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Estimating the postmeasurement state
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We study generalized measurements@positive-operator-valued measure~POVM measurements!# on a single
d-level quantum system which is in a completely unknown pure state, and derive the best estimate of the
postmeasurement state. The mean postmeasurement estimation fidelity of a generalized measurement is ob-
tained and related to the operation fidelity of the device. This illustrates how the information gain about the
postmeasurement state and the corresponding state disturbance are mutually dependent. The connection be-
tween the best estimates of the premeasurement and postmeasurement state is established and interpreted. For
pure generalized measurements the two states coincide.
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There are two important properties in which measu
ments on a quantum system differ from measurement
classical physics: Even if a finite number of identical cop
of a system are available, it is in general impossible to ob
complete information about the state of the system. Furt
more, information can be extracted from a quantum sys
only at the cost of disturbing it.

These aspects are studied in the framework of quan
estimation theory which has recently attracted much inter
It plays an important role in quantum data processing in
context of quantum information and computing. A typic
topic is the determination of the optimal fidelity of the es
mated quantum state fromN identically prepared copies o
the quantum system@1#. Algorithms for constructing an op
timal positive-operator-valued measure~POVM measure-
ment! were discussed in Ref.@2#. Adaptive projection mea-
surements were treated in Ref.@3#. A related subject to the
present discussion is the tension between information g
and disturbance@4#. The balance between the mean operat
fidelity and the estimation fidelity of the premeasurem
state has been studied by Banaszek@5#. We will come back
to his results later.

The purpose of this paper is to study the estimation of
postmeasurement state. Suppose a generalized measur
~POVM measurement! is performed on a singled-level sys-
tem of pure but otherwise completely unknown quant
state. Knowing the measurement result and the specificat
of the measurement, what is the best estimate of the p
measurement state and what is the corresponding highe
delity? Of all measurements granting a certain estima
fidelity, which is the one with the lowest disturbance? A
finally, how are the best estimations of the premeasurem
and postmeasurement states related? All these questions
be answered below in closed analytical forms.

Situations in which it is important to guess the ‘‘postme
surement state’’ are known from everyday life. Medical i
spections with x rays, radioactive chemicals, etc., are in
sive measurements as quantum measurements in genera
The more information such inspections provide, the m
damage they cause. No copy of the patient is available.
patient’s state is therefore to be estimated on the basis
single-run inspection whereby the doctor has to decide ab
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the strength of his intervention in choosing a balance
tween information gain and disturbance. Since, furthermo
any subsequent medical treatment must take into acc
that an unavoidable disturbance has happened, it has t
adjusted to the postinspection and not to the preinspec
state.

There are quantum informatic setups exhibiting such ch
acteristic traits. A typical example is a sequence of gene
ized measurements aiming at the monitoring of the state e
lution of a single quantum system@6#. An important strategy
to improve the information and to diminish the disturbance
to adjust the parameters of each forthcoming generali
measurement to the expected premeasurement state@7#. To
this end, the postmeasurement state of the previous mea
ment must be estimated. We will not work out this examp
but rather turn to the postmeasurement state in general.

A given generalized measurement is described by a se
n operatorsMs , where the indexs51, . . . ,n labels the pos-
sible readouts of the measurement. These measuremen
erators, also called Kraus operators, act on the quantum
of the measured system. One may think of ad-level system.
The readouts will in general not correspond to one of thes
levels, contrary to typical projective measurements. The p
premeasurement stateuc& of the system is changed by
generalized measurement with outcomes into the conditional
postmeasurement state

uc (s)&5
Msuc&

A^cuMs
†Msuc&

. ~1!

Obviously,uc (s)& will always depend on the initial stateuc&
unless the rank ofMs is 1. Therefore the postmeasureme
state remains in general unknown ifuc& is unknown, and can
only be estimated. The probability for the measurement
sult s to occur is given by

ps5^cuEsuc&, ~2!

where the operatorsEs are defined by

EsªMs
†Ms . ~3!
©2003 The American Physical Society02-1
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They are positive operators satisfying a completeness r
tion (s51

n Es51 which guarantees(s51
n ps51 for the prob-

abilities. The set$Es% is called a POVM and the individua
operatorsEs are also known as POVM elements or effect

To prepare later calculations we introduce the spectral
composition ofEs ,

Es5(
i 51

d

ai
(s)ur i

(s)&^r i
(s)u. ~4!

ai
(s) are the positive eigenvalues. The eigenvectors$ur i

(s)&%
form an orthonormal basis. Due to the polar decomposit
theorem~cf., e.g.,@8#!, we may split the measurement oper
tor Ms into a product of a unitary operatorUs and the square
root of Es :

Ms5UsAEs. ~5!

This implies

MsMs
†5UsEsUs

† . ~6!

Thus the positive operatorsMsMs
† and Es have the same

eigenvaluesai
(s) and the diagonal representation ofMsMs

†

becomes

MsMs
†5(

i 51

d

ai
(s)u l i

(s)&^ l i
(s)u. ~7!

The eigenvectorsu l i
(s)&5Usur i

(s)& form again an orthonorma
basis. Herewith and with the help of Eqs.~4! and ~5! we
obtain as result the usefulbiorthogonal expansionsof the
unitary operatorsUs and of the measurement operatorsMs :

Us5(
i 51

d

u l i
(s)&^r i

(s)u, ~8!

Ms5(
i 51

d

Aai
(s)u l i

(s)&^r i
(s)u. ~9!

u l i
(s)& and ur i

(s)& are the left-hand side~lhs! and right-hand
side ~rhs! eigenvectors ofMs , respectively. The number o
nonzero eigenvaluesAai

(s) equals the rank ofMs .
Based on this we can now move to the problems of qu

tum state estimation. We assume asingle d-level quantum
system prepared in a completely unknown pure premeas
ment stateuc&. A particular generalized measurement spe
fied by the known set$Ms% of operators is performed with
measurement results which is read off. What is the optima
strategy for the estimation of the postmeasurement s
uc (s)& prepared by the measurement? It is worthwhile to e
phasize that the only data available for the estimation are
set $Ms% specifying the measurement and the values of the
actual readout.

If the stateux (s)& is proposed as an estimate of the u
known postmeasurement stateuc (s)&, the fidelity
03430
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ps
u^x (s)uMsuc&u2 ~10!

is a measure of the quality of the estimation. The fidelityf̄

averaged over all measurement outcomes readsf̄
5(s51

n f sps . The mean estimation fidelityGpost(x), in case
the ingoing~premeasurement! state iscompletely unknown,
is the result of an integration over all possible statesuc&:

Gpost~x!ªE f̄ dc5E dc(
s51

n

^x (s)uMsuc&^cuMs
†ux (s)&,

~11!

with respect to the normalized unitary invariant measure
the state space, yielding

Gpost~x!5
1

d (
s51

n

^x (s)uMsMs
†ux (s)&. ~12!

By virtue of Eq.~7!, each component in the sum overs in
Eq. ~12! is maximized ifux (s)& is chosen to be the eigenvec
tor u l max

(s) & of MsMs
† of the maximum eigenvalueamax

(s) . For the
measurement results, the best estimate of the postmeasur
ment stateis therefore given by

uxpost
(s) &5u l max

(s) &. ~13!

In case of degeneracy of the greatest eigenvalueamax
(s) , any

state vector from the corresponding eigenspace represen
optimal estimation of the postmeasurement state. The m
mum value ofGpost(x) reads

Gpost5
1

d (
s51

n

amax
(s) . ~14!

Gpost is themean postmeasurement estimation fidelity. uxpost
(s) &

and Gpost are determined solely by the operatorsMs which
specify the generalized measurement.

We now address the question, howGpost is related to the
mean operation fidelity Fwhich describes how much th
state after the measurement resembles the original one.
larger the valueF of a measurement is, the weaker is
disturbing influence. Arguing as above,F is obtained from
Eq. ~11! if we replaceux (s)& by uc&:

F5E dc(
s51

n

u^cuMsuc&u2. ~15!

It may be rewritten as@5#

F5
1

d~d11! S d1(
s51

n

utr Msu2D . ~16!

To derive a relation betweenGpost and F, it is useful to
first relateGpost to the estimation fidelity of the premeasur
ment state. Denoting this estimate byux (s)&, the correspond-
ing mean estimation fidelity, in analogy toGpost(x) of Eq.
~11!, reads
2-2



t
lt

he
th

e
f

ty

ain

ai
t

e
e
r

,
e

d

a

r
to

ing

of

a

on:
jec-
ea-
e

is
e-

true

ulti-

-
is in
ined

nt

-
itian
ure-
ure-

ate
e
-

on

k to

n-

BRIEF REPORTS PHYSICAL REVIEW A68, 034302 ~2003!
Gpre~x!5E dc(
s51

n

psu^x (s)uc&u2, ~17!

which may be rewritten according to Banaszek@5# as

Gpre~x!5
1

d~d11! S d1(
s51

n

^x (s)uEsux (s)& D . ~18!

The optimum premeasurement and postmeasuremen
delities are closely related. For a given measurement resus,
the best estimateuxpre

(s)& of the premeasurement state is t
one which maximizes the corresponding component in
sum in Eq.~18!. Because of Eq.~4!, it is given by the eigen-
vector ur max

(s) & of Es belonging to the maximum eigenvalu
@5,9#. But this eigenvalue is againamax

(s) . Thebest estimate o
the premeasurement staterelated to the outcomes is there-
fore

uxpre
(s)&5ur max

(s) &. ~19!

We denote the corresponding maximum value ofGpre(x) by
Gpre and call it themean premeasurement estimation fideli.
Comparing it to form~14! of Gpost, we obtain the simple
new relationship:

Gpre5
1

d11
~11Gpost!. ~20!

This result allows us to transcribe Banaszek’s constr
@5# betweenF andGpre into a constraint relatingF andGpost:

A~d11!F21<AGpost1A~d21!~12Gpost!. ~21!

To illustrate how state disturbance and information g
are related for the postmeasurement situation, we display
domain of possible combination ofF andGpost in theGpost-F
plane. If the system is not influenced at all, the measurem
has the operation fidelityF51. In this case the guess of th
premeasurement and postmeasurement state is totally
dom which amounts toGpre5Gpost51/d. On the other hand
there are measurements which allow to predict the postm
surement state exactly~e.g., projection measurements!, i.e.,
with maximum fidelityGpost51. This leads via Eq.~20! to
Gpre52/(d11). This result forGpre has also been obtaine
in Refs. @1,4–6#. It is known @2# that it corresponds toF
52/(d11). To summarize, the domain of possible combin
tions (Gpost,F) is limited by 1/d<Gpost<1 and 2/(d11)
<F<1 as well as by inequality~21!. The boundaries of the
domain are indicated in Fig. 1 ford52, including the dashed
lines. In this domain, every particular generalized measu
ment $Ms% corresponds to a point. Its position illustrates
what extent the information about the outgoing~postmea-
surement! state is gained at the cost of disturbing the ingo
~premeasurement! one. Large values ofF combined with
large values ofGpost characterize the most optimal type
generalized measurement. For increasing dimensiond of the
state space all types of measurements become less adv
geous~cf. Fig. 1!.
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To complete this discussion we return to the questi
What type of generalized measurements apart from pro
tion measurements make it possible to know the postm
surement stateuc (s)& exactly? As we mentioned earlier, th
necessary condition is the rank of Kraus operatorMs be 1:

Ms5Aa(s)u l (s)&^r (s)u. ~22!

From Eq. ~1! it follows that the postmeasurement state
always u l (s)& independently of the otherwise unknown pr
measurement state. If we apply our general rule~13! to this
trivial case we find that, indeed, the best estimate is the
one: uxpost

(s) &5u l (s)&. Rule ~19! yields uxpre
(s)&5ur (s)& for the

best estimate of the premeasurement state. Hence the
mate form of the rank-1 Kraus operators is

Ms5Aa(s)uxpost
(s) &^xpre

(s)u. ~23!

The corresponding effectsEs are then given by

Es5a(s)uxpre
(s)&^xpre

(s)u. ~24!

The completeness relation(Es51 constrains the premea
surement state estimates to form an overcomplete bas
general. The set of postmeasurement states is not constra
at all. Note that the multiplicity of different measureme
resultss may exceed the numberd of levels in our system.
Since neitheruxpre

(s)& nor uxpost
(s) & have to form orthogonal sys

tems they are in general not the eigenstates of any Herm
observable. So we are still having a generalized meas
ment and not a projective measurement. The postmeas
ment state is nevertheless exactly known (Gpost51) and the
optimal estimate of the premeasurement stateuxpre

(s)& is of
maximal estimation fidelityGpre52/(d11).

We turn to a further aspect of information gain and st
disturbance. In Eq.~5! we have uniquely decomposed th
measurement operationMs , which corresponds to the mea
surement results, into the positive operatorAEs and a uni-
tary operatorUs . The unitary part does not change the v
Neumann entropy. By virtue of Eq.~2!, all information,
which is contained in a measurement result, goes bac
AEs. In particular, the estimation fidelitiesGpost and Gpre
~14! and~18! depend only on the eigenvalues ofEs . The part
AEs of Ms represents, at a given information gain, the u

FIG. 1. Maximal operation fidelityF for given estimation fidel-
ity Gpost of the postmeasurement state in dimensionsd
52,4,8,16,̀ . The dashed lines mark for dimensiond52, the do-
main for possible combinations ofF andGpost.
2-3
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avoidable minimal disturbance of the state vector. We c
AEs the pure measurement partof a generalized measure
ment and a measurement withUs51 a pure measurement.
The operation fidelityF depends on the unitary partsUs too.
Inequality~21! shows that the maximal operation fidelityF is
limited by Gpost and therefore by the pure measurement p

Having connected the three mean fidelitiesF, Gpre, and
Gpost, we connect now the best guessesuxpre

(s)& anduxpost
(s) & for

the premeasurement and postmeasurement states, re
tively. The two best guesses are the distinguished pair of
and rhs eigenvectors to the same eigenvalue, cf. Eqs.~13!
and~19!. Invoking expansions~8! and~9!, this leads directly
to the results

Usuxpre
(s)&5uxpost

(s) & ~25!

and

Msuxpre
(s)&

Aamax
(s)

5uxpost
(s) &. ~26!

Equation~25! shows that the best estimate for the postm
surement state can be obtained from the best estimate o
premeasurement state by applying merely the unitary parUs
of the measurement operator. This has the surprising co
quence that for all pure measurements the best estima
for the premeasurement and postmeasurement state al
agree if the ingoing stateuc& is completely unknown. This is
the case regardless of the values of the operation fidelitF
and the estimation fidelitiesGpre andGpost.

Finally we give a physical interpretation of relation~26!.
As a matter of fact, both the premeasurement and postm
surement states become only partially revealed by the
. A
.
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mation procedure. Nonetheless, even nonoptimal estim
uxpre

(s)&, uxpost
(s) & must obey constraint~26! expressing the cer

tain fact that the postmeasurement state results from the
eralized measurement~1! of the premeasurement one. Rec
that we estimated the optimum premeasurement and p
measurement states by maximizing independently the
measurement and postmeasurement fidelities. We did
guarantee explicitly that the two optimum statesuxpre

(s)&,
uxpost

(s) & satisfy the exact constraint. The derived result~26!
proves that they do.

In conclusion, we have studied generalized measurem
$Ms% on a singled-level quantum system. For the case wh
the initial state is pure and otherwise completely unknow
we pointed out that the best estimates of the premeasure
and postmeasurement states for a given measurement re
s are the respective right and left eigenvectors ofMs , be-
longing to the~common! largest eigenvalue. The mean pos
measurement estimation fidelity of the measurement de
is also calculated and shown to satisfy a simple relations
with the mean premeasurement estimation fidelity. A co
straint between the postmeasurement estimation fidelity
the operation fidelity of the measurement illustrates h
state disturbance and information gain about the postm
surement state are competing with each other. We h
shown that for pure generalized measurements the inde
dent best estimates of the premeasurement and postmea
ment states agree. We have proved that, in general, they
related via the corresponding measurement operator as
expect of them.
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