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We reexamine the Markovian approximation of local current in open quantum systems, discussed recently
by Gebauer and Car. Our derivation is more transparent; the proof of the current conservation becomes explicit
and easy.
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I. INTRODUCTION

Quantum mechanics is reversible at the microscopic level.
If, however, an atomic system is coupled to a reservoir, then
the atomic reduced dynamics becomes irreversible and the
corresponding evolution equation contains a memory term.
Yet, in the Markov approximation the time evolution of the
atomic reduced density matrix �̂ satisfies the memory less
master equation:

d�̂

dt
= − i�Ĥ, �̂� + L�̂ , �1�

where Ĥ is the atomic Hamiltonian. The irreversible term
can be written into the Lindblad form �1,2�:

L�̂ = �
i

�V̂i
†�̂V̂i − V̂iV̂i

†�̂�gi + H.c., �2�

where �V̂i� are certain atomic operators and �gi� are complex
coefficients satisfying Re gi�0. This equation constitutes the
phenomenological dynamics of the given Markovian open
quantum system.

In Hamiltonian dynamics with local potentials and inter-
actions, an important conserved quantity is the particle den-
sity. Consider, for simplicity sake, a single atomic electron
with the canonical pair of operators x̂ , p̂. The electron’s den-
sity operator at location r reads as

n̂�r� = ��r − x̂� = �r	
r� , �3�

where the position eigenstates satisfy the equation
x̂�r	=r�r	. There is a local current defined by

Ĵ�r� =
1

2m
�p̂n̂�r� + n̂�r�p̂� . �4�

The current Ĵ is conserved, i.e., the Heisenberg operators

n̂t , Ĵt satisfy the continuity equation:

dn̂t�r�
dt

+ � · Ĵt�r� = 0. �5�

A similar continuity equation follows for the expectation val-
ues as well. The continuity equation still holds if the atom
interacts with other systems, provided the interaction is lo-
cal. Let us, indeed, suppose a certain local interaction with a
reservoir. The atom becomes an open system governed by
the master equation �1� in the Markovian approximation. Let
us write down the continuity equation for the expectation

values of n̂ and Ĵ in the atomic state �̂, and substitute Eq. �1�.
In the Schrödinger picture we obtain the following:

d
n̂�r�	
dt

+ � · 
Ĵ�r�	 = 
L*n̂�r�	 . �6�

We see that the extra term 
L*n̂�r�	� tr�n̂�r�L�̂� on the rhs
may in general violate the local conservation of the current.
Gebauer and Car �3� noticed that such a violation is a con-
sequence of the Markov approximation. They also pointed
out that current conservation can be restored by adding a

dissipative correction ĴD to the Hamiltonian current Ĵ. These

authors have derived ĴD from the exact reversible dynamics
of the atom+reservoir. Here we reconsider the issue and pro-

pose a shorter and transparent derivation. Our formulating ĴD
is fairly explicit to satisfy local conservation. This latter is
the main progress with respect to Ref. �3�, which would need
a subtle and lengthier proof �4�, not even published in Ref.
�3� or elsewhere.

It is clear from Eq. �6� that Ĵ+ ĴD will satisfy the conti-
nuity equation if:

� · ĴD�r� = − L*n̂�r� . �7�

In one dimension with boundary conditions ĴD�±��=0,

the previous equation has a unique solution ĴD�r�
=−�−�

r dr� L*n̂�r��, but in higher dimensions, additional con-

siderations are necessary to uniquely determine ĴD. In fact,
the Markov dynamics �1� of the atomic state �̂ is not suffi-

cient to calculate ĴD. We must carefully inspect the Markov
approximation of the exact current. In Sec. II we review the
derivation of the master equation �1� in the usual Born-
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Markov approximation. Then Sec. III ontains our derivation

of the dissipative current ĴD.

II. BORN-MARKOV APPROXIMATION

Let Ĥ+ K̂+ ĤR stand for the total Hamiltonian, where Ĥ

belongs to the atomic system, and ĤR belongs to the reser-
voir. The interaction Hamiltonian is local; we consider the

simple case K̂= V̂�x̂�F̂, where the “field” F̂ is a reservoir
operator �5�. We suppose that the initial state of the whole
system is �̂�̂R, where �̂R is the reservoir equilibrium state. We

denote by Ô� the operator Ô at time � in the interaction
picture. Let us introduce the reservoir correlation function,

g�� − �� = trR�F̂�F̂��̂R� , �8�

which is a complex non-negative time-translation invariant
kernel. Consider the change of the atomic reduced density
matrix during a certain time �. In the interaction picture,
second order perturbation theory yields

�̂� − �̂

�
=

1

�



0

�

d�

0

�

d��V̂��̂V̂� − V̂�V̂��̂�g�� − �� + H.c.,

�9�

where the first order term in V̂ vanishes since we assume

trR�F̂�̂R�=0. Suppose that �A��R, where �A is the time scale
of atomic state evolution and �R is the reservoir correlation
time. Choose � in between the reservoir and atomic time
scales:

�R 	 � 	 �A. �10�

A standard way to proceed is the Born-Markov approxima-
tion that requires weak coupling and results in the master
equation �1� for the atomic state �̂t time-coarse grained on
scale �.

The implementation of the Born-Markov approximation
has two steps. We identify the lhs of �9� by the time deriva-
tive d�̂ /dt of the time-coarse-grained atomic state �̂. On the
rhs, we extend the integration limit as well as the denomina-
tor � to �. The latter limit is rigorously justified by a par-

ticular rescaling �6� where V̂→0, while V̂2� is constant �7�.
Accordingly, the explicit form of the Lindblad-superoperator
becomes

L�̂ = lim
t→�

1

t



0

t

d�

0

�

d��V̂��̂V̂� − V̂�V̂��̂�g�� − �� + H.c.

�11�

It is easy to inspect that the rhs is already of the Lindblad
form �2�. To achieve the familiar spectral representation, we
expand the interaction potentials as

V̂� = �



ei
�V̂
, �12�

where the sum is over all possible transition frequencies


=�n−�m of the system Hamiltonian Ĥ=�n�n�n	
n�. Obvi-

ously, the spectral component of V̂ is of this form,

V̂
 = V̂−

† = �

n,m

�n−�m=


�n	Vnm
m� . �13�

As t→�, the oscillating terms in the integral �11� drop out,
and we get the master equation �1� where

L�̂ = �



�V̂

† �̂V̂
 − V̂
V̂


† �̂�g

�+� + H.c., �14�

and

g

�+� = 


0

�

d� ei
�g��� . �15�

III. THE MARKOVIAN CONSERVED CURRENT

Constructing the correct Markovian coarse-grained cur-

rent, Ĵ+ ĴD needs special care. First, we calculate the average
of the exact current over the period � of time-coarse
graining. We expect that it becomes the sum of the unper-

turbed contribution Ĵ and the Markovian correction ĴD in the
Born-Markov limit,

1

�



0

�

d�
Ĵ	� → 
Ĵ	 + 
ĴD	 , �16�

where 
. . .	� stands for the expectation value in the exact
time-dependent state evolved from �̂�̂R by the total Hamil-

tonian Ĥ+ ĤR+ K̂ while 
. . .	 stands for the expectation value
in the coarse-grained state �̂. Let us introduce the time-

dependent auxiliary variable Ẑ�r ; t�, defined as

Ẑ�r;t� = 

0

t

d� Ĵ��r� . �17�

Then, in the interaction picture, the lhs of �16� can be written
as

1

�
tr Ẑ����̂� −

1

�
tr


0

�

d� Ẑ���
d�̂�

d�
. �18�

In the Born-Markov limit, the time-coarse-grained atomic
state �̂t evolves smoothly and only “differentially” during

time �, so does the current Ĵ�, too, in such states: we can

thus write the first term as just 
Ĵ	. In the second term, before
taking the Born-Markov limit, we substitute the perturbative
expression of d�̂� /d�:

−
1

�
tr


0

�

d� Ẑ���

0

�

d��V̂��̂V̂� − V̂�V̂��̂�g�� − �� + H.c.

�19�

Now we take the Born-Markov limit, which, again, allows
us to calculate the rhs by taking the limit �→�:
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ĴD	 = − lim
t→�

1

t
tr


0

t

d�

0

�

d� Ẑ����V̂��̂V̂� − V̂�V̂��̂�g�� − ��

+ H.c. �20�

We can express the dissipative current itself,

ĴD = − lim
t→�

1

t



0

t

d�

0

�

d��V̂�Ẑ���V̂� − Ẑ���V̂�V̂��g�� − ��

+ H.c. �21�

Recall that Ẑ�r ;��=�0
� d� Ĵ��r�, so that ĴD�r� has turned out

to be a local linear functional of the unperturbed local cur-

rent Ĵ�r�.
It is easy to prove that ĴD contributes properly to current

conservation. Let us take the divergence of both sides of Eq.
�21�. Observe that

� · Ẑ��� = − n̂� + n̂ , �22�

because density conservation �Ĵ�+dn̂� /d�=0 holds for the
unperturbed atomic current and density. We have assumed

that the interaction is local, so �n̂� , V̂��=0. Therefore the
terms proportional to n̂� cancel each other on the rhs of Eq.
�21�, and we obtain

� · ĴD = − lim
t→�

1

t



0

t

d�

0

�

d��V̂�n̂V̂� − n̂V̂�V̂��g�� − ��

+ H.c. �23�

The rhs coincides with −L*n̂ as it should; cf. Eq. �7�.

IV. CLOSING REMARKS

Our central result is the expression �21� of the dissipative

current ĴD. Its form was convenient when we proved the

continuity equation from the locality of the interaction. In
concrete calculations, however, the spectral representation is

the preferred one. As the spectral representation of Ẑ��� is

Ẑ��� = �

J

Ĵ
J

ei
J� − 1

i
J
, �24�

Eq. �21� yields two terms for the spectral expression of ĴD.
To compare it with the result of Car and Gebauer �3�, we
present the spectral expression of the expectation value:


ĴD	 = tr� �

J+
1−
2=0


�=0

− �

1−
2=0


J+
�=0
�

i
Ĵ
J


J
�V̂
2

† �̂
�
V̂
1

− V̂
1
V̂
2

† �̂
�
�g
2

�+� + H.c. �25�

Here Ĵ
J
, �̂
�

, and V̂
 are the respective spectral representa-

tions of Ĵ, �̂ and V̂; cf. Eq. �13�. The two sums cancel the
singularity at 
J=0. We note without going into detail that,
for nondegenerate transition frequencies, our result �25� co-
incides with Eq. �16� in �3�, apart from minor typos of the
latter �8�.

Our result allows us to calculate the Markovian correction

ĴD to the local current in open quantum systems with a dis-
crete spectrum. The method applies to quantum dots directly
�9�. The case of quantum Brownian motion, however, re-
quires a suitably modified approach to cope with the Mar-
kovian limit of an open system with a continuous spectrum.
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�=0
�V̂
2

† �̂
�
V̂
1

− V̂
1
V̂
2

† �̂
�
�g
2
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1
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�
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1
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