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Three-party pure quantum states are determined by two two-party reduced states
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We can uniquely calculate almost all entangled state vectors of tripartite systB@sf we know the
reduced states of any two bipartite subsystems, e.gABoind of BC. We construct the explicit solution.
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Generic multiparty composite quantum states establisldlecomposition ofp,g as well, with nonzero eigenvaluqa%
complex multiparty correlations. In the particular case ofand eigenvectorsk; AB). We may omit decomposition of
pure composite states, however, recent evidence has showpc: it is not required by the present proof. From the spectral
that higher order correlations follow from lower order onesdecompositiongl) and(2), we can reconstruct the Schmidt-
[1-3]. Such quantum featurg4] are of central interest in the decomposition ofill three-party pure states compatible with
modern field of quantum informatiofb], as well as in the p, and pgc
more traditional field of many-body physi¢6]. i

Generic three-party pure quantum states have been shown |ngc; a) = > exp(iaﬂy?ﬂi) ® |i;BC), (3)
to be uniquely determined by their two-party reduced states i

[1,2]. Consider, e.g., a composite pure stapgsc wherea={q;} is the set of phases to be specified later. From

:|‘zA:C)<¢ABC| of thlreeLparuey\, B, Co(l)f dm;ensmnsﬁA, do,  the spectral decompositions pfg and pc, we have another
anddc, respectively. Lepag, pgc, andpac denote the tWo- ¢, iy of a1 pure states compatible wifg and pe
party reduced states. In the case of three qubits, these three

reduced states will uniquely determine the composite state CaN = VK
paec In almost all case§l]. For higher dimensions, satisfy- [Vaeci ) zk: eXplindVPe
ing the “triangle inequality"dy=dg+dc—1, an alternative

theorem holds: the two reduced stajes and pac are al-  Since the trugyuge is compatible with bottpag and pgc
ready sufficient to calculate the staigsc of the whole sys-  (and thus withp,, pc), therefore at least one soluti@xists
tem[2]. Note that in both cases, one calculapgsc without ~ for the ai’s and y,’s such that

assuming thappgc is pure. It comes out from the reduced o i 5

states. If one assumes it, then a stronger statement holds. |¥nsci @) = [¥asci 7). 5)

Then, as we shall prove in the present work, almost all purgye are going to prove that this solution is unique, hence the
composite statels/gc) can be uniquely calculated from_the state(5), derived frompag and pgc, Will be the true|yago).
knowledge of any two of the two-party reduced states if one  First, we cast the vectorial equati¢) into equations for

knows already thapagc is pure. This result holds in any amplitudes. Let us calculate the following coefficients:
finite dimensions. We present explicit equations [i6(0).

For concreteness, let us prove how a gen@figo is }k:<jk|i;BC>, C!‘j =(ij|k;AB). (6)
determined byp,g and pgc. Obviously, the latter two states o )
determine the three single-party reduced stajess, pc as  T1hey are nonvanishing for a generic staigso. In fact, the

k:AB) ® |K). (4)

well. One shall diagonalize them, e.g., eigenvectorgwith nonzero eigenvalugsf a composite state
_ _ are superpositions of the direct products formed by the
A= D PaliX(i], pay> 0. (1) eigenvectorg(with nonzero eigenvalugsof the respective
i

subsystem reduced staf&$. In our case, we use the follow-

Similarly, |j) ande) stand for the eigenvectors with nonzero INg expansions.

eigenvaluep}, p¢ of pg and pc, respectively. Note thamiA,
pk, and pé are nonzero by definition. Singggcis pure, the
reduced stat@, shares its eigenvalugs, with pgc

i;BC) = 2 Aylik), [k:AB) =2 Cifij). (7)
ik ij

_ Substituting them into Eq$3) and(4), considering orthogo-
pec= > Pali;BCXi;BC], (2)  nality of the product statelsik), we expand Eq(5) into the
i following set of compatibility equations betweenand v:

where |i;BC) are the orthogonal eigenvectors @fc with N T a0 . K Ak
nonzero eigenvalues. Similarly, we introduce the orthogonal expliai) VpaAj = expli %) VPl (8)
for all i, j, k. Multiplying the left-hand sidgl.h.s) by the
complex conjugate of the right-hand-sideh.s) and the
*Electronic address: diosi@rmki.kfki.hu; r.h.s. by the complex conjugate of the l.h.s. will cancel the
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exdila — wACK = exd—i(a: - AL ok 9 We summarize the steps reconstructing ‘a state vector

Hi (e = %} ;e A= (e = md A © |[¥as0 from two density matricepag and pgc. First we cal-

Finally we obtain the following simple equations: culatepp, pg, andpc. Then we diagonalizeag, psc: pas Pes

andpc, and calculate the coefficiem&é,k, Cikj (6). The wanted
I Z}k CE (10 pure statdiy,go takes the forrr(j) with
j a =arg>, AyCr, (12)
for all i andk. The solutiong;, y is then trivial and unique _ ) : _
up to an (irrelevan) constant phase shifty — a;+y, yi wkherek is set to any fixed value. Recall that tt}qk’s and
— %+x. The constanty contributes to an irrelevant phase Cj;'s are not independent at all. The above particular expres-
factor exgiy) in front of the pure state5). sion of a; could well be replaced by a variety of equivalent,
Reference[2] considers the generic pure sty of a  EVEN simpler, expressions of them. One can, e.g., take any
large number of identical parties of dimensidreach. The xed value forj instead of the summation ovgrThe form
authors derived the upper boung=2/3 on thefraction of (11) |s_preferred bec_ause it is exphmtly_mvarlant for the
parties whose reduced states enable one to reconsgruct '@Phasing and relabeling of the basis vectgrsf subsystem
The lower boundy, =1/2 wasobtained for largel. The con- B To display full repre:?‘entat!on invariance of the rec.onstruc—
ditions of this lower bound differ from the rest of the work tion. we need further investigations on the underlying geo-
[2], and follow the conditions assumed in the present papefMetric structure. _ ,
reconstruction has been restricted to pure states. At these Flnal_ly, we mention a possible extension of the method
conditions, the theorem of the present paper will sharpen thi?" Spatial tomography. Assume that we have to reconstruct a
upper bounday,=2/3. Let usgroup the parties into three SPatial wave function(xy2 from planar projections. Let us
subsystemsh, B, and C where, e.g.A is a singled-state define the density matrices in th& andY Z planes, e.g.,
system, whileB and C share the rest equally or almost _
equally. According to our theorem,g and pc determine a pxy(Xy;X'y") :f Y(xy2(X'y'2)dz, (12
generic pure statpy) of the whole system. This yields,
=1/2 asymptotically. Observe the coincidence with theand a similar equation fgsy,. If our theorem remains valid
lower bounda, =1/2 [2]. Accordingly, there must be gial-  for infinite dimensions as well, then the reduced staigs
mos) one-to-one mapping between the space of pure statemnd py; would determine the original spatial wave function
of the whole system an@ certain region inthe space of the {(xy2. The choice of concrete equations of reconstruction
reduced states of all fractions1/2 of the whole. would then require special care against numeric instabilities.

[1] N. Linden, S. Popescu, and W.K. Wootters, Phys. Rev. Lett. bridge, 2002

89, 207901(2002. [6] A.J. Coleman, Rev. Mod. Phys5, 668(1963.
[2] N. Linden and W.K. Wootters, Phys. Rev. Le®9, 277906 [7] One proves thatS(pag) C S(pa) ® S(pg), Where S(p) is the
(2002. support ofp. The relationship is trivial for purpag like, e.g.,

[3] Y.-J. Han, Y.-S. Zhang, and G.-C. Guo, e-print quant-ph/ ok =|k: AB)(k;AB|. Then, for mixedpsg, We can write:
0403151.

[4] In classical multiparty systems, the corresponding statement S(pas) = ®1S(pre) € @LS(PR) © S(pp)]
would be trivial since pure states are zero-uncertainty states B
described by multivariate delta functions. C @[ S(p5) ® S(p&)]=S(pp) ® S(pg)

[5] M.A. Nielsen and I.L. ChuangQuantum Computation and
Quantum Information(Cambridge University Press, Cam-

010302-2



