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Abstract. In 1983, Wigner outlined a modified Schrödinger–von-Neumann
equation of motion for macroobjects, to describe their typical coupling to the
environment. This equation has become a principal model of environmen-
tal decoherence which is believed responsible for the emergence of classical-
ity in macroscopic quantum systems. Typically, this happens gradually and
asymptotically after a certain characteristic decoherence time. For the Wigner
function, however, one can prove that it evolves perfectly into a classical (non-
negative) phase-space distribution after a finite time of decoherence.
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1. Introduction

Wigner, in his paper On the Quantum Correction for Thermodynamic Equilibrium

[1], constructs a map from the quantum state of a particle into a certain classical

phase-space distribution:
ρ̂ → W (x, p) . (1)

(Wigner adds in footnote that ‘it was found by L. Szilard and the present author
some years ago for another purpose.’) The Wigner function W (x, p) became the
prototype of all subsequent trials to simulate a quantum state through a statistical
distribution over the classical phase space. As it was already obvious to Wigner
himself, the sign of W (x, p) is indefinite. By now, it is widely accepted that the
existence of domains where W is negative should mean that the state ρ̂ is essentially
quantum in a sense that it cannot be simulated by a statistical distribution W (x, p)
over the classical phase space. In the contrary case, when ρ̂’s Wigner function is
positive, one can say that ρ̂ exhibits classicality in the above particular sense.

After half a century [2], Wigner was certainly the first among the most influ-
ential to support the concept later called environmental decoherence [3,4]. Wigner,

1589-9535/04/ $ 20.00
c© 2004 Akadémiai Kiadó, Budapest
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according to his Review of the quantum mechanical measurement problem, was im-
pressed [5] by the work of Zeh [6] claiming that a macroscopic body can actually not
be a closed system of its microscopic degrees of freedom. Wigner adopts such a real-
ity and emphasizes the need of a new equation for apparently non-isolated objects.
He modifies the Schrödinger equation by adding a second term to the r.h.s.:

dρ̂

dt
= − i

h̄
[Ĥ, ρ̂] + irreversible term . (2)

The irreversible term models the inevitable interactions of the macroscopic body
with its environment. Perhaps, this was the first closed equation with the explicite
intention of modeling environmental decoherence.

Decoherence [3, 4] is responsible for the emergent classicality in quantized sys-
tems. In particular, the negative valued domains of the Wigner function W (x, p)
might become washed out and grow positive under the influence of a modified
Schrödinger equation like Eq. (2). Kiefer and the present author have recently
proved an even stronger theorem [7]. The positivity of W (x, p) is achieved in finite
time, contrary to our intuition that continuous variables would only asymptotically
decohere.

Section 2 outlines the function and the equation proposed by Wigner in 1932 and
1983, respectively. In Section 3 the theorem of exact decoherence is recapitulated.

2. His Function (1932) and Equation (1983)

According to Wigner [1], the quantum state ρ̂ can be mapped into a normalized
phase-space distribution:

W (x, p) =
1

2π

∫

〈x − r/2|ρ̂|x + r/2〉eipr/h̄dr . (3)

There is an equivalent form of the above map, see e.g. [8]:

W (x, p) = tr [ρ̂Sδ(x − x̂)δ(p − p̂)] , (4)

where S stands for total symmetrization defined by successive application of the
rules

Sx̂f̂ =
1

2

(

x̂f̂ + f̂ x̂
)

, Sp̂f̂ =
1

2

(

p̂f̂ + f̂ p̂
)

, (5)

to the already S-ordered function f̂ = f(x̂, p̂). The form (4) shows directly that
the Wigner function has the correct quantum mechanical marginal distributions for
both canonical variables separately:

∫

W (x, p)dp = tr[ρ̂δ(x − x̂)] , (6)

∫

W (x, p)dx = tr[ρ̂δ(p − p̂)] . (7)
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The form (4) of the Wigner function is covariant against linear canonical transfor-
mations:

(

x̂

p̂

)

→
(

x̂′

p̂′

)

⇒ W (x, p) → W ′(x′, p′) = W (x, p) . (8)

Wigner proposes the following modification of Schrödinger’s equation in case of
a macroscopic body [2]:

dρ̂

dt
= − i

h̄
[Ĥ, ρ̂] −

∑

`m

ε`

[

L̂`m, [L̂`m, ρ̂]
]

, (9)

where Ĥ is the total Hamiltonian and L̂`m are the multipole operators of the angular
momentum. The second term is intended to decohere macroscopically different
multipole moments. The strengths of their decoherence are being controlled by
the rotation invariant parameters ε`. It turns out, however, that more typical is
the decoherence between macroscopically different center of mass positions x̂. The
modified Schrödinger equation retains the mathematical structure of Wigner’s one
(9). Indeed, for a free object of mass m it is this simple [9]:

dρ̂

dt
= − i

h̄

[

p̂2

2m
, ρ̂

]

− D

2h̄2
[x̂, [x̂, ρ̂]] . (10)

This equation simplifies the environment as if it corresponded to a random external
force F (t) =

√
Dw(t) where w(t) is standard white noise. The solution of the stan-

dard Schrödinger equation with the randomly fluctuating potential F (t)x̂, averaged
over the noise w, yields the above modified Schrödinger equation [10].

The strength of decoherence is governed by a single parameter D. Assume a
certain coherent width σ for the initial quantum state. Dimensional analysis of
the modified Schrödinger equation shows that the Hamiltonian and the irreversible
terms have opposite tendencies. The unitary term increases σ at a ‘coherent broad-
ening’ characteristic time mσ2h̄. The irreversible term is tending to decrease σ at a
time scale h̄2/Dσ2 of ‘incoherent localization’. The two contrary effects may have
a balance at the ‘stationary coherence width’ [11]

σ0 =

(

h̄3

Dm

)1/4

, (11)

achieved typically after a characteristic ‘decoherence time’

t0 =
√

h̄m/D . (12)

Then the physical picture suggests that the quantum state has become a random
(incoherent) mixture of wave packets whose characteristic width is the stationary
value (11). The corresponding Wigner function must obviously be positive since
each contributing wave packet is assumed to have a positive Wigner function.
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3. Exact Decoherence

Let us consider the evolution of the quantum state ρ̂(t) under the influence of
environmental decoherence as described by Eq. (10). The following theorem holds
[7]. Independently of the initial state ρ̂(0), the solution ρ̂(t) will exhibit exact
classicality for t ≥ tD in a sense that the corresponding Wigner function becomes
non-negative:

W (x, p; t) ≥ 0 iff t ≥ tD . (13)

The exact value of the decoherence time is calculable: tD = 31/4t0.
The proof is the following. Substituting Eq. (3) into Eq. (10), we obtain the

standard classical Fokker–Planck equation for the Wigner function (3):

dW

dt
= − p

m

∂W

∂x
+

D

2

∂2W

∂p2
. (14)

Consider the Gaussian of width
√

C in both x and p:

g(x, p; C) =
1

2πC
exp

[

−x2 + p2

2C

]

, (15)

and use it to coarse-grain an arbitrarily chosen Wigner function. The result is
always non-negative if and only if the coarse-graining scale is greater than one half:

g(x, p; C) ? W (x, p) ≥ 0 iff C ≥ 1/2 , (16)

where ? denotes convolution. Indeed, for C = 1/2 the coarse-graining yields the
positive Husimi function [12]; greater values of C yield further coarse-graining which
preserves the positivity of the Husimi function. Now we can generalize the lemma
(16). Let us generalize the Gaussian profile (15) first:

g(x, p;C) =
1

2π
|C|− 1

2 exp

[

−(x, p)
1

2C

(

x

p

)]

. (17)

The following lemma holds, see also Ref. [13] by Khalfin and Tsirelson (1992):

g(x, p;C) ? W (x, p) ≥ 0 iff |C| ≥ 1/4 . (18)

The correlation matrix C can always be transformed into the form CI with C =
√

|C|. Hence, due to the covariance (8) of the Wigner function, the lemma (18)
follows from the special case (16).

Coming back to the Fokker–Planck equation (14), its solution can be written
as the following time-dependent Gaussian coarse-graining:

W (x, p; t) = g(x, p;CW (t)) ? W (x − pt/m, p; 0) . (19)

The correlation matrix of the coarse-graining profile is time-dependent:

CW (t) = Dt

(

t2/3m2 t/2m
t/2m 1

)

, (20)
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as it can be inspected if we insert it into Eq. (19) which we substitute into (14).
The determinant yields:

|CW (t)| =
D2t4

12m2
. (21)

The proof of the theorem (13) culminates in the observation that the determinant
is monotone function, i.e. the Wigner function W (x, p; t) results from progressive
coarse-graining. Applying the lemma (18) to the determinant, we conclude that
the Wigner function W (x, p; t) is non-negative if |CW (t)| ≥ 1/4. This condition is
equivalent with t ≥ 31/4t0 ≡ tD. This completes the exact proof of the theorem
whose earlier versions can be found in Refs. [14].

4. Conclusions

I discussed two items among Wigner’s remarkable contributions to the foundations
of quantum mechanics: the first phase-space quasi-distribution (1932) and the first
explicit equation of decoherence (1983), respectively. The simplified version of his
decoherence equation leads to a theorem when applied to his function W (x, p; t). I
recapitulated the exact proof, given recently by Claus Kiefer and myself, guaran-
teeing the positivity of Wigner’s function after a finite time of decoherence. The
purpose of my talk was to demonstrate Wigner’s continued impact even on the
second century of quantum mechanics.
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being clearly outside of the scope of our quantum mechanics. The arguments
which convinced me that quantum mechanics’ validity has narrower
limitation, that it is not applicable to the description of the detailed behavior
of macroscopic bodies, is due to D. Zeh. (1971) [. . . ]. The point is that a
macroscopic body’s inner structure, i.e. its wave function, is influenced by its
environment in a rather short time even if it is in intergalactic space. Hence it
can not be an isolated system [. . . ]. Can an equation for the time-change of
the state of the apparently not-isolated system be proposed?

6. H.D. Zeh, in Foundations of Quantum Mechanics, ed. B. d’Espagnat,
Academic Press, New York, 1971, p. 263.
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10. L. Diósi, Phys. Lett. A112 (1985) 288.
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