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We can uniquely calculate almost all entangled state vectors of tripartite systemsABC if we know the
reduced states of any two bipartite subsystems, e.g., ofAB and ofBC. We construct the explicit solution.
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Generic multiparty composite quantum states establish
complex multiparty correlations. In the particular case of
pure composite states, however, recent evidence has shown
that higher order correlations follow from lower order ones
[1–3]. Such quantum features[4] are of central interest in the
modern field of quantum information[5], as well as in the
more traditional field of many-body physics[6].

Generic three-party pure quantum states have been shown
to be uniquely determined by their two-party reduced states
[1,2]. Consider, e.g., a composite pure staterABC
= ucABClkcABCu of three partiesA, B, C of dimensionsdA, dB,
anddC, respectively. LetrAB, rBC, andrAC denote the two-
party reduced states. In the case of three qubits, these three
reduced states will uniquely determine the composite state
rABC in almost all cases[1]. For higher dimensions, satisfy-
ing the “triangle inequality”dAùdB+dC−1, an alternative
theorem holds: the two reduced statesrAB and rAC are al-
ready sufficient to calculate the staterABC of the whole sys-
tem [2]. Note that in both cases, one calculatesrABC without
assuming thatrABC is pure. It comes out from the reduced
states. If one assumes it, then a stronger statement holds.
Then, as we shall prove in the present work, almost all pure
composite statesucABCl can be uniquely calculated from the
knowledge of any two of the two-party reduced states if one
knows already thatrABC is pure. This result holds in any
finite dimensions. We present explicit equations forucABCl.

For concreteness, let us prove how a genericucABCl is
determined byrAB and rBC. Obviously, the latter two states
determine the three single-party reduced statesrA, rB, rC as
well. One shall diagonalize them, e.g.,

rA = o
i

pA
i uilki u, pA

i . 0. s1d

Similarly, u jl and ukl stand for the eigenvectors with nonzero
eigenvaluespB

j , pC
k of rB andrC, respectively. Note thatpA

i ,
pB

j , andpC
k are nonzero by definition. SincerABC is pure, the

reduced staterA shares its eigenvaluespA
i with rBC

rBC = o
i

pA
i ui ;BClki ;BCu, s2d

where ui ;BCl are the orthogonal eigenvectors ofrBC with
nonzero eigenvalues. Similarly, we introduce the orthogonal

decomposition ofrAB as well, with nonzero eigenvaluespC
k

and eigenvectorsuk;ABl. We may omit decomposition of
rAC: it is not required by the present proof. From the spectral
decompositions(1) and(2), we can reconstruct the Schmidt-
decomposition ofall three-party pure states compatible with
rA andrBC

ucABC;al = o
i

expsiaidÎpA
i uil ^ ui ;BCl, s3d

wherea;haij is the set of phases to be specified later. From
the spectral decompositions ofrAB andrC, we have another
family of all pure states compatible withrAB andrC

ucABC;gl = o
k

expsigkdÎpC
k uk;ABl ^ ukl. s4d

Since the trueucABCl is compatible with bothrAB and rBC
(and thus withrA, rC), therefore at least one solutionexists
for the ai’s andgk’s such that

ucABC;al = ucABC;gl. s5d

We are going to prove that this solution is unique, hence the
state(5), derived fromrAB andrBC, will be the trueucABCl.

First, we cast the vectorial equation(5) into equations for
amplitudes. Let us calculate the following coefficients:

A jk
i = k jkui ;BCl, Ci j

k = ki j uk;ABl. s6d

They are nonvanishing for a generic stateucABCl. In fact, the
eigenvectors(with nonzero eigenvalues) of a composite state
are superpositions of the direct products formed by the
eigenvectors(with nonzero eigenvalues) of the respective
subsystem reduced states[7]. In our case, we use the follow-
ing expansions:

ui ;BCl = o
jk

A jk
i u jkl, uk;ABl = o

i j

Ci j
k ui j l. s7d

Substituting them into Eqs.(3) and(4), considering orthogo-
nality of the product statesui jkl, we expand Eq.(5) into the
following set of compatibility equations betweena andg:

expsiaidÎpA
i A jk

i = expsigkdÎpC
kCi j

k s8d

for all i, j , k. Multiplying the left-hand side(l.h.s) by the
complex conjugate of the right-hand-side(r.h.s.) and the
r.h.s. by the complex conjugate of the l.h.s. will cancel the
factorsÎpA

i pC
k , yielding
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expfisai − gkdgA jk
i C̄i j

k = expf− isai − gkdgĀ jk
i Ci j

k . s9d

Finally we obtain the following simple equations:

ai − gk = argo
j

Ā jk
i Ci j

k s10d

for all i andk. The solutionai, gk is then trivial and unique
up to an (irrelevant) constant phase shiftai →ai +x ,gk
→gk+x. The constantx contributes to an irrelevant phase
factor expsixd in front of the pure state(5).

Reference[2] considers the generic pure stateucl of a
large number of identical parties of dimensiond each. The
authors derived the upper boundaU=2/3 on thefraction of
parties whose reduced states enable one to reconstructucl.
The lower boundaL=1/2 wasobtained for larged. The con-
ditions of this lower bound differ from the rest of the work
[2], and follow the conditions assumed in the present paper:
reconstruction has been restricted to pure states. At these
conditions, the theorem of the present paper will sharpen the
upper boundaU=2/3. Let usgroup the parties into three
subsystemsA, B, and C where, e.g.,A is a singled-state
system, whileB and C share the rest equally or almost
equally. According to our theorem,rAB andrAC determine a
generic pure stateucl of the whole system. This yieldsaU
=1/2 asymptotically. Observe the coincidence with the
lower boundaL=1/2 [2]. Accordingly, there must be an(al-
most) one-to-one mapping between the space of pure states
of the whole system and(a certain region in) the space of the
reduced states of all fractions,1/2 of the whole.

We summarize the steps reconstructing a state vector
ucABCl from two density matricesrAB andrBC. First we cal-
culaterA, rB, andrC. Then we diagonalizerAB, rBC, rA, rB,
andrC, and calculate the coefficientsA jk

i , Ci j
k (6). The wanted

pure stateucABCl takes the form(3) with

ai = argo
j

Ā jk
i Ci j

k , s11d

wherek is set to any fixed value. Recall that theA jk
i ’s and

Ci j
k ’s are not independent at all. The above particular expres-

sion of ai could well be replaced by a variety of equivalent,
even simpler, expressions of them. One can, e.g., take any
fixed value forj instead of the summation overj . The form
(11) is preferred because it is explicitly invariant for the
rephasing and relabeling of the basis vectorsu jl of subsystem
B. To display full representation invariance of the reconstruc-
tion, we need further investigations on the underlying geo-
metric structure.

Finally, we mention a possible extension of the method
for spatial tomography. Assume that we have to reconstruct a
spatial wave functioncsxyzd from planar projections. Let us
define the density matrices in theXY andYZ planes, e.g.,

rXYsxy;x8y8d =E csxyzdc̄sx8y8zddz, s12d

and a similar equation forrYZ. If our theorem remains valid
for infinite dimensions as well, then the reduced statesrXY
and rYZ would determine the original spatial wave function
csxyzd. The choice of concrete equations of reconstruction
would then require special care against numeric instabilities.
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