ t !(
k

~Jk
!âk1Jkâk

†!, ~12!

whereJk denote the Fourier components of a certain eff
tive external fieldJ exciting the boson field. The ‘‘current’
J(x)5J(x)d(t) is nonzero in the collision area and we a
sume that the collision time can be taken infinitely short. L
us calculate the unitary effect of the Hamiltonian~5! on the
vacuum:

ucJ&5expS 2 i(
k

~Jk
!âk1Jkâk

†! D u0&

5expS 2
1

2 (
k

uJku22 i(
k

Jkâk
†D u0&, ~13!

which is otherwise a product coherent state)k ^ u2 iJk&.
These final statesucJ& are pure states whereas the IMS a

mixed ones. Obviously, no unitary dynamics can cre
mixed states from pure ones. Therefore, I consider uni
dynamics inrandom external fields: I assume a Gaussi
distribution for the stochastic fluctuations of the currentJ.
Let the mean valuesM @Jk# be always zero. Also we assum
02790
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thatM @Jk8Jk#[0, which is equivalent to a random phase f
all Jk . We denote the only nonvanishing correlations by t
non-negative Hermitian matrixa:

M @Jk8Jk
!#5ak8k . ~14!

After these preparations, we can define the density oper
r̂ of the final state as the stochastic mean value of the p
coherent states~13!:

r̂5M @ ucJ&^c j u#. ~15!

Substituting Eq.~13! and taking the stochastic mean overJ
of the Gaussian correlation~14! we are led directly to form
~4! of the IMS density operators. The one-particle dens
matrix r and the parametern are related to the correlatio
matrix a of the current by easily invertible matrix relation

nr5
a

11a
, a5

nr

12nr
. ~16!

Measuring the one-particle density matrix we could, up
the validity of the model, calculate the structure of the ext
nal current. Although such a measurement is~so far! not
completely possible we will see later that the inclusive c
relation function gives the modulus ofa directly. It is also
seen from Eqs.~16! that a Gaussian shape, like@7#

rk8k;expS 2
1

2D2
k1

2 2
1

2
R2k2

2 D ,

k15
k1k8

2
, k25k2k8, ~17!

for the one-particle density matrix is not compatible with
Gaussian-shaped current correlation matrixak8k and vice
versa.

The final-state distributions in IMS can be directly relat
to the currentsJ. The generating functional~5! can conve-
niently be re-expressed as an averaged functional over
fluctuating external currentJ:

G@u#5M FexpS (
k

~uk21!uJku2D G , ~18!

which is of course equivalent to Eqs.~6! or ~9!.
The above equation has numerous useful consequen

The multiplicity distribution can be written in this form:

pr5M F S ( uJu2D r

expS 2( uJu2D G , ~19!

while the factorial moments take the same form but witho
the exponential factor exp(2(uJu2), i.e.,

Fr5M F S ( uJu2D r G . ~20!

This phenomenon also characterizes the differences betw
the expressions of the exclusive and the inclusive distri
tion functions, respectively,
2-2
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f ~1,2, . . . ,r !5M @ uJ1u2,uJ2u2, . . . ,uJr u2

3H exp(2(uJu2)] ~exclusive!

] ~ inclusive!
~21!

as well as of the correlation functions. In particular, the
clusive correlation functions take the following form:

C~1,2, . . . ,r !5M @ uJ1u2uJ2u2 . . . uJr u2#c , ~22!

the exclusive ones would contain the ominous exponen
factor, too. The notationM @ . . . #c means that in the ‘‘expec
tation value’’ only the ‘‘connected grafs’’ are to be take
into the account. In the case of Eq.~22! it yields (r 21)!
‘‘cycles,’’ i.e., the ‘‘cycle’’ a12a23 . . . a r1 and its variants
for permutations of 2, . . . ,r @5#.

One can easily summarize the main result of this sec
as follows. The countsnk , measured simultaneously in
collision event, arestatistically identicalto the correspond-
ing spectral intensitiesuJku2. Like their distributions, their
corresponding moments are identical as well:

^n1n2 . . . nr&5M @ uJ1u2uJ2u2 . . . uJr u2#. ~23!

The IMS class of density operators~1! has a particular
asymptotics. The ‘‘inverse temperature’’ matrixb must be
positive. If it were degenerate the state~1! would not exist at
all. A degenerateb can formally be interpreted as if th
mode of the zero eigenvalue became infinitely hot. T
mode is, in fact, becoming more and more populated but
infinite population is unattainable. Nonetheless, an IMS w
almost degenerateb would really be a Bose-Einstein con
densate since this only requires a big finite number of bos
in a single quantum state. Speculations that the point of
generacy, i.e., the pointn51/iri , is the point of condensa
tion ~like in thermal Bose systems! cannot be verified for the
IMS.

Let us first recapitulate the kinematics of an IMS conde
sate. The condensate mode does not interfere with the o
modes so we can discuss it separately. We assume tha
IMS is dominated by the condensate mode. The one-par
density matrix has the formrk8k5wk8wk

† where wk is the
condensate mode’s wave function. If we introduce the c
densate absorption operatorâc5(kwkâk then, using Eqs.
~1!–~4!, the condensate IMS can be written as a therm
equilibrium state at temperatureT521/lnn:

r̂c5~12e21/T!expS 2
âc

†âc

T
D . ~24!

This state assumes a Hamiltonianâc
†âc which is not the real

case, the condensate is not even stationary in general.
the form~24! is completely proper to calculate characterist
of the state by a thermal analogy. For instance, Eq.~5! yields
directly the generating functional in the form

G@u#5
12e21/T

12exp~21/T!(
k

ukuwku2
, ~25!
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with the canonical thermal multiplicity distribution

pn5~12e21/T!e2n/T ~26!

of the mean multiplicity

^n&5
1

en/T21
. ~27!

Let us observe that approaching the ‘‘condensation poi
corresponds toT→` and the population of the ‘‘Bose con
densate’’ increases to the infinity while it is remaining the
mally distributed all the time.

Now I turn to the dynamic conditions for the fluctuatin
external currentJ. In the special case of the condensate IM
the second relation in Eq.~16! becomes simplyak8k
5^n&rk8k5^n&wk8wk

! . Recall the definition~14! of a as the
current’s correlation matrix, which yields the following rela
tion:

M @Jk8Jk
!#5^n&wk8wk

! . ~28!

Regarding thatM @Jk8Jk# should vanish by assumption. th
Gaussian fluctuations satisfying the above relation must t
the form

Jk5zA^n&wk ~29!

for all k, wherez is a random complex number of the sta
dard Gauss distribution (1/p)exp(2uzu2)d2z. Taking the sto-
chastic mean of the modulus square of both sides we ob

uJku25^n&uwku2, ~30!

which also leads to

^n&5(
k

uJku2. ~31!

Equations~29!–~31! show the simple way the pulse of th
effective currentJ determines the condensate wave functi
and the mean population. Actually, the mean multiplicity
identical to the overall intensity of the current pulse~31!.
The pulse’s normalized spectral density is equal to the mo
lus square of the condensate wave function~30!. Equation
~29! seems, however, to be very restrictive since it impo
the same random phase and weight simultaneously for
current amplitudesJk .

I outline a possible generalization of the simple dynam
proposed earlier. Let us replace the Hamiltonian~12! by

Ĥ~ t !5g~ t !(
k

@Jk
!~ t !âk1Jk~ t !âk

†#, ~32!

whereg(t) is a normalized function of characteristic widt
Dt, controlling the intensity of particle creation. The tim
dependent currentsJk(t) are random functions of zero mea
let their correlator be of the nonstationary white-noise typ

g~ t !M @Jk8~ t8!Jk
!~ t !#5d~ t82t !ak8k . ~33!
2-3
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In the limit Dt→0, the random dynamics represented
Eqs.~32!,~33! reduces to the simplistic dynamics~12!,~14! .
The Hamiltonian~32! with the white-noise currents~33!
yield the following master equation@12# for the noise-
averaged density operator~in the interaction picture!:

dr̂

dt
5g(

k,k8
ak8kS âk8

† r̂âk2
1

2
$âkâk8

† ,r̂% D . ~34!

One solves the master equation with the vacuum initial st
If 1/Dt is much greater than the typical pion energy then,
the relationships~16!, the final state will tend to the IMS~1!.
For largerDt the simple relations~16! do not hold. Though
analytic calculations are still possible one can turn to v
powerful Monte Carlo~MC! methods@13# developed for
Markovian master equations. These MC algorithms w
yield the density operators of the multiparticle final sta
without ‘‘struggling through’’ @14# the usual Wigner-
function formalism.

The aim of this paper was partly pedagogical. To av
Bose symmetrization ‘‘by hand,’’ I used standard quantu
mechanical considerations to construct and to analyze
v

,
H.

,’’
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‘‘independent multiboson states.’’ I showed how these sta
emerge from a simplistic version of chaotic current mod
and I derived the relationship between the IMS states and
correlator of the currents. I briefly recapitulated the gene
ing functional representation of multiparticle counts. Beyo
methodological matters, I found that the Bose-Einstein c
densate would be thermally populated and the condensa
point corresponds to the infinite hot state. I restricted
analysis to the IMS and the simplest chaotic current mec
nisms with trivial time dependences. The simple choice
lows for transparent relationships between the current
the final multiparticle state.~Other works, like, e.g., Ref
@10#, incorporate a more realistic space-time evolution of
multiparticle source.! There is, nonetheless, a particular a
vantage of any underlying dynamics whether realistic or n
Usually it allows economic simulation methods for th
physical quantities of interest. To this end, I proposed
quantum master equation known to be suitable for effici
Monte Carlo simulations.

I thank Tama´s Csörgő and Sa´ndor Hegyi for useful dis-
cussions.
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