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Estimating the postmeasurement state
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We study generalized measuremdmssitive-operator-valued measyffOVM measuremenikon a single
d-level quantum system which is in a completely unknown pure state, and derive the best estimate of the
postmeasurement state. The mean postmeasurement estimation fidelity of a generalized measurement is ob-
tained and related to the operation fidelity of the device. This illustrates how the information gain about the
postmeasurement state and the corresponding state disturbance are mutually dependent. The connection be-
tween the best estimates of the premeasurement and postmeasurement state is established and interpreted. For
pure generalized measurements the two states coincide.
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There are two important properties in which measurethe strength of his intervention in choosing a balance be-
ments on a quantum system differ from measurements itween information gain and disturbance. Since, furthermore,
classical physics: Even if a finite number of identical copiesany subsequent medical treatment must take into account
of a system are available, it is in general impossible to obtaithat an unavoidable disturbance has happened, it has to be
complete information about the state of the system. Furthefadjusted to the postinspection and not to the preinspection
more, information can be extracted from a quantum systergtate.
only at the cost of disturbing it. There are quantum informatic setups exhibiting such char-

These aspects are studied in the framework of quanturCteristic traits. A typical example is a sequence of general-
estimation theory which has recently attracted much interestzed measurements aiming at the monitoring of the state evo-
It plays an important role in quantum data processing in thdution of a single quantum systeffi]. An important strategy
context of quantum information and computing. A typical t0 improve the information and to diminish the disturbance is
topic is the determination of the optimal fidelity of the esti- to adjust the parameters of each forthcoming generalized
mated quantum state frol identically prepared copies of Measurement to the expected premeasurement [§tat&o
the quantum systerfiL]. Algorithms for constructing an op- this end, the postmeasurement state of the previous measure-
timal positive-operator-va|ued measu(@OVM measure- ment must be estimated. We will not work out this example,
mend were discussed in Ref2]. Adaptive projection mea- but rather turn to the postmeasurement state in general.
surements were treated in RES]. A related subject to the A given generalized measurement is described by a set of
present discussion is the tension between information gaif OperatorsMs, where the index=1, ... n labels the pos-
and disturbancp4]. The balance between the mean operatiorsible readouts of the measurement. These measurement op-
fidelity and the estimation fidelity of the premeasurementerators, also called Kraus operators, act on the quantum state
state has been studied by Banasfgk We will come back Of the measured system. One may think af-kevel system.
to his results later. The readous will in general not correspond to one of these

The purpose of this paper is to study the estimation of thdevels, contrary to typical projective measurements. The pure
postmeasurement state. Suppose a generalized measureniéigineasurement statey) of the system is changed by a
(POVM measuremehis performed on a singld-level sys- ~ generalized measurement with outcosieto the conditional
tem of pure but otherwise completely unknown quantumPOstmeasurement state
state. Knowing the measurement result and the specifications
of the measurement, what is the best estimate of the post- © M| )
measurement state and what is the corresponding highest fi- |19 = W ey
delity? Of all measurements granting a certain estimation YIMsMlys

fidelity, which is the one with the lowest disturbance? And

finally, how are the best estimations of the premeasuremeﬁ?bv'ousw’l’ﬁ ) will always depend on the initial state)

and postmeasurement states related? All these questions v\lepless the_ran_k oM is 1. Therefo_re _the postmeasurement
be answered below in closed analytical forms. state remains in general unknowr #f) is unknown, and can

Situations in which it is important to guess the “postmea-only be estimated. The probability for the measurement re-

surement state” are known from everyday life. Medical in- sults to occur is given by

spections with x rays, radioactive chemicals, etc., are inva-

sive measurements as quantum measurements in general are. Ps=(¥IEdl¥), @
The more information such inspections provide, the more ,

damage they cause. No copy of the patient is available. Th&N€re the operator; are defined by

patient’s state is therefore to be estimated on the basis of a +

single-run inspection whereby the doctor has to decide about Es=MMs. ()
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They are positive operators satisfying a completeness rela- , 1 )

tion =_,E¢=1 which guarantee&?_,p,=1 for the prob- fs=[(x|y)| :p—|<X(S)|Ms| » (10
abilities. The se{E} is called a POVM and the individual *

operatorsE are also known as POVM elements or effects. js 3 measure of the quality of the estimation. The fidelity

To prepare later calculations we introduce the spectral de-
prep P averaged over all measurement outcomes redds
composition ofEg,

=37_,fsps. The mean estimation fidelit§g,os( x), In case
d the ingoing(premeasuremenstate iscompletely unknown
ES:; a®|rOyr®)]. (4)  is the result of an integration over all possible stdigs

n
a® are the positive eigenvalues. The eigenvec{drs’)} Gpos(X):f fd‘ﬂ:J' d‘ﬂg«l XOM )M X,
form an orthonormal basis. Due to the polar decomposition (11)
theorem(cf., e.g.,[8]), we may split the measurement opera-
tor M, into a product of a unitary operatbt, and the square with respect to the normalized unitary invariant measure on
root of Eg: the state space, yielding

M= U\E, (5) 1<
U Grosl 0= 5 = (WIMMIN®). (12
This implies
By virtue of Eq.(7), each component in the sum ow&in
MMI=UEU!. (6)  Eq.(12 is maximized if|x®) is chosen to be the eigenvec-
tor |19, of MM ! of the maximum eigenvalue),,. For the
Thus the positive operatorsl le and Eg have the same measurement resulf the best estimate of the postmeasure-
eigenvaluesai(s) and the diagonal representation MfSMl ment statds therefore given by

becomes © ©
|Xpos :llm . (13
d
Mle:E a1y O, 7) In case of degeneracy of the greatest eigenvaﬁl.g(, any
=1 state vector from the corresponding eigenspace represents an

optimal estimation of the postmeasurement state. The maxi-
The eigenvectorfl (¥)=U|r(¥) form again an orthonormal mum value ofG s x) reads
basis. Herewith and with the help of Eqgdl) and (5) we
obtain as result the useflliorthogonal expansionsf the 1 é

. __ (s)
unitary operatord); and of the measurement operatbfs: Gpost_d a

max*

(14)
s=1

U _% I (S)> (r(5)| ® Gpostis themean postmeasurement estimation fide||'p(r§gf))st>
st i ib and G, are determined solely by the operatddg which
specify the generalized measurement.
d We now address the question, h@y, is related to the
MSZZ \/gi(§5||i(s)><ri(s)|_ (9) mean operation fidelity Fwhich describes how much the
i=1 state after the measurement resembles the original one. The
larger the valueF of a measurement is, the weaker is its
[19) and [r®) are the left-hand sidéhs) and right-hand  disturbing influence. Arguing as abovE,is obtained from
side (rhs) eigenvectors oMy, respectively. The number of Eq. (11) if we replace|x¥) by |):
nonzero eigenvaluega® equals the rank ofls. .
Based on this we can now move to the problems of quan- _ 2
tum state estimation. We assumesiagle dlevel quantum F_f dwgl (UMl (15
system prepared in a completely unknown pure premeasure-
ment statg ). A particular generalized measurement speci-it may be rewritten a$5]
fied by the known sefMg} of operators is performed with
measurement resustwhich is read off. What is the optimal
strategy for the estimation of the postmeasurement state
|49y prepared by the measurement? It is worthwhile to em-
phasize that the only data available for the estimation are the To derive a relation betweeB . andF, it is useful to
set{M} specifying the measurement and the vaduef the  first relateG . to the estimation fidelity of the premeasure-

F

1 n
S TCES) o|+521 |trMS|2). (16)

actual readout. ment state. Denoting this estimate |xf®), the correspond-
If the state|x®)) is proposed as an estimate of the un-ing mean estimation fidelity, in analogy Bpos(x) of Eq.
known postmeasurement staig®), the fidelity (11), reads
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Gpre(X):f dlr/}szl ps|<X(S)|l//>|2! (17) !

which may be rewritten according to BanasZ&k as

n
d+ > (xXOIEJx®)|. (19
s=1

1
Gprd X) = dd+1)

The optimum premeasurement and postmeasurement fi-
delities are closely related. For a given measurement rgsult
the best estimatéxéﬁg of the premeasurement state is the FIG. 1. Maximal operation fidelitf for given estimation fidel-
one which maximizes the corresponding component in théy Gy Of the postmeasurement state in dimensiods
sum in Eq.(18). Because of Eq4), it is given by the eigen- =2,4,8,16¢. The dashed lines mark for dimensidr-2, the do-
vector [r® ) of E belonging to the maximum eigenvalue Main for possible combinations &F and Gpos:.

[5,9]. But this eigenvalue is agaY,,. Thebest estimate of
the premeasurement statelated to the outcoms is there-

0.2 0.4 0.6 0.8 1

To complete this discussion we return to the question:
What type of generalized measurements apart from projec-

fore : : .
tion measurements make it possible to know the postmea-
Iy =r&). (190  Surement staté)®) exactly? As we mentioned earlier, the
or ma necessary condition is the rank of Kraus operatarbe 1:
We denote the corresponding maximum valu b
p 9 & x) by M= a® |1y (r ). (22)

Gpre and call it themean premeasurement estimation fidelity

Comparing it to .form(14) of Gposy We obtain the simple  £rom Eq. (1) it follows that the postmeasurement state is

new relationship: always |1} independently of the otherwise unknown pre-
measurement state. If we apply our general (d® to this

(1+ Gpog)- (20)  trivial case we find that, indeed, the best estimate is the true
one: [x=[1). Rule (19) yields [x{=[r() for the

. . i . best estimate of the premeasurement state. Hence the ulti-
This result allows us to transcribe Banaszek’s constraint,ate form of the rank-1 Kraus operators is

[5] betweerF andG,, into a constraint relating andGqs;:

Core= g1

M= a® xS (x&l. (23)

The corresponding effectsg are then given by

To illustrate how state disturbance and information gain
are related for the postmeasurement situation, we display the Es= a(s)|XE)SrQ<X§Sr) : (24
domain of possible combination &fandG g in the GposcF ) )
plane. If the system is not influenced at all, the measurementh® completeness relatioBE=1 constrains the premea-
has the operation fidelitF = 1. In this case the guess of the Surement state estimates to form an overcc_)mplete ba3|§ in
premeasurement and postmeasurement state is totally rageneral. The set of postmeasurement states is not constrained
dom which amounts t6 = Gpos= 1/d. On the other hand, at all. Note that the multiplicity of dlfferer_lt measurement
there are measurements which allow to predict the postme&€Sultss may exceed the number of levels in our system.
surement state exactle.g., projection measurementge.,  Since ne'the'f)(_ésr)& nor | x ) have to form orthogonal sys-
with maximum fidelity G ,os=1. This leads via Eq(20) to tems they are in general not the eigenstates of_any Hermitian
Gpre=2/(d+1). This result forG,, has also been obtained observable. So we .are.stlll having a generalized measure-
in Refs.[1,4—6. It is known [2] that it corresponds t&  Ment and not a projective measurement. The postmeasure-
=2/(d+1). To summarize, the domain of possible combina-Ment state is nevertheless exactly knowBds—1) and the
tions (Gposu,F) is limited by 1H<G,=1 and 2/¢+1) optlmal estlmatg of .the.premeasurement sia@b is of
<F=1 as well as by inequality21). The boundaries of the maximal estimation fidelityG,=2/(d+1).
domain are indicated in Fig. 1 fa=2, including the dashed ~ We turn to a further aspect of information gain and state
lines. In this domain, every particular generalized measuredisturbance. In Eq(5) we have uniquely decomposed the
ment{M} corresponds to a point. Its position illustrates to Measurement operatidvi, which corresponds to the mea-
what extent the information about the outgoifgpstmea- ~Surement resuls, into the positive operatofEs and a uni-
surementstate is gained at the cost of disturbing the ingoingtary operatoiUs. The unitary part does not change the von
(premeasurementone. Large values oF combined with Neumann entropy. By virtue of Eq2), all information,
large values ofG . characterize the most optimal type of which is contained in a measurement result, goes back to
generalized measurement. For increasing dimengiohthe ~ VE.. In particular, the estimation fidelitie§ o5t and Gpre
state space all types of measurements become less advantd4) and(18) depend only on the eigenvaluesky. The part
geous(cf. Fig. 1. JE; of Mg represents, at a given information gain, the un-

VAd+1)F 1< Gposth V(d—1)(1-Gpoe).  (21)
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avoidable minimal disturbance of the state vector. We calimation procedure. Nonetheless, even nonoptimal estimates
JE, the pure measurement padf a generalized measure- |X§§) , |X§J§,)Sp must obey constrain26) expressing the cer-
ment and a measurement with;=1 a pure measurement tain fact that the postmeasurement state results from the gen-
The operation fidelity- depends on the unitary patis too.  eralized measuremeft) of the premeasurement one. Recall
Inequality(21) shows that the maximal operation fidelfyis  that we estimated the optimum premeasurement and post-
limited by G.srand therefore by the pure measurement partmeasurement states by maximizing independently the pre-
Having connected the three mean fidelitlesG,, and measurement and postmeasurement fidelities. We did not
Gpost We connect now the best gueste§h and|x{) for  guarantee explicitly that the two optimum SIETS WA

the premeasurement and postmeasurement states, respggs) ) satisfy the exact constraint. The derived regas)
tively. The two best guesses are the distinguished pair of Ingroves that they do.

and rhs eigenvectors to the same eigenvalue, cf. B. In conclusion, we have studied generalized measurement
and(19). Invoking expansiong3) and(9), this leads directly  {M_} on a singled-level quantum system. For the case when
to the results the initial state is pure and otherwise completely unknown,
(SN _[ (9 we pointed out that the best estimates of the premeasurement
U Xpre) =1 Xpos (25 and postmeasurement states for a given measurement readout
and s are the respective right and left eigenvectorsMyf, be-
longing to the(common largest eigenvalue. The mean post-
M |X(SL> _measurement estimation fidelity of Fhe measurement_ devic;e
iﬂxf@.)s , (26) s also calculated and shown to satisfy a simple relationship
\/amE ajx with the mean premeasurement estimation fidelity. A con-

) ) straint between the postmeasurement estimation fidelity and
Equation(25) shows that the best estimate for the postmeathe operation fidelity of the measurement illustrates how

surement state can be obtained from the best estimate of theyse gisturbance and information gain about the postmea-
premeasurement state by applying merely the unitary\part g rement state are competing with each other. We have
of the measurement operator. This has the surprising consgp,wn that for pure generalized measurements the indepen-
quence that for all pure measurements the best estimationg,n; pest estimates of the premeasurement and postmeasure-
for the premeasurement and postmeasurement state alwayzn; siates agree. We have proved that, in general, they are

agree if the ingoing state)) is completely unknown. This is  yo|ated via the corresponding measurement operator as we
the case regardless of the values of the operation fidElity expect of them.

and the estimation fidelitie& e and G-

Finally we give a physical interpretation of relati¢26). This work was supported by the Optik Zentrum Konstanz.
As a matter of fact, both the premeasurement and postme&-D. acknowledges the support from the Hungarian Science
surement states become only partially revealed by the estResearch Fund under Grant No. 32640.
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