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Classical properties of an open quantum system emerge through its interaction with other degrees of
freedom (decoherence). We treat the case where this interaction produces a Markovian master equation
for the system. We derive the corresponding distinguished local basis (pointer basis) by three methods.
The first demands that the pointer states mimic as closely as possible the local nonunitary evolution.
The second demands that the local entropy production be minimal. The third imposes robustness on
the inherent quantum and emerging classical uncertainties. All three methods lead to localized Gaussian
pointer states, their formation and diffusion being governed by well-defined quantum Langevin equations.

PACS numbers: 03.65.Bz, 05.60.Gg
The program of decoherence has been very successful
in explaining the classical appearance of macroscopic or
mesoscopic quantum systems, both theoretically and ex-
perimentally [1]. The interaction of a quantum system with
its environment leads in these cases to a delocalization of
phase relations in the full configuration space of system
plus environment, preventing them from being observed
locally, i.e., at the system itself. Thereby the environ-
ment distinguishes a certain preferred basis for the system,
which can be used to describe the apparent classical behav-
ior (pointer basis [2]). An important question is how the
pointer basis can be determined and whether it is uniquely
fixed. It would then be possible to give a unique decom-
position of the reduced density matrix into an apparent en-
semble of wave functions.

No unique rules have so far been adopted to calculate
the pointer states in the general case. In [3] the suggestion
was made that the pointer basis (there called collection of
“memory states”) is characterized by its robustness (there
called “dynamical stability”). A first quantitative measure
to investigate the dynamical stability is the rate of desepa-
ration introduced in [4]—it measures how fast a quantum
system becomes entangled with environmental degrees of
freedom. In a model consisting of harmonic oscillators, it
was shown that coherent states are the stablest states and
therefore can be considered as pointer states [1,4]. A dif-
ferent measure for robustness is the “predictability sieve”
put forward in [5]. The pointer basis is there distinguished
by the property of having the least production rate for lo-
cal entropy during the coupling to the environment. In the
case of harmonic oscillators, this again leads to the coher-
ent states as the pointer basis [6]. At least for such simple
systems, the rate of deseparation and predictability sieve
are roughly equivalent measures [1].

On the other hand, the theory and formalism of quan-
tum state diffusion (QSD) were put forward to attribute
random wave functions for local systems, which satisfy
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an appropriate Langevin equation [7]. These wave func-
tions are known to be related to possible continuous mea-
surements [8] as well as to decoherent histories [9] of the
given local system. But even if we take them as wave func-
tions of mere formal meaning (since subsystems do not, in
general, possess their own pure states), the question arises
whether there is any connection between these states and
the pointer states, in cases where the local system exhibits
classical properties. We shall show that there is, in fact,
such a connection —pointer basis and QSD basis are sub-
stantially the same. For this aim, we shall also present
below a new, alternative, derivation of QSD.

In the following we shall consider the dynamics of the
reduced density matrix, r̂�t�, of a system interacting with
a certain decohering environment. Ideal pointer states
(described by a fixed set of projectors P̂n) are character-
ized by the fact that r̂�t� can be decomposed as

r̂�t� !
X
n

fnP̂n, t ¿ tD , (1)

for a generic initial state r̂�0�, where tD is the decoherence
time. The weights � fn� correspond to a normalized proba-
bility distribution. The pointer states �P̂n; n � 1, 2, . . .�
form in this case an orthogonal system. For macroscopic
systems, tD is extremely short [1,10]. More generally, one
would expect

r̂�t� !
Z

f�G�P̂�G� dG, t ¿ tD , (2)

where f�G� is a probability distribution over the pointer
states P̂�G� which project now on an overcomplete set of
pure states (the above-mentioned coherent states provide
an example for this). The pointer states in (1) or (2) result
after an explicit interaction with the environment is taken
into account [1].
© 2000 The American Physical Society
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In many cases, the effects of decoherence can be de-
scribed by the following Markovian master equation [1],

dr̂�t�
dt

� L r̂�t� � 2
i

2m
� p̂2, r̂�t�� 2

D
2

���x̂, �x̂, r̂�t����� ,

(3)

where D describes the strength of the interaction with the
environment. Such an equation arises, for example, in
situations where environmental degrees of freedom scat-
ter off a macroscopic object and localize it by carrying
away quantum correlations with the object [1,10]. Ap-
plying the concept of predictability sieve would mean to
minimize the local production of “linear entropy” S�t� �
1 2 trr̂2�t�. This does not give a unique answer, since
the result depends explicitly on t. In the oscillator case,
one has therefore calculated the time-integrated entropy
production [1,6]. If one considers the initial entropy pro-
duction rate �S�0�, assuming the initial state r̂�0� of the
subsystem to be a pure state P̂�G�, one finds from (3)
that �S�0� � D�	x̂2
 2 	x̂
2� � Ds2, where the expecta-
tion value refers to the initial state. This rate would be
minimized if the pointer wave functions were delta func-
tions. However, their spread s increases dynamically due
to the kinetic term in (3). Therefore, very narrow wave
functions do not produce minimum entropy on a finite time
scale and thus cannot correspond to pointer states. The (co-
herent) unitary spreading and the (incoherent) nonunitary
localizing terms of the master equation (3) are compet-
ing with each other. For a wave function of characteristic
width s, the above two effects are approximately balanced
for the “equilibrium width” [1,10,11]

s0 � �Dm�21�4. (4)

It is then reasonable to conjecture that, in the spirit of
predictability sieve and of dynamical robustness, s0 will
be the characteristic width of the pointer states. This is, in
fact, what we shall show by using three different methods,
all invoking a principle of robustness.

The first method goes as follows. Let us allow for the
pointer state P̂�G� a certain natural time dependence such
that it may initially evolve as closely as possible along
the true state r̂ satisfying the master equation (3), and
then reach a stationary state. We introduce the “speed”
y describing the departure of the states P̂�G� from r̂ in
the Hilbert-Schmidt norm,

y2 � tr

∑
d
dt

P̂�G� 2 L P̂�G�
∏2

. (5)

The smaller y, the greater is the robustness of the pointer
states P̂�G�. Hence one defines the optimum drift of the
pure pointer state P̂�G� � ccy by minimizing y [12].
This is given by the nonlinear equation [12,13]

�c � �L ccy�c 2 	L ccy
c . (6)

This result is valid for all kinds of Markovian subdynamics.
In our special case (3), it yields the following nonlinear
wave equation:

�c � 2
i

2m
p̂2c 2

D
2

��x̂ 2 	x̂
�2 2 s2�c . (7)

As shown in [14], this equation has a stationary solu-
tion which is unique up to Galilean transformations. The
wave function of the fiducial stationary state is the com-
plex Gaussian wave packet

c0�x� � �aR�2p�1�4 exp�2ax2�4� , (8)

with parameter

a � aR 1 iaI � �1 2 i�
p

2Dm . (9)

The principle of “Hilbert-Schmidt robustness” has thus
singled out unique Gaussian pointer states as the robust
pure states closest to the true nonunitary local dynamics.
The exact width s � 1�

p
aR confirms the heuristic esti-

mate (4). Accordingly, we restrict our further discussion
to pointer states P̂�G� with Gaussian wave functions and
make the ansatz

cG�x� � �aR�2p�1�4 exp�2a�x 2 x�2�4 1 ip�x 2 x�� ,
(10)

where G � �x, p�T has been understood. For later pur-
poses, we calculate the correlation matrix C,

C � 	c0j

µ
x̂2 �x̂p̂ 1 H.c.��2

�x̂p̂ 1 H.c.��2 p̂2

∂
jc0


�
1

aR

µ
1 2aI�2

2aI�2 jaj2�4

∂
, (11)

of the quantum uncertainties of the canonical observables
in the pointer state itself, where c0 denotes the fiducial
state (8). It was shown in [10] that the states diagonalizing
r̂ exactly are the harmonic oscillator eigenfunctions which
are very broad, while narrow eigenfunctions are apparently
obtained only for discrete systems. In contrast to these,
the above pointer states are well localized. For example, in
the situation of a small dust particle (m � 10214 g) scat-
tered by air molecules one has D � 1032 cm22 s21 [10]
and therefore s0 � �Dm�21�4 � 10211 cm and tD �p

m�D � 10210 s.
We now come to the second method. As a preparation,

we shall discuss the reduced dynamics of the local system
in the basis given by (10). We allow temporarily the pa-
rameter a to take an arbitrary complex value, and then de-
rive again a distinguished value. If one allows a “natural”
time dependence for the probability distribution f�G; t� of
the pointer, the asymptotic condition (2) can be turned into
an exact identity:

r̂�t� �
Z

f�G; t�P̂�G� dG, t . tD , (12)

where dG � dxdp�2p. This important fact will be
proven elsewhere [15]. It generalizes the corresponding
statement made in [14] for the specific value (9) of a as
well as the asymptotic statement proved in [16,17].
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From (3) and (12) one can derive an evolution equation
for f�G; t�,

df�G; t�
dt

� 2
p
m

≠xf�G; t� 1
1
2

�Dpp≠
2
pp 1 Dxx≠

2
xx

1 2Dpx≠
2
px�f�G; t� ,

(13)

where the elements of the diffusion matrix are given by

D �
µ

Dxx Dxp

Dpx Dpp

∂
�

µ
2aI�maR jaj2�4maR

jaj2�4maR D

∂
.

(14)
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To find a formal solution of (13), we use the Fourier rep-
resentation f̃�G̃; t� �

R
f�G; t� exp�i�x̃p 2 p̃x�� dG with

G̃ � �x̃, p̃�T . Equation (13) then leads to

df̃�G̃; t�
dt

� 2
p̃
m

≠x̃ f̃�G̃; t� 2
1
2
jDj �G̃T D21G̃�f̃�G̃; t� ,

(15)

where jDj denotes the determinant of D. The solution
takes the form

f̃�G̃; t� � exp

∑
2

t
2

G̃T G�t�G̃
∏
f̃�x̃ 2 p̃t�m, p̃; 0� . (16)

By substitution into (15) one obtains explicitly the matrix
of time-dependent coefficients,
G�t� �

µ
Dpp 2Dxp 1 Dppt�2m

2Dxp 1 Dppt�2m Dxx 2 Dxpt�m 1 Dppt2�3m2

∂
. (17)
Equation (13) can be interpreted as a Fokker-Planck
equation provided the diffusion matrix D is non-negative.
Then the weight function f�x, p; t� of the pointer states
P̂�x, p� will drift according to the free-particle dynamics.
At the same time the state of the system will diffuse over
the pointer states P̂�x, p�. We can now implement the
predictability sieve and minimize the production rate for
linear entropy by minimizing the width of the Gaussian
pointer states. In other words, we maximize aR under
the condition that the diffusion matrix be non-negative.
The condition that D has a non-negative determinant leads
to the condition a

4
R 1 2a

2
Ra

2
I 1 16DmaRaI 1 a

4
I # 0

which can be fulfilled only if aI , 0, since aR . 0 for
(10) to be normalizable. Introducing dimensionless po-
lar coordinates R, f by a �

p
Dm R exp�if�, this condi-

tion reads R2 1 8 sin2f # 0. The maximum for aR �p
Dm R cosf is reached if the equality sign holds, since

one could otherwise increase R by holding f fixed and
thus increase aR . Maximizing aR under the condition
R2 � 28 sin2f then yields for a the following value as

distinguished by the predictability sieve:

as � 31�4�
p

3 2 i�
p

Dm , (18)

which coincides, up to a small deviation in the numerical
coefficients, with the value (9) following from the criterion
of Hilbert-Schmidt robustness. This above slight departure
of as might be related to the fact that the given form of
predictability sieve predicts a degenerate diffusion matrix
D. We think, however, that the emerging incoherent un-
certainties due to the pointer state diffusion must be made
proportional to the quantum uncertainties already present
in the pointer states itself. The “robustness of uncertain-
ties” demands that the matrix C (11) of quantum correla-
tions be proportional to the diffusion matrix D (14) of the
corresponding classical coordinates for the pointer. From
the condition that C � const 3 D we then obtain again
the standard value (9) for a, while C � m�2D 3 D.

We shall now discuss our last method to determine the
pointer basis, which will involve quantum state diffusion.
As we see from (12) and (13), the quantum state of the
system, when expanded as a mixture of pointer states,
performs diffusion after the decoherence time has elapsed.
This diffusion will, by construction, preserve the shape
(8) of the Gaussian wave packet, and only its center will
walk randomly. It is then natural to ask whether there
is a generic QSD process which, first, applies to generic
pure initial states and, second, tends to the above specific
diffusion process for t ¿ tD .

As is well known, the Fokker-Planck equation (13) is
equivalent to the Itô-Langevin equation [18]

dG � Vdt 1 dX , (19)

where V � �p�m, 0�, and dX � �dj, dp� is the incre-
ment of a zero-mean Gaussian white noise with correlation
matrix D dt. In case of phase-space diffusion the use of
the Itô-Langevin formalism instead of the Fokker-Planck
formalism is a matter of taste. But the diffusion of the cor-
responding pointer states cG would be quite awkward in
the Fokker-Planck formalism. We thus choose the Itô for-
malism and apply (19) to the Gaussian pointer states (10).
This leads to, substituting 	x̂
 � x and 	p̂
 � p,

dc � 2
i

2m
p̂2c dt 2

D
2

�x̂ 2 	x̂
�2c dt

1 �x̂ 2 	x̂
�c dz , (20)

where the index G has been skipped. The deterministic part
of the evolution is governed, up to normalization, by the
same nonlinear wave equation (7) which we had obtained
from the Hilbert-Schmidt robustness, while the random
part is driven by the complex Gaussian white noise

dz �
a

2
dj 1 i dp . (21)

Since the correlation matrix of dX � �dj, dp� is D dt,
(14) and (21) yield

M�dz dz�� � D dt (22)

for the mean of the Hermitian correlation, independent of
a. But the correlation M�dz dz� still depends on a. A
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most remarkable feature of (20) is that any reference to the
phase-space variables G � �x, p� has been canceled. For
this reason we have omitted the subscript G from c and
extend the validity of the equation to arbitrary initial state
vectors. It is possible to prove [16,19–21] that, starting
from whatever initial state c�0�, the random solution c�t�
will tend to be the Gaussian pointer state cG�t�, where G�t�
is governed by the diffusion process (19). Equation (20)
is called the Itô-Schrödinger equation of QSD.

Since the free parameter a still appears in M�dz dz�, we
are left with the nonuniqueness problem of the QSD equa-
tions. If one, however, chooses the distinguished value (9)
of a, one finds, using (21), the simple result

M�dz dz� � M�dz� dz�� � 0 , (23)

distinguishing a unique QSD. Historically, this unique
QSD was in the Fokker-Planck formalism singled out
by certain invariance considerations [22,23]. The Itô-
Schrödinger equation (20) with the complex Gaussian
white noise [(22) and (23)] has become the dominating
formalism of standard QSD theory [7] extended for arbi-
trary Markovian reduced dynamics. Applying exact forms
of robustness criteria we have thus obtained a unique
QSD which leads to stationary Gaussian pointer states
for t ¿ tD , whose centers undergo a diffusion process.
With heuristic forms of robustness one could have chosen
other QSD equations like in [19] (aR � 2

p
Dm ) or [16]

(aR �
p

Dm�2
p

2 ). The recent proposal of “maximal
survival probability” from [24] differs from our first
method and does not lead to (23) [15].

In conclusion, we have demonstrated that three differ-
ent methods of dynamical robustness lead to an essentially
unique local pointer basis in case of Markovian local dy-
namics. The corresponding pointer states follow the classi-
cal trajectories up to a tiny random diffusion. Well-defined
stochastic differential equations, known from the theory
of quantum state diffusion, govern both the formation and
the diffusion of pointer states. These states can thus be
used to characterize local quasiclassical properties. The
pointer states are not an absolute property of the system
in itself, but characterize only certain stability properties
with respect to interactions with the environment: They
are least sensitive to quantum entanglement, which is why
interference terms between them cannot be noticed by lo-
cal observers. They possess thus meaning with respect to
an observer-related branch of the total wave function or a
component corresponding to a potential fundamental col-
lapse [1,25], while the interaction with the environment is
encoded in the choice of our master equation (3).
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