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Conserved current in Markovian open-quantum systems
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We reexamine the Markovian approximation of local current in open quantum systems, discussed recently
by Gebauer and Car. Our derivation is more transparent; the proof of the current conservation becomes explicit

and easy.
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I. INTRODUCTION

Quantum mechanics is reversible at the microscopic level.
If, however, an atomic system is coupled to a reservoir, then
the atomic reduced dynamics becomes irreversible and the
corresponding evolution equation contains a memory term.
Yet, in the Markov approximation the time evolution of the
atomic reduced density matrix p satisfies the memory less
master equation:

dp 3
L A5+ 1
o, = LH.pl+ Lp (1)

where H is the atomic Hamiltonian. The irreversible term
can be written into the Lindblad form [1,2]:

£ﬁ=2 (\A/IT[)\A/Z_ \A/l.\A/Zﬁ)gl-+H.C., (2)

where {V} are certain atomic operators and {g;} are complex
coefficients satisfying Re g;> 0. This equation constitutes the
phenomenological dynamics of the given Markovian open
quantum system.

In Hamiltonian dynamics with local potentials and inter-
actions, an important conserved quantity is the particle den-
sity. Consider, for simplicity sake, a single atomic electron
with the canonical pair of operators X,p. The electron’s den-
sity operator at location r reads as

i(r) = 8(r - %) = [rXr], 3)
where the position eigenstates satisfy the equation
%|r)=r|r). There is a local current defined by

A 1. A
J(r) = —[pA(r) + A(r)p]. (4)
2m

The current J is conserved, i.e., the Heisenberg operators
7i,;,J, satisfy the continuity equation:
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di(r)

. +V-J,(r)=0. (5)

A similar continuity equation follows for the expectation val-
ues as well. The continuity equation still holds if the atom
interacts with other systems, provided the interaction is /o-
cal. Let us, indeed, suppose a certain local interaction with a
reservoir. The atom becomes an open system governed by
the master equation (1) in the Markovian approximation. Let
us write down the continuity equation for the expectation
values of 72 and J in the atomic state p, and substitute Eq. (1).
In the Schrodinger picture we obtain the following:
d{ii(r)) - -
+ V- (J(r)) = (L A(r)). (6)
dt

We see that the extra term (£ 7(r))=tr[/A(r)Lp] on the rhs
may in general violate the local conservation of the current.
Gebauer and Car [3] noticed that such a violation is a con-
sequence of the Markov approximation. They also pointed
out that current conservation can be restored by adding a
dissipative correction Jp, to the Hamiltonian current J. These
authors have derived J, from the exact reversible dynamics
of the atom+reservoir. Here we reconsider the issue and pro-
pose a shorter and transparent derivation. Our formulating J
is fairly explicit to satisfy local conservation. This latter is
the main progress with respect to Ref. [3], which would need
a subtle and lengthier proof [4], not even published in Ref.

[3] or elsewhere.
It is clear from Eq. (6) that J+J, will satisfy the conti-

nuity equation if:

V-Jp(r)=— L. (7)

In one dimension with boundary conditions J p(x2)=0,
the previous equation has a unique solution Jp(r)
=—["_dr" L A(r"), but in higher dimensions, additional con-

siderations are necessary to uniquely determine J p- In fact,
the Markov dynamics (1) of the atomic state p is not suffi-

cient to calculate J p- We must carefully inspect the Markov
approximation of the exact current. In Sec. I we review the
derivation of the master equation (1) in the usual Born-
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Markov approximation. Then Sec. III ontains our derivation
of the dissipative current Jp.

II. BORN-MARKOV APPROXIMATION

Let H+K+H r stand for the total Hamiltonian, where H

belongs to the atomic system, and H r belongs to the reser-
voir. The interaction Hamiltonian is local; we consider the

simple case K=V(R)F, where the “field” F is a reservoir
operator [5]. We suppose that the initial state of the whole
system is ppg, where py, is the reservoir equilibrium state. We

denote by éT the operator O at time 7 in the interaction
picture. Let us introduce the reservoir correlation function,

g(o = 1) = trg(FoF fg)s (8)

which is a complex non-negative time-translation invariant
kernel. Consider the change of the atomic reduced density
matrix during a certain time A. In the interaction picture,
second order perturbation theory yields

pr—h _

1 A o R R o
—f dof dn(V.pV,-V,V.p)g(c—7) +H.c.,

9)

where the first order term in V vanishes since we assume

trg(Fpg)=0. Suppose that 7,3 7p, where 7, is the time scale
of atomic state evolution and 7 is the reservoir correlation
time. Choose A in between the reservoir and atomic time
scales:

R<A<T1,. (10)

A standard way to proceed is the Born-Markov approxima-
tion that requires weak coupling and results in the master
equation (1) for the atomic state p, fime-coarse grained on
scale A.

The implementation of the Born-Markov approximation
has two steps. We identify the lhs of (9) by the time deriva-
tive dp/dt of the time-coarse-grained atomic state p. On the
rhs, we extend the integration limit as well as the denomina-
tor A to o. The latter limit is rigorously justified by a par-

ticular rescaling [6] where V—0, while V2A is constant [7].
Accordingly, the explicit form of the Lindblad-superoperator
becomes

1" 7 A A PN
Lp=1lim ;j do-f dn(V.pV,-V, V. pg(ac— 1) +H.c.
== 1y 0
(11)

It is easy to inspect that the rhs is already of the Lindblad
form (2). To achieve the familiar spectral representation, we
expand the interaction potentials as

V.= e, (12)

where the sum is over all possible transition frequencies
w=¢€,—¢€, of the system Hamiltonian H=3,€,|n)(n|. Obvi-
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ously, the spectral component of V is of this form,

Vo=Vi,= X

n,m

|n>Vl‘ll‘ﬂ<m|‘ (13)

As t— o, the oscillating terms in the integral (11) drop out,
and we get the master equation (1) where

Lh=2 (VipV,-V,Vipe + He., (14)
and
= f dre'“mg (). (15)
0

III. THE MARKOVIAN CONSERVED CURRENT

Constructing the correct Markovian coarse-grained cur-

rent, J+Jp needs special care. First, we calculate the average
of the exact current over the period A of time-coarse
graining. We expect that it becomes the sum of the unper-

turbed contribution J and the Markovian correction J p in the
Born-Markov limit,

A
i f do(J)e— )+ ), (16)

0

where (...), stands for the expectation value in the exact
time-dependent state evolved from ppp by the total Hamil-
tonian H+H R+IA( while (...) stands for the expectation value
in the coarse-grained state p. Let us introduce the time-
dependent auxiliary variable Z(r;t), defined as

Z(r;) = ft daj(,(r). (17)
0

Then, in the interaction picture, the lhs of (16) can be written
as

A

L 25, - L JAd () %Pe (18)
Ar DOa Ar0 o O-da'.

In the Born-Markov limit, the time-coarse-grained atomic
state p, evolves smoothly and only “differentially” during

time A, so does the current J,, too, in such states: we can

thus write the first term as just (J). In the second term, before
taking the Born-Markov limit, we substitute the perturbative
expression of dp,/do:

1 A . o . . o
- Ztrf do Z(O’)J dr(VpV,-V,V.p)g(c—7) +H.c.
0 0

(19)

Now we take the Born-Markov limit, which, again, allows
us to calculate the rhs by taking the limit A — oc:
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(JD>——hm—trf do-f dTZ(O')(VTpV Vva)g(O' 7)

t—

+H.c. (20)

We can express the dissipative current itself,

J,=-1lim

t—®

! f do f ' ddV,2(o)V,- Z(a)V,V ]g(o - 7)
0 0

+H.c. (21)

Recall that i(r ;0)=[§ d\ jx(r), so that jD(r) has turned out
to be a local linear functional of the unperturbed local cur-
rent J(r).

It is easy to prove that J p contributes properly to current

conservation. Let us take the divergence of both sides of Eq.
(21). Observe that

V-Z(o)=-h,+A, (22)

because density conservation Vj(,+dﬁ(,/da':0 holds for the
unperturbed atomic current and density. We have assumed
that the interaction is local, so [A,,V,]=0. Therefore the
terms proportional to 71, cancel each other on the rhs of Eq.
(21), and we obtain

A

I 7 A A A A
V-JD=—tlim —f d(rf dr(V,aV, —aV,V )g(o—17)
+H.c. (23)

The rhs coincides with —£"7 as it should; cf. Eq. (7).

IV. CLOSING REMARKS

Our central result is the expression (21) of the dissipative
current Jp. Its form was convenient when we proved the
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continuity equation from the locality of the interaction. In
concrete calculations, however, the spectral representation is

the preferred one. As the spectral representation of i(a) is

ta)ja_l

Z(o) = EJw, — (24)

wy

Eq. (21) yields two terms for the spectral expression of J D-
To compare it with the result of Car and Gebauer [3], we
present the spectral expression of the expectation value:

<jD> =t > >
Wt —wy=0 W) =wy=0
o)p:() wﬁwp:()
z—(vT bo Vo, =V, Vi P, )¢l +He. (25)

@7y

Here J wp pw , and V are the respective spectral representa-

tions of J, p and V; of. Eq. (13). The two sums cancel the
singularity at w;=0. We note without going into detail that,
for nondegenerate transition frequencies, our result (25) co-
incides with Eq. (16) in [3], apart from minor typos of the
latter [8].

Our result allows us to calculate the Markovian correction

J p to the local current in open quantum systems with a dis-
crete spectrum. The method applies to quantum dots directly
[9]. The case of quantum Brownian motion, however, re-
quires a suitably modified approach to cope with the Mar-
kovian limit of an open system with a continuous spectrum.
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