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Kinematics and dynamics of independent pion emission
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Multiparticle boson states, proposed recently for “independently” emitted pions in heavy-ion collisions, are
reconsidered in standard second quantized formalism and shown to emerge from a simplistic chaotic current
dynamics. Compact equations relate the density operator, the generating functional of multiparticle counts, and
the correlator of the external current to each other. “Bose-Einstein condensation” is related to the external
pulse. A quantum master equation is advocated for future Monte Carlo simulations.

PACS numbes): 24.10.Jv, 21.65f, 24.85+p, 25.75—q

Multiparticle production in high-energy particle collisions . At
is dominated by classical statistics. Bose-Einstein statistics p=de(1—e5)exp( -2 IBk’kakIak)v (1)
of pions, nevertheless, proved to lead to quantum coherence Kk
effects which survive in the final multiparticle stafdg. The . . . i .
corresponding mechanism can be handled within standarheres is a positive matrix. Let us define the one-particle
quantum statistics. Yet, some recent wofRs3] continued, ~ density matrix from the above state:

mainly for historic reasons as Weingt| points out, to use (k’|[)|k)

the “traditional” method of wave function with tedious ex- prk=—. 2
plicit Bose-Einstein symmetrization. We will see how stan- > (k|p|k)

dard second quantization methods lead to the correct results k

in a shorter and clearer way. | discuss the dynamical condi-
tions of Bose-Einstein condensation, and | outline a maste¥sing Eq.(1), we find the following matrix relation:
equation suitable for Monte Carlo simulations. p i

For the concentrated study of the effects of Bose statistics, e P=vp (v=tre ’). ©)
a simple scheme of “independent” emission has been pro- . . .
posediE3,5—7_|. I recapitulatg the features of these multipf';r--rhe .IMS (1).can be rewritten in terms of the qne-parhcle
ticle states, sparing the burden of separate ‘‘symmetriza‘-jens't.y matrixp and the_ parametar (whose physical inter-
tion.” |1 then introduce the generating functional of the Prétation remains a bit involved
measured coun{s] directly in second quantized formalism. - s At A
Introducing chaotic classical currents, advocated, e.g., by p=de(l-e ’)ex;{ VE/ Prrk@y ®ax
Ref. [1] and used, e.g., ifi9,10], | construct the simplest ok
quantum dynamics reproducing the corresponding multiparyys torm might give an insight into the kinematics of the
ticle quantum states. The measured multidetector counts turn ; A

rticle creation from the vacuupy,.

out to be identical to the corresponding spectral intensities dpa .

the effective current. | show that the existence of a Bose- V€ have to note that the IMS are rloqstatlonary quantum
Einstein condensate imposes explicit analytic constraints oftates. Yet, the measured quantitigs-ajay are not sensi-
the intensity and on the spectrum of the external effectiveive to the time evolution of the IM$. This will be formu-
current. Finally, | generalize the simple quantum dynamicdated later in the paper.

and propose a quantum master equation suitable to the effi- We introduce generating functionals for the multiparticle
cient Monte Carlo simulation of the multiparticle density final-state momentum distributions. A compact heuristic

Po- (4)

matrix itself. The paper concludes with a summary. form of definition is the following:
When searching for a class of multiparticle density opera- i
tors p representing independent bosons, consider first the G[u]=tr(p];[ (Uk)”k), 5

Gibbs canonical state for noninteracting bosons at inverse
temperaturg3. The bosons remain independent if, formally,
we assign different instantaneous temperaty#ggo each

modek, i.e., we assume~exp(—,BqaLay). Moreover,
the bosons remain independent if we assign different te
peratures to a genericnaybe nonstationajyset of orthogo-
nal modes instead of the momentum eigenstates. Hence, we Glu]= de(1-vp)
arrive at the following class of “independent multiboson de{(l—wvup)’
states” (IMS):

whereu, are auxiliary variables and,=a,ay. If we intro-
duce the diagonal matrin by u,.= é,+ Uy then, using the
IMS density operato(4), the generating functional takes the
mfollowing form:

(6

The logarithmic generating functiongl=InG can be ex-
pressed through its Taylor expansion in a transparent way
*Electronic address: diosi@rmki.kfki.hu [5,7]:
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“ o thatM[J,.J]=0, which is equivalent to a random phase for
glul= 21 T[tr(u,))’—trpr]. (7)  all 3. We denote the only nonvanishing correlations by the
= non-negative Hermitian matrix:
For u,=u, it yields the(logarithmig multiplicity generating M[ I I5]= . (14)

function
o . After these preparations, we can define the density operator
9(“)221 e’ (u'—1) ® 5 of the final state as the stochastic mean value of the pure
coherent state€l3):
whose Taylor coefficients are the combinatus [11]). -~
The derivatives of the generating functionals w0 p=MIly)(¥]]- (15
yield the exclusivedistribution/correlation functions. In ex-
periments, we can easily measure thelusivedistributions
instead, which are the derivativesiuat 1 [8]. To make these
derivations more convenient, let us substitugein the gen-
erating functionalg6)—(8) by vp=a/(1+ «), wherea will
be the correlation matrix of currents mentioned later:
1 a vp
vp=——, «a= .
de{1-(u—Da)]’ © 1+a 1-vp

Substituting Eq(13) and taking the stochastic mean over
of the Gaussian correlatiofi4) we are led directly to form
(4) of the IMS density operators. The one-particle density
matrix p and the parameter are related to the correlation
matrix « of the current by easily invertible matrix relations:

(16)

Glu]=

o1 Measuring the one-particle density matrix we could, up to
glul= 21 rr(ua—a), (19 the validity of the model, calculate the structure of the exter-
-y nal current. Although such a measurement(se fan not
completely possible we will see later that the inclusive cor-
g(u)=21 Fire(u-1)". (D relation function gives the modulus of directly. It is also
seen from Eqgs(16) that a Gaussian shape, likg]
Comparing these expressions with E(®—(8) we see that
the inclusive distributions/correlations will depend on the p ~ex;{ _ikz —ER2k2>
k’k 5K — |

current correlation matrixx exactly the same way as the 2
exclusive distributions/correlations depend anti{mes the Kk
one-particle density matrig. _ + !
. . . . . k+ ’ k, k k ’ (17)
Multiparticle production cannot be derived from “first 2

principles.” | can certainly not overcome the well-known _ _ o _ _
difficulties. Instead, | present the simplest quantum dynamicér the one-particle density matrix is not compatible with a
which produces exactly the claéb of IMS. | postulate the Gaussian-shaped current correlation matix, and vice

following effective Hamiltonian: versa
A . A The final-state distributions in IMS can be directly related
H=5(t)2 (J;ak+Jkal), (120  to the currents). The generating functiongb) can conve-
K

niently be re-expressed as an averaged functional over the

whereJ, denote the Fourier components of a certain eﬁec_fluctuatmg external currerit
exp(; (uk—l)|Jk|2”, (18)

tive external field) exciting the boson field. The “current”
J(X)=J(x)&(t) is nonzero in the collision area and we as-
sume that the collision time can be taken infinitely short. Let
us calculate the unitary effect of the Hamiltonie) on the  which is of course equivalent to Eq&) or (9).
vacuum: The above equation has numerous useful consequences.
) - - The multiplicity distribution can be written in this form:
|¢J>:exl{ _|§k: (Jrax+Jiaf) ||0)

DIEEIEES R

Glu]=M

pr=M ; (19

1 ~
=exp —5 2 [W°-iX Jag]l0), (13
k k

while the factorial moments takze the same form but without

which is otherwise a product coherent stHigz | —iJ,). the exponential factor exp(=|J[), i.e.,
These final statelsy;) are pure states whereas the IMS are 2 |J|2) '

mixed ones. Obviously, no unitary dynamics can create

mixed states from pure ones. Therefore, | consider unitary

dynamics inrandom external fields: | assume a Gaussian This phenomenon also characterizes the differences between

distribution for the stochastic fluctuations of the currdnt the expressions of the exclusive and the inclusive distribu-

Let the mean valueBi[ J,] be always zero. Also we assume tion functions, respectively,

F,=M . (20)
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f(1,2,...1)=M[]34|%]3,]%, ... |3|?
exp(—2[J[%)]
] (inclusive

(exclusive

(21)

as well as of the correlation functions. In particular, the in-

clusive correlation functions take the following form:
C(1.2,...N=MI3 3% [3%Te, (22

the exclusive ones would contain the ominous exponentiaﬁjensate

factor, too. The notatioM] ... ]. means that in the “expec-

tation value” only the “connected grafs” are to be taken

into the account. In the case of E@2) it yields (r—1)!
“cycles,” i.e., the “cycle” aq,a03. .., and its variants
for permutations of 2... r [5].
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with the canonical thermal multiplicity distribution

Po=(1—e e T (26)
of the mean multiplicity
()= (27)

- en/T_ 1 '
Let us observe that approaching the “condensation point”
corresponds td—o and the population of the “Bose con-
increases to the infinity while it is remaining ther-
mally distributed all the time.

Now | turn to the dynamic conditions for the fluctuating
external currend. In the special case of the condensate IMS,
the second relation in Eq(16) becomes simplya, g
=(Mprk={N) ek ¢x . Recall the definitior(14) of « as the

One can easily summarize the main result of this sectiogurrent’s correlation matrix, which yields the following rela-

as follows. The count®,, measured simultaneously in a

collision event, arestatistically identicalto the correspond-
ing spectral intensitie$J,|?. Like their distributions, their
corresponding moments are identical as well:

(Mg .n)=ML3 2012132 (23
The IMS class of density operato($) has a particular
asymptotics. The “inverse temperature” matik must be
positive. If it were degenerate the stéte would not exist at
all. A degenerateB can formally be interpreted as if the

mode of the zero eigenvalue became infinitely hot. This®

tion:

M[J Ig]=(n) o @y - (29

Regarding thaM[J,,J,] should vanish by assumption. the
Gaussian fluctuations satisfying the above relation must take

the form
Ji=2zV(n) ¢

for all k, wherez is a random complex number of the stan-
dard Gauss distribution (#)exp(—|Z?)d?z. Taking the sto-
hastic mean of the modulus square of both sides we obtain

(29

mode is, in fact, becoming more and more populated but the

infinite population is unattainable. Nonetheless, an IMS with

almost degeneratg@ would really be a Bose-Einstein con-

densate since this only requires a big finite number of boson&hich also leads to
in a single quantum state. Speculations that the point of de-

generacy, i.e., the point=1/|p||, is the point of condensa-

tion (like in thermal Bose systemsannot be verified for the

IMS.

Let us first recapitulate the kinematics of an IMS Conden'Equations(ZQ)—(Sl) show the simple way the pulse of the
sate. The condensate mode does not interfere with the othggra tive current determines the condensate wave function

modes so we can discuss it separately. We assume that o4ty the mean population. Actually, the mean multiplicity is
IMS is dominated by the condensate mode. The one-particlgcntical to the overall intensity of the current pulEgy).

|3 2=(n)|el%, (30

<n>=§ |42 (3D

density matrix has the formy =@y ¢ where ¢ is the

The pulse’s normalized spectral density is equal to the modu-

condensate mode’s wave function. If we introduce the conys square of the condensate wave functi8). Equation

densate absorption operatag=Z3,¢a, then, using Egs.

(29 seems, however, to be very restrictive since it imposes

(1)-(4), the condensate IMS can be written as a thermathe same random phase and weight simultaneously for all

equilibrium state at temperatufie= — 1/In v:

-
~ a.a
pc=<1—e‘1”>exp(— T)

(29)

This state assumes a Hamiltoniafa, which is not the real

case, the condensate is not even stationary in general. Yet,
the form(24) is completely proper to calculate characteristics

of the state by a thermal analogy. For instance,(Bnyields
directly the generating functional in the form

1—e 1T
Glu]= , (25)
1—exp(—1rr>§ u el ?

current amplitudeg .
| outline a possible generalization of the simple dynamics
proposed earlier. Let us replace the Hamiltonia®) by

H(t)=g(t>; ENGERNIGEN] (32)

whereg(t) is a normalized function of characteristic width
At, controlling the intensity of particle creation. The time-
dependent currentk(t) are random functions of zero mean;
let their correlator be of the nonstationary white-noise type:

IOM[J (1) I (]= (1" —t) arr.- (33
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U T
2 dyrk ak,pak— E{akakryp} (34)
k,k’

In the limit At—0, the random dynamics represented by‘independent multiboson states.” | showed how these states
Egs.(32),(33) reduces to the simplistic dynami¢$2),(14) . emerge from a simplistic version of chaotic current models
The Hamiltonian(32) with the white-noise current$33)  and | derived the relationship between the IMS states and the
yield the following master equatiofl2] for the noise- correlator of the currents. | briefly recapitulated the generat-
averaged density operat@n the interaction pictune ing functional representation of multiparticle counts. Beyond
d;) methodological matters, | found that the Bose-Einstein con-
- = ) densate would be thermally populated and the condensation
dt point corresponds to the infinite hot state. | restricted my
One solves the master equation with the vacuum initial Statea_naly&s.to th_e_ IMS and the simplest chaoth current r_necha-

.a1r1|sms with trivial time dependences. The simple choice al-
, . ; ! ows for transparent relationships between the current and
choer rlglrzt:a(?z?[htlﬁilgr’nt)r;: frglzlti?)tr?gg)v I(Ijl(;[e:(i tr?otlze'll'l\r?ﬁgh the fl_nal multiparticle state(cher Works_, like, e.g. Ref.
analytic calculations are still possible one can .turn to ver 10],.|nco.rporate amore ree_lllst|c space-time evolu.tlon of the
powerful Monte Carlo(MC) methods[13] developed for multiparticle source.Th_ere is, nor_letheless, a par_tlcplar ad-
Markovian master equations. These MC algorithms WiIIvantage Qf any underlying Qyna'mms vyhether realistic or not.
yield the density operators 01; the multiparticle final statesusua"y It aIIO\.N.S economic S|mulat|(_)n methods for the
without “struggling through” [14] the usual Wigner- physical quantities of interest. To this end, I propos_e(_JI a
function formalism quantum master equation known to be suitable for efficient

: L . . Monte Carlo simulations.
The aim of this paper was partly pedagogical. To avoid

Bose symmetrization “by hand,” | used standard quantum- | thank Tama Csago and Sador Hegyi for useful dis-
mechanical considerations to construct and to analyze theussions.
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