i Sy

ELSEVIER

Chemical Physics 268 (2001) 91-104

Chemical
Physics

www.elsevier.nl/locate/chemphys

Complete parameterization, and invariance, of
diffusive quantum trajectories for Markovian open systems

H.M. Wiseman 2, L. Diési °*

& School of Science, Griffith University, Brisbane 4111 Australia
> KFKI Research Institute for Particle and Nuclear Physics, H-1525 Budapest 114, POB 49, Hungary

Received 11 December 2000

Abstract

The state matrix p for an open quantum system with Markovian evolution obeys a master equation. The master
equation evolution can be unraveled into stochastic nonlinear trajectories for a pure state P, such that on average P
reproduces p. Here we give for the first time a complete parameterization of all diffusive unravelings (in which P evolves
continuously but non-differentiably in time). We give an explicit measurement theory interpretation for these quantum
trajectories, in terms of monitoring the system’s environment. We also introduce new classes of diffusive unravelings
that are invariant under the linear operator transformations under which the master equation is invariant. We illustrate
these invariant unravelings by numerical simulations. Finally, we discuss generalized gauge transformations as a
method of connecting apparently disparate descriptions of the same trajectories by stochastic Schrodinger equations,
and their invariance properties. © 2001 Elsevier Science B.V. All rights reserved.

1. Introduction

It is well known that quantum mixtures differ
qualitatively from classical mixtures. Here a mixed
state means one about which we have incomplete
knowledge, as opposed to a pure state, which is
one about which we have maximal knowledge. In
the classical case, a mixed state is described by a
probability distribution g over phase space. There
is a one-to-one correspondence between this prob-
ability distribution p and a weighted ensemble of
points in phase space (pure states). In the quantum
case, a mixed state is described by a density op-
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erator, or state matrix p. But there is a one-to-
many (infinitely many, in fact) mapping [1] from
this p to a weighted ensemble of state vectors (pure
states). That is to say, there are infinitely many
ways to write a given impure state matrix p as a
positively weighted sum of projectors.

This difference between quantum and classical
systems is also reflected in the dynamics of open
systems. Interaction with an environment generi-
cally causes systems to become mixed. This can be
described by deterministic evolution of the mixed
state (the classical p or the quantum p). For ex-
ample, this evolution may be described by a Fok-
ker-Planck equation for ¢, or a master equation
for p. Alternatively, the dynamics can be described
by stochastic trajectories of pure states (the clas-
sical point in phase space or the quantum projec-
tor). In the classical case the two descriptions
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follow uniquely from each other and they are
completely equivalent. But in the quantum case,
the trajectory equation does not follow uniquely
from the ensemble equation. In fact there are in-
finitely many different quantum trajectory equa-
tions for a given master equation [3,4].

It is thus apparent that quantum trajectories
have a richer physical content than classical tra-
jectories. The different quantum trajectory equa-
tions have been called different unravelings of the
master equation. In some (but not all [5]) cases,
they can be interpreted as arising from inequiva-
lent schemes of efficiently monitoring the envi-
ronment to which the system is coupled [6]. (For
classical systems, all such efficient schemes would
be equivalent with one another.) From this point
of view, the statistical description arises from the
probabilistic nature of quantum measurements.
However, it is possible to study the nature of quan-
tum unravelings without specifying a concrete
measurement scheme.

In the present work, we limit our discussion to a
particular class of unravelings, in which the noise
in the quantum trajectory is diffusive in nature.
After some preliminaries, we give, for the first
time, a complete parameterization of such unrav-
elings in Section 6. An explicit formulation in
terms of general quantum measurement is given in
Section 5. In Section 6 we discuss the notion of
invariance of quantum trajectories, using concepts
from Section 2. We introduce new classes of in-
variant unravelings, and in Section 7, illustrate
them for the process of resonance fluorescence. In
Section 8 we discuss the stochastic Schrodinger
equation (SSE) formulation of quantum trajec-
tories, and show how seemingly inequivalent
equations may be related by generalized gauge
transformations. We conclude with a summary
and discussion of the relation of our present work
to past and future work in the field.

2. The master equation

If a quantum system is weakly coupled to an
environmental reservoir, and many modes of the
reservoir are roughly equally affected by the sys-
tem, then one can make the Born and Markov

approximations in describing the effect of the en-
vironment on the system [7]. Tracing over (that is,
ignoring) the state of the environment leads to a
Markovian evolution equation for the state matrix
p of the system, known as a quantum master
equation. The most general form of the quantum
master equation which is mathematically valid is
the Lindblad form [§]

p=2p=—ilH,pl+cpc, —Hclew,p}.  (21)

Here {c;};_, is the ordered set of Lindblad oper-
ators, and as in the remainder of this paper, we are
using the Einstein summation convention for re-
peated indices. The Lindblad operators couple the
system to the reservoir modes.

The above representation of the evolution su-
peroperator ¢ is not unique. We can reduce the
ambiguity by requiring that the operators 1,cy,
¢, ..., cg be linearly independent. Then we are left
with the freedom of re-defining the Lindblad op-
erators by an arbitrary K x K unitary matrix T},

[l
cr — Tycey. (2.2)

In addition, % is invariant under c-number shifts
of the Lindblad operators, accompanied by a new
term in the Hamiltonian

i,
a — <+ L H— H+ 3 (x;ck - h.C.). (2.3)
The master equation turns pure states
p = |¥){(¥| = P into mixed ones. A related mathe-
matical object is the transition (mixing) rate oper-
ator [10]

W=%P—{P,¥P}+ PTr[PLP] (2.4)
= (e = {e))Plex — (e,
where (...) = Tr[...P] stands for quantum expec-

tation values. W is an invariant operator; it does
not change with the unitary rotation (2.2) of the
Lindblad operators or the c-number shift (2.3).
The transition rate operator is positive semi-defi-
nite and orthogonal to the current state P, i.e.
WP = PW = 0. Its trace is the transition (mixing)
rate:

w=TrW = ((c,tc;) - (c,t><ck>) (2.6)
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3. Quantum trajectories

In the situation where a Markovian master
equation can be derived, it is possible (in principle)
to continually measure the state of the envi-
ronment on a time scale large compared to the
reservoir correlation time but small compared to
the response time of the system. This effectively
continuous measurement is what we will call
“monitoring”. In such systems, monitoring the
environment does not disrupt the system-reservoir
coupling and the system will continue to evolve
according to the master equation if one ignores the
results of the monitoring.

By contrast, if one does take note of the results
of monitoring the environment, then the system
will no longer obey the master equation. Because
the system-reservoir coupling causes the reservoir
to become entangled with the system, measuring
the former’s state produces information about the
latter’s state. That is, the system state is condi-
tioned upon the result of the measurements. This
will tend to undo the increase in the mixedness of
the system’s state caused by the coupling.

Perfect monitoring of the reservoir requires
continual rank-one projective (i.e. von Neumann)
measurements of its state, on the time scale dis-
cussed above. If the system initially has a mixed
state, then its state will usually be collapsed to-
wards a pure state. However this is not a process
which itself can be described by projective mea-
surements on the system, because the system is not
being directly measured. Rather, the monitoring of
the environment leads to a gradual (on average)
decrease in the system’s entropy.

If the system is initially in a pure state then,
under perfect monitoring of its environment, it will
remain in a pure state. Then the effect of the
monitoring is to cause the system to change its
pure state in a stochastic and (in general) nonlinear
way. Such evolution has been called a quantum
trajectory [11]. It can be described by a nonlinear
SSE [2,3,9,10,12-16]:

W) = —iH, ) + noise,,. (3.1)

Here H,, is a non-Hermitian effective Hamiltonian,
and (like the noise) it depends on . The nonlin-

earity and stochasticity are present because they
are a fundamental part of measurement in quan-
tum mechanics.

The stochastic average of pure state quantum
trajectories still reproduces the state of the en-
semble p for each time ¢

E[ly () (W ()] = E[P(1)] = p(2). (3:2)

Here E denotes an expectation value, or ensemble
average with respect to the noise process in the
SSE. The nonlinear Hamiltonian and the sto-
chastic term in Eq. (3.1) must be derived from the
above constraint. Then the SSE is said to unravel
the master equation [11]. It is now well-known [17]
that there are many (in fact continuously many)
different unravelings for a given master equation,
corresponding to different ways of monitoring the
environment.

Any classical noisy trajectory can be approxi-
mated to an arbitrary accuracy by a trajectory
consisting of deterministic evolution punctuated
by jumps [18]. In the same way, the noise in the
SSE (3.1) can always be written as a quantum
jump term. These jumps may range in size from
being infinitesimal, to being so large that the sys-
tem state after the jump is always orthogonal to
that before the jump [10,19,20]. In this paper we
are concerned with the former case. In the limit of
infinitesimal jumps occurring infinitely frequently,
a diffusive unraveling results. As in Brownian
motion, the state of the system evolves continu-
ously but not differentiably in time. For this rea-
son, these sorts of unravelings have been called
continuous unravelings [22], but here we call them
diffusive.

Although a SSE is conceptually the simplest
way to define a quantum trajectory, in this work
we will instead use the stochastic master equation
(SME) [2,3,16,21]. This has a number of advan-
tages. First, it is more general in that it can de-
scribe the purification of an initially mixed state.
Second, it is easier to see the relation between the
quantum trajectories and the master equation
which the system still obeys on average. Third, it is
invariant under gauge transformations

W (2)) — explix(d)] |y (1)), (3-3)
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where y(¢) is an arbitrary real function of time.
Such gauge transformations can radically change
the appearance of a SSE, since y(¢) may be sto-
chastic and may be a function of |}) itself. Since
unnormalized wave functions may also be used,
the gauge transformation (3.3) can be extended for
complex functions y(¢). We discuss these points
further in Section 8.

4. Diffusive unravelings

Assuming that the initial state of the system is
pure, the quantum trajectory for its projector will
be described by the SME of the form P = P+
noise. The drift term, by virtue of Eq. (3.2), assures
the consistency with the ensemble evolution (2.1).
The noise term, which has an expectation value of
zero, we are assuming to be diffusive in nature. It is
convenient to represent such singular Gaussian
noise using the Ito calculus [23]. Writing its Ito-
differential as dX, we have the following general
form of SME:

dP = dr#P + dX. (4.1)

Here dX is traceless and Hermitian, and depends
nonlinearly on the current pure state P. Its ex-
pectation value E[dX] is zero. Since the SME is
assumed to preserve the purity of the state, the
second moments of dX are constrained by the
identity dP = d(P?) = {dP,P} + dPdP, which
must hold for arbitrary rank-one projectors P.
Substituting the expression (4.1) and using the Ito
rules yields two separate equations:

dx = {P,dx?}, (4.2)

dxdX = 2Pdt — {P, #P}dr. (4.3)

We can write the general solution of Eq. (4.2) in
the simple form:

dX = |de){(¥| + [¥){del,  (dely) = 0. (4.4)

Here |d¢) is an Ito-differential of zero mean, or-
thogonal to the current state |y). Its autocorrela-
tion is constrained: substituting Eq. (4.4) into Eq.
(4.3) yields

|dp)(de| = Wdt, (4.5)

where W is the P-dependent transition rate oper-
ator (2.4). Hence we have obtained the general
form of diffusive unravelings in terms of the fol-
lowing SME:

dP = deP + [de)(¥] + [¥)(dol, (4.6)

where the Ito-differential |d¢) is orthogonal to |y),
has zero mean, and the Hermitian part of its cor-
relation is given by Eq. (4.5).

The careful reader will observe that the non-
Hermitian part |de)|de) remains free, expressing
the fact that there are infinitely many pure state
diffusive unravelings of the same Lindblad master
equation (2.1). If the correlation |dg)|de) is set to
zero then the noise term is uniquely defined by the
Hermitian correlation in Eq. (4.5), and we obtain a
unique unraveling [24,25]. Let us call it the stan-
dard one. The standard SME (4.6) follows uni-
quely from the Lindblad master equation (2.1) and
it is invariant in a sense that it does not change
with the re-definition (2.2, 2.3) of the Lindblad
operators. For a long time it has apparently been
thought that the standard one is the only invariant
unraveling [9,20,24]. In Section 6, however, we
display invariant and non-zero choices for the
non-Hermitian correlation |d¢)|de) of the noise.

Eq. (4.6), with the constraints listed below it,
represents diffusive unraveling in complete gener-
ality. However, for many practical purposes, it is
useful to have a more explicit construction. That is
we wish to reparameterize the state-vector valued
generalized Wiener noise |dp) by complex-num-
ber-valued standard Wiener noises. Recall the
representation (2.4) of the transition rate operator
W in terms of the Lindblad operators ¢;. From Eq.
(4.5) it is then obvious that |d¢) is spanned by the
vectors (¢ — (cx))|y). We introduced the vector of
complex Wiener processes £(f) = {&()}r, as co-
efficients:

[dp) = (cx = (ci))Y)d&;. (4.7)

Recall that we are using the Einstein summation
convention, and note our notation of using &(¢) for
the Wiener process, not its time-derivative as in
Ref. [23].

The mean increments E[d&.] vanish, so that
E[|d@)] does also. Also, the above form of |d¢)
satisfies the constraint (4.5) provided the Hermi-
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tian part of the noises’ correlation matrix is the
unit matrix, while the non-Hermitian part remains
free:

dE(0dE (1) = desy, (4.8)

dé;(6)d& (1) = dtuy. (4.9)

The uj = w; are arbitrary complex numbers sub-
Ject only to the condition that the 2K x 2K cor-
relation matrix of the real vector (Red¢, Imd¢)

dt (1+Refu]  Imlu]
2 ( Imu] 1—Refu (4.10)
be nonnegative. It can be shown that the smallest
eigenvalue of this matrix is given in terms of the
norm of the complex matrix u by (1 —|ul|)/2.
Thus, this condition is satisfied if and only if

Jufl < 1. (4.11)

With this parameterization we can rewrite the
SME (4.6) explicitly as

dP = ZPdt + [(cx — {cx))PdE; + h.c.]. (4.12)

5. Measurement interpretation

We stated in Section 4 that the master equation
is unraveled if the environment of the system is
monitored, and that the pure state P obeying Eq.
(4.12) can be interpreted as the state conditioned
on the results of this monitoring. To see this re-
lationship, it is necessary to consider the theory of
non-projective or indirect measurements (see for
example Ref. [26]). Such measurements arise when
the system of interest interacts with a second sys-
tem, and that second system is subject to a mea-
surement of the traditional (projective) sort. If the
second system is initially in a pure state, and a
rank-one projective measurement is made on it,
then the indirect measurement on the system can
be described by a set of measurement operators Q,.
Here r labels the result of the measurement, and
the operators are constrained only by the com-
pleteness relation

/d,uo(r)QIQ, =1. (5.1)

Here dy,(r) is a normalized measure over the
space of all r. Let the initial state of the system be
p. The measurement operators give both the
probability

du(r) = du(r)Tr [p2} 2], (5.2)
for obtaining a result in an infinitesimal vicinity of

r, and the state

o = d,uO(V)Q,.pQI _ QrpQI
’ dpu(r) Tr[pQl Q]

(5.3)

conditioned on the result r. If the measurement is
made but the result ignored, the new system state

1S
o= [ auryp = [ a2 (5.4)

In this paper we are concerned with systems
that obey the master equation (2.1), which is
continuous in time. That is to say, we have to con-
sider repeated indirect measurements, each lasting
an infinitesimal (with respect to the relevant sys-
tem time scales) interval of time, such that if one
ignores the result, one obtains

p=p+dp=p+dtLp. (5.5)

In order to obtain the conditioned evolution
equation described by the SME (4.12) it turns out
that the measurement result r in any infinitesimal
time interval [¢,7+ df) must be described by a
vector of complex numbers J(7) = {J;(t)}_,. As
functions of time, these are continuous but not
differentiable, and we will call them currents. Ex-
plicitly, they are related to the complex Wiener
increments in Eq. (4.12) by

Jidt = dt{uc] + ¢;) + d&;. (5.6)

That is, it is the randomness in the measurement
record which provides the stochasticity in the
quantum trajectory.

We can prove this relation between the noise in
the quantum trajectory and the noise in the mea-
surement record by using the theory of indirect
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measurements described above. We define the
measurement operator to be

Q; =1 —iHdt —Lclepdt + Jpepdt. (5.7)
These obey the completeness relation

/ duy(J)QhQ; =1 (5.8)
if we choose du,(J) to be the measure such that
[ aw@an =o, (5.9)
/d,uo( ) de)(Jrdt) = 6, dt, (5.10)
/du0 )(J;de) (Jidt) = uy de. (5.11)

These moments are the same as those of the Wie-
ner increment d¢ as defined above.

With this assignment of measurement operators
@ and measure du, we can easily show that the
expected value of the result J is

Jk / d,LL

This is consistent with the previous definition in
Eq. (5.6). Furthermore, we can show that the
second moments of Jdr are (to leading order in
d#), independent of the system state and can be
calculated using dp, rather than du. In other
words, they are identical to the statistics of dé as
defined above. This completes the proof that Eq.
(5.6) gives the correct probability for the result J.

The next step is to derive the conditioned state
of the system after the measurement. According to
the theory of indirect measurements this is given
by

uk,c +ck> (5.12)

Q;PQ!,
P—&—dP:—JT. (5.13)
Tr[Q;PQ}]
Expanding to order dr gives
dP = 7%{6‘}261”])} de +JI: dec Pe,J; dt
+ (J; dtJ, — 1){cle,)Pdt + J; (cx — (cx))Pdt
+ P(c} — (c) i dr. (5.14)

Substituting in the above result (5.6) for J yields
the required equation (4.12). From this it is again
obvious that on average the system obeys the
master equation. In the measurement interpreta-
tion this can be derived directly from the nonse-
lective (ignoring the measurement result) evolution

dp = /du dP_—P+/du0 J)Q;PQL.
(5.15)

Some insight into the above formalism may be
found by considering an experimentally realizable
situation in quantum optics [27]. For simplicity we
consider a system with one irreversible term; that
is, K = 1. For specificity, say the system is a two-
level atom, with spontaneous emission rate y. Then
c = /7o, where ¢ = |g)(e| is the lowering operator
for the cavity. Say the atom is placed at the focus
of a parabolic mirror so that the emitted light
emerges as a beam, and let that beam impinge
upon a beam splitter of transmittance 5. Let the
transmitted beam be subject to homodyne detec-
tion with a local oscillator of phase (relative to the
system) of ;. This will yield a real homodyne
photocurrent of [11]

]1dt = \/ﬁ<e’ia'a—|—ewl(ﬁ> + dCl(t);

which has been normalized to have a shot-noise
spectrum of unity from the real Wiener process
(1(2). Let the reflected beam be subject to homo-
dyne detection with a local oscillator of phase 0,,
yielding

Ldt = \/y(1 — n){e "0 + %a") + dL, (1),

(5.16)

(5.17)

where {,(¢) is an independent real Wiener process.
From these real currents we can define a
‘complex current’

Jdt = /e Ide 4+ /1 — ne> Lde (5.18)
= /1 (uc" + o)dt + d&(1), (5.19)

where

u=ne?" + (1 —n)e*®, (5.20)

and

dé = \med; + /1 — nedg, (5.21)
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obeys d&*d¢é = dt, déd¢ = udt. Furthermore, the
conditioned system state can be shown to obey the
expected stochastic master equation [28].

6. Invariant diffusive unravelings

From Eq. (4.12) it is obvious that all diffusive
unravelings with u fixed are invariant under the
shift transformation of Eq. (2.3). However, from
Eq. (4.9) we see that the unraveling is in general
not invariant against the unitary rearrangement
(2.2) of the Lindblad operators. It is invariant if
the non-Hermitian correlations u; vanish (the
standard diffusive unraveling). As noted above, it
has been guessed that this was the only invariant
unraveling. We show here that there are further
invariant unravelings.

Consider the following non-Hermitian correla-
tions (4.9):

Uy =R x <(cj — <¢,>)(ck — <ck>)> (6.1)

Here R is a complex number constrained only by
the fact that its magnitude must be sufficiently
small for the positivity condition (4.11) to be sat-
isfied (note that ||u|| is invariant). For a system
with unbounded Lindblad operators c¢;, the in-
variant number R would have to depend upon P to
ensure this. An obvious choice would be for R to
be real, and to take the maximally positive (or
maximally negative) value that satisfies Eq. (4.11).
For the special case of finite N-dimensional Lind-
blad operators, state independent alternatives can
also be chosen, for example

ujp = R x Tr[(cj —N_lTrcj) (ck — N_lTrck)]
(6.2)

The above correlations are trivially invariant
for the shifts (2.3). It is crucial to notice that the
coefficient u; depends on operator product c;c;
instead of the Hermitian versions c;c} or cjck. This
little difference assures that the SME (4.12) will be
invariant for rotations (2.2). To inspect this in-
variance, observe that the Lindblad operators and
the complex noises appear always in the same
combination |d¢) (4.7). The mathematical char-
acterization of this Ito-differential is fully given by

the Hermitian correlation (4.5) which is invariant
(since W invariant itself) and by the non-Hermi-
tian correlation

[dp) @ |de) = uj (c; — () I¥) @ (ex — (cx))l)dr.
(6.3)

This latter becomes invariant for unitary rotations
(2.2) if we use the non-trivial definitions (6.1) or
(6.2) for uy.

It is interesting to note that the choice of cor-
relations (6.1) implies that the noise process d&(z)
is no longer white. That is because the noise cor-
relations depend upon the state of the system at
that time, which obviously depends upon past
values of the noise. Nevertheless, the quantum
trajectory defined by Eq. (6.1) is still Markovian,
in that dP depends only upon P at the present
time, and the noise process dé is still uncorrelated
with P. There are other choices of u which would
make the quantum trajectory strictly non-Marko-
vian. For example, u could depend upon the past
values of the current J, and in fact there are very
practical reasons for wishing to consider such un-
ravelings [29]. However we will not be concerned
with this possibility here.

7. Simulation of unravelings

In this section we illustrate various unravelings
(invariant and non-invariant) for a simple but in-
teresting quantum optical system: a driven, damped
two-level atom. The master equation in the inter-
action picture is [7]

. Y .Q
p=yopo’ —5{clo.p} —i5 [ow o). (7.1)

Here Q is the driving strength (the Rabi frequency)
and damping occurs through spontaneous emis-
sion with the single Lindblad operator ,/yc as
described in Section 5. Physically, all of the light
emitted by the atom would have to be collected
and measured by homodyne-like measurements (as
described in Section 5) in order for a diffusive SSE
to describe the conditioned dynamics of the sys-
tem.
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Since there is only one Lindblad operator, all
diffusive unravelings are defined by just one com-
plex parameter u satisfying |u| < 1. In all cases il-
lustrated below the damping rate 7y is set to unity,
and the driving rate Q = 10y. We plot the state
using the three components of the Bloch vector x,
¥, z, defined by

P =11+ x0, + yo, + zo). (7.2)

Here o, g,, 0. are the usual Pauli pseudospin
matrices where the up (|e)) and down (|g)) states
are the o, eigenstates with eigenvalues +1 and —1,
respectively. One of the Bloch vector components
is redundant since for a pure state P> = P which
implies

N N (7.3)

Nevertheless, it is easiest to interpret the results if
we plot all three. The driving causes the Bloch
vector to rotate around the x axis, while the
damping causes it to decay towards the down state
(z= —1). In all cases the initial state is a positive x
eigenstate. We emphasize that the ensemble aver-
age behaviour is the same for all unravelings. In
particular, after transients have decayed the sys-
tem on average reproduces the stationary solution
of the master equation. In the high driving limit,
the steady state of the master equation is close to a
completely mixed state, so that x (exactly), and y
and z (approximately) average to zero.

We begin with two non-invariant unravelings,
u =1and u = —1. These correspond to homodyne
detection as described in Section 5. The noise
correlations (4.10) degenerate and a standard real
white noise { will drive the quantum trajectories.
For u =1, the current (5.6) becomes real, with
average

EJ(@0)] = v/7(ox)- (7.4)

and noise ¢ =¢" ={. The SME (4.12) can be
written as follows:

dP = ¥Pdt + % [0, P]d{ —i—%{o’x — {(oy),P}dC.
(7.5)

The third term on the SME’s RHS corresponds to
a measurement of the x quadrature of the system,

as reflected in the expectation value of the current
(7.4). However, there is a second white noise term
on the RHS, corresponding to a noisy Hamilto-
nian. It can be interpreted as an additional (non-
Heisenberg) back-action caused by the monitoring,
as if the current noise was being fed-back to alter
the system dynamics. The presence of two (corre-
lated) noise terms in the SME, one describing
Heisenberg back-action and one describing Ham-
iltonian noise, is a generic feature of unravelings
with a non-Hermitian Lindblad operator (in this
case, g).

Fig. 1 shows the conditioned evolution for
u = 1. Monitoring the x quadrature tends to make
x well-defined (i.e. close to the g, eigenvalues of
+1). However, it is certainly not perfect in this
respect, as large oscillations in y and z due to the
rotation around the x axis at rate Q are still evi-
dent.

Fig. 2 shows the case u = —1, which corre-
sponds to a homodyne measurement of the y
quadrature of the system, so

B (1) = iyi{a,). (7.6)

The measurement tries to make y well-defined, but
fails because the Rabi cycling rotates y into z and
so on. Nevertheless, x is forced towards zero,
where it stays.

The standard invariant unraveling, or “quan-
tum state diffusion” [9] case of u = 0 is shown in
Fig. 3. This could be realized by heterodyne de-
tection [16], which is like homodyne detection but
with a far-detuned local oscillator. This ensures
that both quadratures are sampled equally. The
current J (which is the complex Fourier transform
of the physical photocurrent) has a mean

EV (0] = V(o). (7.7)

The resultant evolution is intermediate between
that of u = 1 and u = —1: both ¢, and o, are being
equally monitored, and the result is controlling a
certain dynamical feed-back [30].

Next we plot the simulation of the first of our
new invariant unravelings. We choose u to be
given by Eq. (6.1), where R is chosen to be the
positive number such that |u| = 1 (the alternative,
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Fig. 2. Non-invariant unraveling with ¥ = —1 (homodyne measurement of y quadrature).
Eq. (6.2), simply gives u = 0 again). In this case we That is, the current consists purely of white noise.
find u = —(0)/(c'), so that This is not because the monitoring no longer gives

any information about the system; it is merely
EJ()]=0. (7.8) because the measured quadrature of ¢ is always
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Fig. 3. Invariant unraveling with u = 0 (heterodyne detection).

0 1 2 3 4 5 6 7 8 9 10

Fig. 4. Invariant unraveling with u given by Eq. (6.1) with maximally positive R.

chosen to be the one that has an instantaneous to that of u = 0. However, note that unlike any of
mean value of zero. the other cases, the evolution of z is differentiable.
The resultant trajectories are shown in Fig. 4. It This can be proven analytically, since in this case z

appears that the behaviour is qualitatively similar obeys
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Z=—yz—7+ Qy, (7.9)

which is exactly the same as that obtained from the
master equation (7.1). The evolution of z is of
course still stochastic because of the coupling to y.
This feature is a special case of a general phe-
nomenon noted in Ref. [31], namely that the noise
correlations may be chosen to make the evolution
of any given operator average smooth.

The final plot, Fig. 5, is for the new invariant
unraveling with u given by Eq. (6.1), where now R
is chosen to be the negative number such that
lu| = 1. This gives u = (g)/(c') so that

EU ()] = v/72(o).

In this case the behaviour appears qualitatively
similar to that of ¥ = —1, in that x is forced to
zero. Moreover, the two unravelings becomes
equivalent once x reaches 0, since then (5,) = 2(g).
This is interesting, in that an invariant unraveling
and a non-invariant unraveling are actually iden-
tical in the steady state.

(7.10)

8. Stochastic Schrodinger equations

We can rewrite the general SME (4.6) into the
form of a SSE (3.1):

dly) = —iH,dt[ys) + (cx — (ci))dE [ ). (8.1)

Using the identity dP = (d|y)){(¥|+ [¥)(d(y|)+
d|y)d(y|, one can inspect that the above SSE leads
to the SME if the nonlinear Hamiltonian is chosen
to satisfy:

—iHy ) = (LP +3w)l). (8.2)

It is remarkable that H,, apart from irrelevant
terms, does not depend on the particular repre-
sentation of the master equation. We can choose it
in the following way:

Hy=H =1 (e —2e) et @) () (83

1, ..
=H +§(1<Ck> Cr =+ hC)

1
— 5 (e = {ex)(ex = {en))- (8.4)

The second term on the r.h.s. is a nonlinear Her-
mitian term, a kind of mean-field potential. It is
invariant under the rotation (2.2) and its change
under the shift (2.3) exactly cancels the change in
H. The third term is nonlinear and non-Hermitian,
it is responsible for the localization of the wave-
function as a result of continuous monitoring. It is

9 10

Fig. 5. Invariant unraveling with u given by Eq. (6.1) with maximally negative R.
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obviously invariant under both transformations
(2.2) and (2.3).

The invariance of Hy, is a nice feature of the SSE
(8.1), but it must be emphasized that it is not a
required property of a SSE. That is because the
mapping from SME to SSE is not unique, since a
gauge (global phase) transformation

() — "y (0)) = |(1)) (8.5)

does not change the projector P = |/) (Y| = |p)(¢].
For a non-SSE, this transformation will cause only
trivial changes to its equation of motion; it will
simply add a c-number to the Hamiltonian. How-
ever for a SSE it can radically change the equa-
tion. This has been noted before (see for example
Ref. [32]), but for completeness we show it ex-
plicitly.

Consider the case K =1 so that we have one
complex noise process d¢, and one Lindblad op-
erator ¢ which we will take to be Hermitian and
write as x. Then the SSE (8.1) becomes

dy) = [—iH = 3x — ()" delyp) + (x = (x))dE"|).
(8.6)

Now let the global phase obey the equation

dy = f()d&¢ +c.c., (8.7)

where f'(¢) is an arbitrary smooth function of time.
Then

|4) +dl) = (1 +idy - 5dxdp)e™ (|) + dJy)).
(8.8)
The resultant equation for |¢) is
dl¢p) = [-iH — Re(f*u’ + |f]")]d1|¢)
—30r = () (x = (x) +ifu” +if") dt|)

+ [(r = (x) +1/)d&" +1f" dd|@). (8.9)

Clearly the deterministic part of this is different
from Eq. (8.6), and not invariant.

In this case the transformed equation seems far
less appealing in form than the original. However,
one can find different forms of the general SSE
(8.1) which, while not having an invariant H,, have
other attractions. In particular, consider the non-
unitary gauge transformation defined by

() — "y (1)) = 6(1)), (8.10)

where y is the complex function obeying

idy = <cj>dg 1 /k< ¢;) () dt +1e;) (e;)dt.
(8.11)

The state |¢) is not normalized, which is why it is
indicated with an overbar. This is not important,
however, as the projector can be defined as
P = |}){(p|/(¢|h), and this will still obey the SME.

Following the same method as above, one finds
that |¢) obeys the SSE

d ) = di(~iH — iefe; +Jie)|d) (8.12)

where it is the normalized state P that is used to
define the quantum averages in the expression (5.6)
for the currents J;. This SSE has a number of nice
features. First, it is as simple as the invariant ver-
sion (8.1). Second, it very clearly shows the con-
ditioning of the state on the measurement result,
and is closely related to the measurement opera-
tors (5.7). Third, it is an easy form to use for nu-
merical calculation (and was in fact used for the
simulations in Section 7).

9. Discussion

In this paper we have presented new results, and
corrected and clarified old results, pertaining to
diffusive unravelings of Markovian quantum sys-
tem dynamics.

First, we have given for the first time the most
general form of diffusive quantum unravelings, in
Section 4. While Gisin restricted his early work [4]
for the two-dimensional special case, there have
been recent publications which appear to do much
the same thing, but in fact do not do so. For ex-
ample, the recent work of Adler [33] is restricted to
unravelings that are linear in P, which leads to
hermiticity restrictions on the Lindblad operators.
Dorsselaer and Nienhuis [34] give a general SSE
for a master equation with one Wiener noise term
d¢, but for generalizing to the set {d&, };_, they say
“we have to assume that the different d&, are un-
correlated”. As we have shown here, this is not
a necessary assumption; d¢,d, = u;dr may be
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nonzero for j # k. The non-Hermitian correlation
matrix u was introduced by one of us and Vaccaro
[22], where it was stated that Vj, k|u;|<1. While
this is a necessary condition, it is not sufficient.
Here we have shown that a necessary and sufficient
condition is that the norm |ju|| be bounded above
by unity.

Second, we have given for the first time the re-
lation between the most general unraveling, as
parameterized by u, and quantum measurement
theory. The measurement results which condition
the system and so unravel the master equation are
K complex “currents” (continuous functions of
time) given explicitly in Section 5. The measure-
ment interpretation of the diffusive unravelings is
significant in that it means that the ensembles of
pure states resulting from the unraveling can be
physically realized. Physical realizability was pro-
posed in Ref. [22] as one of the requirements
(along with maximal robustness) for finding the
“most natural” ensemble of pure states to repre-
sent the mixed state of an open quantum system.
Our present work is significant for this program
(continued in Ref. [35]) of investigating decoher-
ence in that gives a simple boundary (|jul| < 1) to
the parameter space {u} of all diffusive unravel-
ings.

Third, we have corrected the long-standing
conception [9,20,24] that the only invariant un-
raveling is the standard diffusive unraveling with
u = 0. Here invariant means invariance under the
linear transformations of the Lindblad and Hamil-
tonian operators which leave the master equa-
tion invariant. In Section 6 we constructed some
explicit examples of invariant unravelings with
non-zero u. The most natural ones have a state-
dependent u satisfying ||u|| = 1. We illustrated two
of these, along with the standard invariant un-
raveling and some non-invariant unravelings, by
numerical simulations of resonance fluorescence in
Section 7. One of the new schemes produced quite
distinctive dynamics for the atom, which ties into
recent work on minimizing statistical errors in
ensemble average simulations using quantum tra-
jectories [31]. “Quantum state diffusion theory’ [9]
suggests the standard unraveling as the “most nat-
ural”. The existence of non-standard invariant un-
ravelings calls for additional arguments. Recently

one of us and Kiefer [36] have applied robustness
criteria (different from those in Ref. [22]) to open
system unravelings and have approved the stan-
dard one.

Fourth, in Section 8 we have clarified the notion
of invariance in the context of SSEs as a way of
representing quantum trajectories. It turns out
that gauge transformations can radically alter the
structure of a given SSE. In particular, the in-
variance of the standard unraveling is completely
destroyed in a generic gauge. This suggests that the
best way conceptually to represent quantum tra-
jectories is as a SME for the state projector rather
than a SSE for the state vector. Gauge freedom
may, on the other hand, allow for equivalent SSEs
with different attractions, as demonstrated. The
SSEs may be given priority over the SME in nu-
merical calculations, but it must be ensured that all
theoretical claims do not rely on non-gauge-in-
variant properties.
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