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Abstract
We estimate an unknown qubit from the long sequence of n random polarization
measurements of precision �. Using the standard Ito stochastic equations of
the a posteriori state in the continuous measurement limit, we calculate the
advancement of fidelity. We show that the standard optimum value 2/3 is
achieved asymptotically for n � �2/96 � 1. We append a brief derivation of
novel Ito equations for the estimate state.

PACS numbers: 03.65.Ta, 02.50.Fz, 03.67.−a

1. Introduction

The standard object of quantum inference is the value σ of some Hermitian observable σ̂ of
the given quantum system. The process of inference is called quantum measurement. One can
consider the a priori quantum state ρ̂ of the given system as an additional object of inference
[1, 2]. The limitations as well as the optimization of state determination are the focus of
recent investigations [3–5] especially in the field of quantum information and communication
[6]. A completely unknown state ρ̂ cannot be inferred from a single system: the fidelity of
the estimate ρ̂ ′ will be poor. If the a priori state ρ̂ is pure then the estimate ρ̂ ′ must also be
pure, and the simple bilinear expression F = Tr[ρ̂ ′ρ̂] defines its fidelity. If we assume that
the a priori pure ρ̂ is completely random then lower and upper limits become analytically
calculable for the average fidelity F̄ [4]. For a single two-state system (qubit), one obtains

1
2 � F̄ � 2

3 . (1)

Any deliberate trial ρ̂ ′, when completely unrelated to ρ̂, will yield the same worst value
1/2. The best value can be attained in many ways. Let us, for instance, measure the Pauli-
polarization matrix σ̂ along a single randomly chosen spatial direction. Let σ = ±1 be the
results of the projective measurement. It is then natural to identify the estimate pure state
ρ̂ ′(σ ) with the standard a posteriori pure state ρ̂(σ ) taught in textbooks:

ρ̂ ′(σ ) = ρ̂(σ ) ≡ Î + σ σ̂

2
. (2)
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Trivial calculation can prove that the average fidelity over random a priori pure states
ρ̂ is 2/3.

No quantum measurement however involved could improve on F̄ = 2/3. In particular, it
would make no sense to perform a second projective measurement on the given single qubit.
We can, however, consider non-projective measurements [6, 7] from the beginning. A typical
non-projective measurement yields less information than an ideal measurement does. Hence
it makes sense to combine successive non-projective measurements on a single system [8] in
order to improve fidelity. In what follows, we mean non-projective measurements unless we
say otherwise.

The general case involving a sequence of repeated measurements is beyond the capacity
of analytic calculations. There is, nonetheless, an effective theory for long sequences. Then
the measured value σ , the a posteriori state ρ̂(σ ), and the state estimate ρ̂ ′(σ ) all become
time dependent and satisfy coupled stochastic differential equations. The ‘conditional’ master
equation of the a posteriori state [9] as well as its coupling to the measured value [10] have long
been well known (see also [11]) as the ultimate formalism of earlier continuous measurement
models [12, 13]. The equation of the estimate state has remained undefined and we outline its
derivation in the appendix.

In section 2 we discuss state estimate from a single measurement. We succeed in
expressing the average fidelity in terms of a posteriori states. In section 3 this result is
generalized for a sequence of measurements. In section 4 the conditional ‘master’ equation is
introduced for the a posteriori state. In section 5 we calculate the progression of fidelity for
long sequences of very unsharp measurements and we prove how fidelity will saturate to 2/3.
Although we develop the concrete equations for two-state systems, most results can trivially
be extended for higher dimensions N.

2. Fidelity from single measurements

We approximate the exact eigenstates of a given Hermitian observable σ̂ by approximate
Gaussian projectors of precision �:

�̂(σ ) = 1√
2π�2

exp

[
− (σ̂ − σ)2

2�2

]
. (3)

They satisfy the completeness condition∫
�̂(σ ) dσ = Î (4)

and form a POVM [6, 7]. In the simplest case, the corresponding (non-projective) measurement
of σ̂ will transform the a priori state ρ̂ into the following a posteriori state:

ρ̂ −→ ρ̂(σ ) = �̂1/2(σ )ρ̂�̂1/2(σ )

Tr [�̂(σ )ρ̂]
(5)

where σ is the random outcome of the measurement. It may take any real value with the
normalized probability density

p(σ) = Tr [�̂(σ )ρ̂]. (6)

The theory of (non-projective) measurements does not imply a theory for the estimate ρ̂ ′.
One could mistakenly think the a posteriori state ρ̂(σ ) a reasonable estimate for the a priori
state ρ̂. Unfortunately, the experimenter has no access to it. He/she infers the measured value
σ and it is, contrary to the projective measurement (2), not enough to derive the a posteriori
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state. It is only sufficient to identify the approximate projector �̂(σ ). Its normalized form can
be a reasonable estimate:

ρ̂ ′(σ ) = �̂(σ )

Tr �̂(σ )
. (7)

This is a mixed state. If the a priori states ρ̂ are unknown pure states then the estimate should
also be pure. To this end, the experimenter must refine his/her first choice (7). The estimate
will be one of the pure eigenstates of the mixed state estimate (7), chosen randomly with
probability equal to the corresponding eigenvalue. (The optimum estimate would be the most
probable eigenstate [5].)

In our work, we discuss pure a priori states and, accordingly, we use the above-mentioned
pure state estimates. In other words, the pure state estimate will be an eigenstate of �̂(σ ),
with probability proportional to the corresponding eigenvalue of �̂(σ ). By construction, the
average of these pure state estimates is identical with the mixed state estimate (7). This has a
useful consequence in fidelity calculations. The bilinearity of fidelity Tr [ρ̂′ρ̂], valid originally
between two pure states, will be preserved for the expected fidelity of our estimates:

F =
∫

Tr [ρ̂ ′(σ )ρ̂]p(σ) dσ ≡ E Tr [ρ̂ ′(σ )ρ̂] (8)

where ρ̂ ′ is defined by (7) and E stands for stochastic expectation value.
We benefit from the bilinearity. We are going to find a simpler expression for F. While

we retain the notation ρ̂ for the pure a priori state, we imagine a hypothetical a priori state
ρ̂? = Î /N as well, which is totally mixed. We apply the non-projective measurement (5), (6)
to ρ̂?. This yields the simple relationship �̂(σ ) = Np?(σ )ρ̂?(σ ) where p?(σ ) = N−1Tr �̂(σ )

is the probability distribution of the outcomes for the measurement on the hypothetical a priori
state ρ̂?. Substituting these relationships into (7) and inserting the result into (8), we obtain
the following new form:

F = N

∫
(Tr [ρ̂?(σ )ρ̂])2p?(σ ) dσ ≡ NE(Tr [ρ̂?(σ )ρ̂])2. (9)

Note that the stochastic average is to be taken with the hypothetical probability distribution
p?(σ ) instead of the true p(σ). The new expression (9) contains the (hypothetical) a posteriori
state while the old formula (8) contained the (true) estimate state. It pays because the
a posteriori states will satisfy simpler equations than the estimate states, see section 4 and the
appendix.

If we follow the example of section 1, we have to average fidelity (9) over random pure
qubit states ρ̂:

F̄ = 1
3 + 1

3E Tr [ρ̂?(σ )]2. (10)

This formula of the average fidelity will be generalized for the continuous estimation of random
pure states in section 3.

3. Fidelity from sequential measurements

We start from the sequence �̂1(σ1), . . . , �̂n(σn) of n measurements (3)–(6). The measured
observables σ̂1, . . . , σ̂n need not be identical. Thus our measurements may not commute. It
is well known that a sequence of measurements is formally equivalent to a single (though
complicated) measurement. Applying equation (5) n times repeatedly, the a posteriori state
becomes

ρ̂ −→ ρ̂(σ.) = Ĝn(σ.) ρ̂Ĝ
†
n(σ.)

Tr [�̂n(σ.)ρ̂]
. (11)
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The sequentially composed Kraus-operator [6, 7] reads

Ĝn(σ.) = �̂1/2
n (σn) · · · �̂1/2

1 (σ1) (12)

where the shorthand notation (σ1, . . . , σn) = (σ.) is being used. The new POVM elements

�̂n(σ.) = Ĝ†
n(σ.)Ĝn(σ.) (13)

are normalized for all n:∫
�̂n(σ.) dσ1 · · · σn = Î (14)

as follows from equations (4), (12) and (13). The probability of the whole sequence of
outcomes can be written in the compact form,

pn(σ.) = Tr [�̂n(σ.)ρ̂]. (15)

Equations (11)–(15) constitute a single (complicated) measurement. We invoke all
considerations of state estimate from section 2. In such a way we shall introduce the mixed
state estimate

ρ̂ ′
n(σ.) = �̂n(σ.)

Tr �̂n(σ.)
(16)

whose eigenstates, as in case of (7), will be the pure state estimates. The same considerations
that led to fidelities (8) and (10) in section 2 apply invariably. We can, for instance, write the
average fidelity in terms of the a posteriori state (11) emerging from a hypothetical a priori
qubit state ρ̂? = ρ̂?

0 = Î /2:

F̄ n = 1
3 + 1

3E Tr [ρ̂?
n(σ.)]2. (17)

It is obvious that F̄ 0 = 1/2, and we expect F̄ n to be a monotone function of n. In section 5
we prove that F̄ n achieves the upper limit (1) even when each individual measurement is very
unsharp. Actually, we shall prove that ρ̂?

n tends to be pure for large n. Section 4 prepares the
mathematical tool of the proof.

4. Conditional master equation

There is a particular class of sequential measurements which is treatable with good accuracy
in terms of Markovian stochastic differential equations. We assume long sequences of very
unsharp measurements:

n � 1 � � 1. (18)

The asymptotic limit [10, 12]

n,� −→ ∞ n

�2
= const (19)

will be called the ‘continuum limit’. In the case of two-state systems, we assume that the
measured observables σ̂1, . . . , σ̂n are Pauli-polarizations chosen independently along random
directions. Formally, let us count the succession of measurements as if they happened at
constant rate ν = 12/�2. Accordingly, we replace the discrete parameter n by the continuous
time:

t = 12n

�2
. (20)

We consider all quantities as continuous functions of t, coarse-grained on scales �1/ν

involving many measurements. In this limit, an approximate theory emerges in the form of
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Markovian stochastic differential equations. (The theory becomes exact in the continuum
limit.) The a posteriori state (see equation (31) of the appendix) satisfies the conditional (or
selective) master equation:

dρ̂t

dt
= −1

2
[ →̂
σ, [ →̂

σ, ρ̂t ]] + { →̂
σ − 〈→̂

σ 〉t , ρ̂t} �wt (21)

where 〈→̂σ 〉t = Tr [ →̂σ ρ̂t ]. We have suppressed denoting the functional dependence of ρ̂t on
the outcomes {στ ; 0 � τ � t}. The �wt is the standard isotropic white noise and the equation
must be interpreted in the sense of the Ito stochastic calculus. There is a second stochastic
differential equation for the outcome:

�σt = 〈→̂σ 〉t + 1
2 �wt . (22)

The features of the above equations have been well understood. In particular, the solution ρ̂t

becomes asymptotically pure for long times [14, 15]. This assures the saturation of average
fidelity (17), as proved in the next section. So far, the stochastic differential equation governing
the estimate ρ̂ ′

t has been missing. We construct it in the appendix.

5. Saturation of fidelity

We are going to discuss the time dependence of the average fidelity F̄ t . Remember that it
corresponds to the (coarse-grained) n-dependent fidelity F̄ n (17) via t = 12n/�2. The latter
requires the knowledge of the hypothetical a posteriori state which, for a qubit, we shall
parametrize by the polarization vector �st ≡ 〈→̂

σ 〉t :

ρ̂?
t = Î + �st

→̂
σ

2
|�st | ≡ st � 1. (23)

Recall that the initial state must be the hypothetical state Î /2 implying the initial value �s0 = 0.
The stochastic ‘master’ equation (21) yields the following stochastic differential equation for
the polarization vector:

d�st

dt
= −4�st − 2 (�st �wt) �st + 2 �wt . (24)

This is an isotropic inhomogeneousspatial diffusion process. A stochastic differential equation
for the squared norm (purity) follows from it:

ds2
t

dt
= 4

(
3 − s2

t

)(
1 − s2

t

)
+ 4

(
1 − s2

t

)
stwt (25)

where wt is the standard white noise. This is a one-dimensional inhomogeneous diffusion.
For long times the norm will approach unity, therefore the a posteriori state becomes
asymptotically pure. The Monte-Carlo calculations by the author have shown that the purity
s2
t is dominated by the drift term. Ignoring diffusion, the error remains within 2% and the

analytic solution is possible:

Es2
t ≡ s2

t = e8t − 1

e8t − 1/3
. (26)

Let us restore the original variable n = t�2/12 and substitute the above result into
expression (17):

F̄ n = 1

2
+

1

6
E s2

t = 1

2
+

1

6

e96n/�2 − 1

e96n/�2 − 1/3
. (27)

The average fidelity approaches the optimum value 2/3 after a characteristic number
n ∼ �2/96 of unsharp measurements. Recalling conditions (18) we conclude that our
result is valid for very unsharp measurements, i.e. � must be much greater than

√
96 ≈ 10.
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6. Discussion

We have discussed single quantum state determination via sequential non-projective (POVM)
measurements in the limit of very unsharp measurements. We have proved that the known
optimum average fidelity of estimating random qubits can be approached gradually with many
successive random unsharp measurements. Whether this is true for non-random qubits is an
open issue, but it is certainly tractable with the method of the present work. It may for instance
turn out that one has to replace the strategy of random unsharp measurements by some adaptive
strategy.

We profited from analytic tools. We used the standard theory of (Markovian) continuous
quantum measurement and we completed it with the novel concept of continuous state
estimation. The recent work [15] has already coined a similar concept. It has, however, been
restricted to the particular case of Gaussian states. Although we have detailed the concept
for a single qubit, most of the equations are valid for any higher dimension N. The standard
theory of continuous quantum measurement treats discrete and continuous observables on an
equal footing with the same formalism. We guess that our continuous estimation formalism
can also be applied to the tomography of light quanta [16], particularly to its Gaussian POVM
formulation [17].

Stochastic differential equations, used so far for continuous measurement, will apply to
optimum state determination as well. Continuous state determination is of interest every
time one is accumulating and analysing information from low rate quantum inference. These
conditions are typical for an eavesdropper of secret quantum communication, a cloner of n � 1
identical qubits into n + 1 identical qubits, or in tomography with low detection efficiency.
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Appendix. Continuous measurement and estimation

In the continuum limit (19), the outcome �σ. of sequential measurement (section 3) becomes
a (vectorial) function �σt of time. The basic mathematical objects will be functionals of the
outcome. First of all, we define the continuum limit of the sequential Kraus-operators (12) in
terms of the time-ordered exponentials:

Ĝt [�σ ] = T exp

[
−

∫ t

0
| →̂
σ − �στ |2 dτ

]
. (28)

The normalizing pre-factor of the exponential has been omitted and, as usual, will be
incorporated in the functional measure d[�σ ]. The above operators yield the continuum limit
of the sequential POVM (13):

�̂t [�σ ] = Ĝ
†
t [�σ ] Ĝt [�σ ]. (29)

It describes the isotropic continuous polarization measurement in the period [0, t]. The POVM
satisfies the completeness relation at any time, with respect to the functional integration:∫

�̂t [�σ ] d[�σ ] ≡ Î . (30)
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The operators �̂t [�σ ], a kind of time-ordered Gaussian projectors, form a functional POVM
for all time t. Given the random outcome {�στ ; 0 � τ � t}, the a posteriori state at time t takes
this form:

ρ̂ −→ ρ̂t [�σ ] = Ĝt [�σ ]ρ̂Ĝ
†
t [�σ ]

Tr [�̂t [�σ ]ρ̂]
(31)

with the normalized functional probability distribution

pt [�σ ] = Tr [�̂t [�σ ]ρ̂]. (32)

Equations (28)–(32) constitute the model of isotropic continuous measurement of the
polarization →̂σ . Similar to the case of a single measurement, the choice of the estimate
ρ̂ ′

t is not unique. Following (7) and (16), as well as for mathematical convenience, we take

ρ̂ ′
t [�σ ] = �̂t [�σ ]

Tr �̂t [�σ ]
(33)

and, as in section 2, we interpret it as the random average of its pure eigenstates.
In contrast to the a posteriori state ρ̂ t , the estimate state ρ̂ ′

t does not satisfy an autonomous
stochastic differential equation. Neither does the composite object ρ̂t ⊗ ρ̂ ′

t . To construct a
closed set of stochastic differential equations, we introduce the state ρ̂?

t where a hypothetical
initial state Î /2 would have evolved under the true operations Ĝt [�σ ] which the true a priori
state ρ̂0 = ρ̂ had undergone:

ρ̂?
t = Ĝt [�σ ] Ĝ

†
t [�σ ]

Tr [�̂t [�σ ]]
. (34)

Note in contrast to the preceding sections, in particular to section 2, that here we retain for ρ̂?
t

probability (32) of the true continuous measurement. (Actually, we could have modified the
notation ρ̂?

t .) We introduce two normalized variants of the Kraus-operators (28):

ĝt = Ĝt

[Tr �̂t ρ̂]1/2
ĝ′

t = Ĝt[
1
2 Tr �̂t

]1/2 . (35)

They will build up the time-dependent a posteriori (31), estimate (33) and hypothetic state
(34), respectively:

ρ̂t = ĝt ρ̂ĝ
†
t ρ̂ ′

t = 1
2 (ĝ′

t )
†ĝ′

t ρ̂?
t = 1

2 ĝ′
t (ĝ

′
t )

†. (36)

The normalizations Tr ρ̂t = Tr ρ̂ ′
t = Tr ρ̂?

t ≡ 1 of these states follow from normalizations
(35). Two time-dependent expectation values will be defined in function of the normalized
operators (35):

〈→̂σ 〉t = Tr [ρ̂(ĝt )
† →̂σ ĝt ] (=Tr [ρ̂t

→̂σ ]) (37)

〈→̂σ 〉?
t = 1

2 Tr [(ĝ′
t )

† →̂σ ĝ′
t ] (=Tr [ρ̂?

t
→̂σ ]). (38)

For the sake of symmetry, I propose the normalized operators ĝt and ĝ′
t , yielding ρ̂t and ρ̂ ′

t

via (36), to formulate a convenient couple of equations. An autonomous stochastic differential
equation will exist for ĝt :

dĝt

dt
= [− 1

2 | →̂σ − 〈→̂σ 〉t |2 + ( →̂σ − 〈→̂σ 〉t ) �wt

]
ĝt . (39)

This equation is equivalent to the well-known conditional master equation (21). A new
equation can be written down for ĝ′

t :

dĝ′
t

dt
= [−|→̂

σ − 〈→̂
σ 〉t |2 + 1

2 | →̂
σ − 〈→̂

σ 〉?
t |2 + |〈 →̂

σ 〉t − 〈→̂
σ 〉?

t |2 + (
→̂
σ − 〈→̂

σ 〉?
t ) �wt

]
ĝ′

t . (40)
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This equation couples to the previous equation via 〈→̂
σ 〉t in addition to the white noise �wt . The

initial conditions are ĝ0 = ĝ′
0 = Î . It is straightforward to show that the above equations

preserve the normalization of ρ̂t and ρ̂ ′
t .

We outline the proof of equations (39) and (40). The proof will reside on the equation
�σt = 〈→̂σ 〉t + 1

2 �wt of continuous measurement theory (22). Let us substitute it into definition
(28) of the Kraus-operator Ĝt [�σ ]. It yields

T exp

[
−

∫ t

0
| →̂
σ − 〈→̂

σ 〉τ |2 dτ +
∫ t

0
(

→̂
σ − 〈→̂

σ 〉τ )wτ dτ

]
(41)

times a numeric factor which will be irrelevant for the normalized operators ĝt and ĝ′
t . It turns

out that the above exponential is already the properly normalized ĝt :

ĝt = T exp

[
−

∫ t

0
| →̂
σ − 〈→̂

σ 〉τ |2 dτ +
∫ t

0
(

→̂
σ − 〈→̂

σ 〉τ ) �wτ dτ

]
. (42)

Indeed, differentiating the above equation yields exactly equation (39).
Derivation of the novel equation (40) for ĝ′

t is a bit more complicated. In addition to
the exponential in equation (42), we assume a further c-number differential for the sake of
normalization (35):

ĝ′
t = exp

[∫ t

0
ατ dτ + �βτ �wτ dτ

]
T exp

[
−

∫ t

0
| →̂
σ − 〈→̂

σ 〉τ |2 dτ +
∫ t

0
(

→̂
σ − 〈→̂

σ 〉τ ) �wτ dτ

]
.

(43)

We calculate dĝ′
t /dt and insert it into the normalization condition Tr dρ̂ ′

t /dt = 0. This will
yield the unique solutions �βt = 〈→̂σ 〉t − 〈→̂σ 〉?

t and αt = |βt |2. Inserting these results back into
the equation of dĝ′

t /dt we obtain equation (40).
The evolution of the a posteriori ρ̂t and the estimate state ρ̂ ′

t is indirectly described by
the coupled stochastic differential equations (39) and (40). We mentioned that ρ̂ obeys a
closed equation but ρ̂t ⊗ ρ̂ ′

t does not. From the above results, it would be trivial to show that
ρ̂t ⊗ ĝ′

t ⊗ (ĝ′
t )

† contains all information on ρ̂t ⊗ ρ̂ ′
t and it does satisfy a closed stochastic

differential equation.
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