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Current quantum computer technology is sufficient to realize weak measurements and the corresponding
concept of “weak values.” We demonstrate how the weak value anomaly can be tested, along with consistency
and simultaneity of weak values, using only discrete degrees of freedom. All that is needed is a quantum
computer with two—or better, three—qubits. We also give an interpretation of the weak value as an effective
field strength in a post-selected spin measurement.
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I. INTRODUCTION

Of the many seeming paradoxes of quantum mechanics,
one of the most interesting and bizarre is the idea of a weak
value. First proposed by Aharonov, Albert, and Vaidman
�AAV� �1�, this uses a combination of weak measurements
and post-selection to derive measurement “results” which are
far outside the normal range of values for the measured ob-
servable. While a remarkable theoretical result, direct experi-
ments that actually demonstrate it are difficult—see, how-
ever, the interpretation of correlation functions as “weak
values” by Wiseman �2� and the quantum optical experi-
ments described in �3� and �4�. With the rapid experimental
progress from the surge of interest in quantum information
processing, it may be possible to do such experiments in a
highly controlled, repeatable fashion, using only discrete de-
grees of freedom.

In quantum measurements, the act of acquiring informa-
tion about a quantum system is always accompanied by a
complementary disturbance of the system. This is the content
of the famous uncertainty principle of Heisenberg. A mea-
surement which does not change the state of the system must
also yield no information.

It is possible in principle, however, to make the distur-
bance as small as one likes, as long as one is content to
acquire correspondingly little information. This is the idea of
a weak measurement. To perform such a measurement in
practice, one must generally cause the system to interact
weakly with a second system—an ancillary system, or an-
cilla, sometimes called the “meter”—which is under one’s
experimental control and has been prepared in a known ini-

tial state. This ancilla then undergoes a strong measurement
of its own. In the limit where the system and ancilla do not
interact at all, clearly this measurement will yield no infor-
mation. As we gradually increase the strength of the interac-
tion, the measurement outcome will contain more and more
information about the system, until eventually the effect is
the same as performing a strong measurement directly on the
system.

The idea of post-selection supposes that instead of per-
forming repeated measurements on a single system, one pre-
pares many copies of the system by repeating the same
preparation procedure over and over. These copies will all
have the same initial state. These copies then undergo some
standard operation—some sequence of unitary transforma-
tions and measurements—followed by a final measurement.
One then keeps the data only from those systems whose final
measurement gave a particular outcome and averages results
over this subensemble.

In this paper we will review the Aharonov-Albert-
Vaidman definition of weak values and then describe how
experimental systems designed for quantum computation can
lead to an immediate experimental implementation using ex-
isting quantum computers—for example, in ion trap quantum
computers �5–7�.

II. TWO-QUBIT INDIRECT MEASUREMENT DEVICE

A qubit is a two-dimensional quantum system, with a
standard �“computational”� basis which we denote ��0� , �1��.
There can be many different physical embodiments of such a
system: the spin of an electron, the polarization of a single
photon, a two-level subspace of the electronic states of an
atom or ion, etc. For quantum algorithms, much work has
been devoted to the performance of quantum gates, analo-
gous to classical logic gates, which effect a unitary transfor-
mation of one or two qubits at a time. The canonical two-
qubit gate is the controlled-NOT �CNOT�:
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�i� � �j� → USA��i� � �j�� = �i� � �j � i� , �1�

where j � i is the exclusive-OR �XOR� of the bit values i and
j, and USA is the unitary transformation which represents a
CNOT between the system and the ancilla.

A quantum circuit with a single CNOT gate makes a per-
fectly controllable indirect measurement of a qubit in the
computational basis by storing the value of the qubit in a
second �ancilla� qubit:

�i�S � �0�A → �i�S � �i�A �i = 0,1� ,

where S and A label the system and ancilla, respectively, the
system is initially in the computational state �i�, and the an-
cilla is initially in the state �0�. �We will suppress the labels S
and A where there is no possibility of confusion.� The ancilla
can then be measured by a strong measuring device, which
will simultaneously “collapse the wave function” of the sys-
tem qubit. This type of indirect measurement can be very
useful when the only direct measurements are destructive
�for example, a photodetector which absorbs the photon it is
measuring�. If the system is initially in a superposition of
computational basis states, it will become entangled with the
ancilla:

���0� + ��1�� � �0� → ��0� � �0� + ��1� � �1� .

When the ancilla is measured, one of these two terms will be
selected with probability ���2 or ���2.

Suppose now that instead of �0� we prepare the ancilla in
the initial superposition

��A� = cos
�

2
�0� + sin

�

2
�1� .

Let the system qubit be in the state ��i�=��0�+��1� and have
the two qubits interact via the CNOT. Then we measure the
ancilla in its computational basis in order to obtain informa-
tion about ��i�. After the CNOT, the system and ancilla are in
the state

��i� � ��A� → ��� = USA���i� � ��A�� , �2�

with

��� = ��0� � 	cos
�

2
�0� + sin

�

2
�1�
 + ��1�

� 	sin
�

2
�0� + cos

�

2
�1�
 . �3�

If �=0, then ��A�= �0� and this is the case we have just
considered: the indirect measurement is perfectly equivalent
with a direct measurement of the first qubit. If �=� /2, then
the indirect measurement does not give any information on
the first qubit, whose state ��i� will just survive the proce-
dure unchanged, without being entangled with the state of
the ancilla. Hence, the parameter � offers full control of the
strength of the indirect measurement. We shall be interested
in weak measurements, which are realized by �= �� /2�−	
where 0
	�1. This will be discussed later.

Let us determine the expectation value of the operator
�̂z��0��0�− �1��1� of the ancilla in the state ��� given by Eq.
�3�:

��̂z
ancilla� = ���2 cos2�

2
+ ���2 sin2�

2
− ���2 sin2�

2
− ���2 cos2�

2

= ����2 − ���2�	cos2�

2
− sin2�

2

 = ����2 − ���2�cos � .

�4�

Since ���2− ���2= ��i��̂z��i� �which we simply denote by
��̂z��, it follows that

��̂z� =
1

cos �
��̂z

ancilla� , �5�

where the expectation value on the left-hand side is the ex-
pectation value of �̂z in the system initial state ��i�, while the
expectation value on the right-hand side stands for the post-
interaction expectation value of �̂z

ancilla.
The simple relationship �5� suggests that we can still mea-

sure the system expectation value of �̂z if we measure the
ancilla expectation value of �̂z

ancilla instead and rescale the
result by 1 /cos �. Of course, the statistical error of the indi-
rect measurement is larger than the statistical error of the
direct measurement. Suppose that many copies of the system
and ancilla are prepared in the same initial state. For each
copy, the CNOT interaction is performed and then the ancilla
is measured in the computational basis. These measurements
are used to estimate the expectation value of the operator
�̂z

ancilla. This latter quantity is what we estimate from the
measurement statistics:

��̂z
ancilla� 


N0 − N1

N0 + N1
, �6�

where N0 and N1 are the measurement counts corresponding
to the outcomes �0� and �1� when measuring �̂z

ancilla, respec-
tively, obtained from a total number of measurements, N
=N0+N1. Let us determine the statistical error of the quantity
�6� for large N:

���̂z
ancilla� 
�2�1 + ��̂z

ancilla��
N

, �7�

yielding the following statistical error of the indirect mea-
surement of ��̂z�:

���̂z� 

1

cos �
�2�1 + cos ���̂z��

N
, �8�

which increases with �. Observe that the value �=0 would
formally correspond to the direct measurement.

We are interested in the weak measurement limit �
= �� /2�−	. To leading order in the small parameter 	 we
have

��̂z� =
1

	
��̂z

ancilla� �9�

and
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���̂z� 

1

	
� 2

N
, �10�

since 	�1. The latter equation also means that the statistical
error of a single measurement is ��2 /	. The two equations
�9� and �10� assure that our indirect measurement is a weak
measurement of the system’s �̂z; cf. the general definitions in
�8�: �i� our measurement yields the unbiased mean of ��̂z�
and �ii� the statistical error �regarding ��̂z�� of a single mea-
surement is much larger than the total range of all possible
values of the measured quantity �̂z. For an arbitrary small 	
we need to have suitably large statistics N�	−2 to yield an
estimate of ��̂z� with any desired precision. Accordingly, our
weak measurement reproduces all basic features of the AAV
weak measurement, which we are going to show by detailed
proofs in the forthcoming sections.

Other than convenience, there is no particular reason to
choose �̂z as the observable. For the latter reference we men-
tion that such an indirect measurement of, for instance, �̂x is
best formulated in terms of its eigenstates �
 �
= ��0�
 �1�� /�2. Accordingly, the ancilla qubit should be pre-
pared in the state

��A
x � = cos

�

2
� + � + sin

�

2
�− � �11�

and for the corresponding CNOTx operation one has to replace
the computational basis states ��0� , �1�� by ��+ � , �−�� in ex-
pression �1�. �This interaction is the same as the usual CNOT

with the control and target qubits interchanged.�

III. TWO-QUBIT INDIRECT MEASUREMENT WITH
POST-SELECTION AND THE WEAK VALUE ANOMALY

Up to this point, we have assumed that after the interac-
tion with the ancilla and the ancilla’s subsequent measure-
ment we make no further use of the original system. It is
possible, however, to measure the system as well as the an-
cilla. Then, instead of the usual statistics including all mea-
surement outcomes as described above, we keep only results
where the additional system measurement confirms the sys-
tem qubit to be in a certain final state �� f�. This is the idea of
post-selection, described by Aharonov, Albert, and Vaidman
�1,9,10�.

Naively, we calculate the same quantity as before,

Nf0 − Nf1

Nf0 + Nf1
, �12�

and we call it the post-selected estimate of �̂z
ancilla, with re-

spect to the final system state �� f�. As before, we rescale the
above quantity by 1 /cos � and expect that in the large-N
limit we obtain something sensible in terms of the system’s
�̂z and of the initial and final states ��i� and �� f�. While this
expectation fails in general, it becomes true in the weak mea-
surement limit. Then, surprisingly, the post-selection rate is
just ��� f ��i��2, independent of the �weak� interaction with the
ancilla. As first defined by AAV �1�, the so-called weak value
of �̂z is

f��̂z�i � Re
�� f��̂z��i�

�� f��i�
�13�

�once again expressed in terms of the system qubit state�. We
will now show that in the large-N limit,

1

	

Nf0 − Nf1

Nf0 + Nf1

 f��̂z�i. �14�

In other words, our indirect device with post-selection mea-
sures the weak value of the system qubit in the very same
way that it gave us the ordinary value ��̂z� without post-
selection; cf. Eq. �9�.

Let us begin with the post-interaction state ��� from �3�.
The probabilities of finding the system in the state �� f� and
the ancilla in the state �0� or �1�, respectively, are

pf0 = ��� f�	� cos
�

2
�0� + � sin

�

2
�1�
�2

,

pf1 = ��� f�	� sin
�

2
�0� + � cos

�

2
�1�
�2

. �15�

In the limit of large N, the post-selected estimate of �̂z
ancilla

conditioned on the outcome of the system measurement be-
ing �� f� is �pf0− pf1� / �pf0+ pf1�. Unlike the case we consid-
ered in Sec. II, in general these quantities have nothing uni-
versal to do with �̂z of the system qubit.

However, the case becomes positive in the weak measure-
ment limit �=� /2−	. In this limit there is indeed a relation-
ship between the outcomes of the post-selected measurement
and �̂z of the system qubit, which we can see by expanding
Eqs. �15� to first order in 	:

pf0 

1

2
���� f��i��2 + 	 Re��� f��̂z��i���i�� f��� ,

pf1 

1

2
���� f��i��2 − 	 Re��� f��̂z��i���i�� f��� . �16�

To lowest order in 	 we thus find

pf0 − pf1

pf0 + pf1

 	 Re

�� f��̂z��i�
�� f��i�

= 	 f��̂z�i. �17�

If we repeat this procedure N times and get Nf0 results
�� f��0� and Nf1 results �� f��1�, where Nf0 /Nf1
 pf0 / pf1
holds, the post-selected indirect estimate of �̂z �i.e., the weak
value of �̂z� is just given by �14� in the limit of large N, as
claimed above.

Let us emphasize that we are extending the original AAV
theory, which makes use of a von Neumann measuring de-
vice where the ancilla is a fictitious particle, whose position
serves as the meter. In the case presented here, the ancilla is
just a qubit and all of the degrees of freedom are discrete.
Such an extended theory of weak measurement was given
recently in �8�, and a simple version of this was earlier used
in �11�.

The weak value anomaly is reflected in the fact that if we
invariably trust in our weak measurement device on a post-
selected ensemble as well as on the whole ensemble, then the
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post-selected indirect estimate of �̂z falls well outside the
range �−1,1� of “normal” expectation values for �̂z. For a
concrete example, consider the initial and final states

��i� =
1
�2

��0� + �1�� ,

�� f� =
1

�2�z2 + 1�
��z + 1��0� − �z − 1��1�� , �18�

with arbitrary real parameter z. We find f��̂z�i=z, and there-
fore the post-selected estimate of ��̂z� would be z, which can
take any �arbitrarily large� value. The effect of the anoma-
lous large mean value in the post-selected states is real: a
probe will sense it as a large mean field; cf. Sec. V. Clearly,
the more “anomalous” the post-selected estimate, i.e., the
larger z the less likely the post-selection criterion will be
met: the initial and final states ��i� and �� f� are almost or-
thogonal, and the probability for a successful run of the ex-
periment is pf = pf0+ pf1
1 / �z2+1�. For large z, most runs of
the experiment will have to be discarded. To infer the weak
value with a mean-square precision �w
1 will require on
the order of �z2+1� /�w

2 experimental runs.
Since the post-selected estimate of �̂z

ancilla given by �12�
must obviously be in the range �−1,1�, we see that it is
necessary that �	z�
1. A choice of parameters such that
�	z��1 implies that the expansion in 	 given by �16� can no
longer be a valid approximation. In fact, the AAV equation
�14� is always meant to hold in the asymptotic weak mea-
surement limit 	→0.

IV. THREE-QUBIT CONSISTENCY AND SIMULTANEITY
TEST OF WEAK VALUES

In order to test the consistency of weak values, we need a
three-qubit quantum computer. We use the third qubit as a
second ancilla, prepared in the initial state ��A2

�
=cos��2 /2��0�+sin��2 /2��1�, and perform another indirect
weak measurement of �̂z on the first qubit. The question is,
are both weak measurements consistent—that is, do both
measurements give the same weak value f��̂z�i?

To answer this question, we perform an additional CNOT

operation between the system and the second ancilla to ob-
tain the three-qubit state

��0� = ��i���A1
���A2

� → ��zz� = USA2
USA1

��0� �19�

�similar to expression �3��, with

��zz� = ��0� � 	cos
�1

2
�0� + sin

�1

2
�1�
 � 	cos

�2

2
�0�

+ sin
�2

2
�1�
 + ��1� � 	sin

�1

2
�0� + cos

�1

2
�1�


� 	sin
�2

2
�0� + cos

�2

2
�1�
 . �20�

Now we count the number of events corresponding to the �0�
and �1� states of both ancillas and perform the post-selection

with respect to the final system state �� f�. As we will now
show, in the weak measurement limit ��i= �� /2�−	i , i
=1,2� the estimates for the post-selected �̂z are entirely con-
sistent. For the probabilities, we find to leading order in 	1 ,	2

pf00 

��� f��i��2 + �	1 + 	2�Re��� f��̂z��i���i�� f��

4
,

pf01 

��� f��i��2 + �	1 − 	2�Re��� f��̂z��i���i�� f��

4
,

pf10 

��� f��i��2 − �	1 − 	2�Re��� f��̂z��i���i�� f��

4
,

pf11 

��� f��i��2 − �	1 + 	2�Re��� f��̂z��i���i�� f��

4
.

The post-selected estimates of each ancilla can be deter-
mined by averaging over the results for the other. So we get
pf0�= pf00+ pf01 and pf1�= pf10+ pf11, and similar expressions
for pf�0 and pf�1. Putting these expressions together, we get
post-selected expectations that are entirely consistent with
our first result �17�:

pf0� − pf1�

pf0� + pf1�


 	1 f��̂z�i,

pf�0 − pf�1

pf�0 + pf�1

 	2 f��̂z�i. �21�

We conclude that an identical, second weak measurement
of the same observable gives the same weak value and hence
that the weak value measurements are consistent. Given that
the correct measurement outcome is observed for the system,
all of the ancillas which interacted weakly with the system
will yield the same weak value.

A possibly even more intriguing property of weak mea-
surement is that it is possible to simultaneously measure con-
sistent weak values of noncommuting observables. To dem-
onstrate this on a three-qubit quantum computer, we choose
to weakly measure �̂z with the help of the first ancilla, as
before. The second ancilla, however, will now be used to
weakly measure �̂x, as briefly described at the end of the Sec.
II.

As before, we start with a three-qubit product state; but
now the third qubit is prepared in state ��A2

x �, as given in �11�.
The usual CNOT=CNOTz operation is performed between the
system and first ancilla qubit, followed by a CNOTx operation
between the system and second ancilla qubit. Let us now
denote the unitary operation between the system and first
ancilla by USA1

z and the unitary operation between the system
and the second ancilla by USA2

x . Similar to the previous
double operation �20�, we obtain the three qubit state

��0� = ��i���A1

z ���A2

x � → ��xz� = USA2

x USA1

z ��0� , �22�

with a somewhat lengthy expression for ��xz� �which we
omit for the sake of brevity�. One can think of this as weakly
measuring �̂z with the first ancilla and �̂x with the second
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ancilla. Because these are weak measurements, this does not
violate the usual restriction against simultaneously measur-
ing noncommuting observables, because each individual
weak measurement yields only a small amount of informa-
tion. To find the expectations, we repeat this procedure many
times.

Now we count the number of events corresponding to the
�0� and �1� states of the first ancilla and the �+ � and �−� states
of the second ancilla. Again, we post-select with respect to
the final system state �� f�. After some algebra, in the weak
measurement limit ��i= �� /2�−	i , i=1,2� we find to leading
order in 	1 ,	2 the probabilities

pf0+ 

1

4
���� f��i��2 + 	1 Re��� f��̂z��i���i�� f��

+ 	2 Re��� f��̂x��i���i�� f��� ,

pf0− 

1

4
���� f��i��2 + 	1 Re��� f��̂z��i���i�� f��

− 	2 Re��� f��̂x��i���i�� f��� ,

pf1+ 

1

4
���� f��i��2 − 	1 Re��� f��̂z��i���i�� f��

+ 	2 Re��� f��̂x��i���i�� f��� ,

pf1− 

1

4
���� f��i��2 − 	1 Re��� f��̂z��i���i�� f��

− 	2 Re��� f��̂x��i���i�� f��� . �23�

We expect that the counts of the first ancilla will give a
post-selected estimate of �̂z, while the counts of the second
ancilla will give a post-selected estimate of �̂x. With the
notation pf0�= pf0++ pf0−, pf1�= pf10+ pf11, pf�+= pf0++ pf1+,
and pf�−= pf0−+ pf1−, we find the simultaneously valid ex-
pressions

pf0� − pf1�

pf0� + pf1�


 	1 f��̂z�i,

pf�+ − pf�−

pf�+ + pf�−

 	2 f��̂x�i. �24�

Again, these results are entirely consistent with our first
result �17�. We conclude that the simultaneous weak mea-
surement of noncommuting observables gives consistent
weak values for both observables.

Unsurprisingly, the order of the weak interactions is en-
tirely irrelevant. If we choose instead to first interact with the
third and then with the second qubit, we will obtain a
�slightly� different state ��zx�; however, despite this differ-
ence, the probabilities determined with ��zx� still coincide
with the expressions �23� above and yield the very same
post-selected estimates �24� as with ��xz�.

V. TWO-QUBIT DYNAMICAL TEST
OF THE WEAK FIELD

The role of the weak value in the dynamic effect on the
probe was already discussed in Ref. �12�. We will now show
that, using just two qubits, we can get perfect quantitative
evidence of the weak value as an objective dynamic quantity
of the usual sense.

Suppose we prepare our first qubit in state ��i� and post-
select it in state �� f�. Between pre- and post-selection we let
it interact with a probe prepared in a certain state ���. As-
sume that their interaction Hamiltonian is �̂z � �̂ where we
can say that �̂z stands for the “magnetic field” of the qubit
and �̂ stands for the “magnetic dipole” of the probe. The
interaction is switched on for a short period �t between pre-
and post-selection, and we assume that the effective coupling
remains weak. �Its weakness will be specified later.� We can
calculate the un-normalized final state of the probe on the
post-selected statistics:

��� → ��� − i�t
�� f��̂z��i�

�� f��i�
�̂��� , �25�

which means the probe feels an effective “magnetic field”

�� f��̂z��i�
�� f��i�

. �26�

This quantity is complex, in general. Its real part is the weak
value f��̂z�i of the qubit “magnetic field” �̂z, which we could
infer by doing the corresponding weak measurements as in
Secs. III and IV. Now we see an alternative approach: instead
of inferring the weak value from a weak measurement, we
can detect it dynamically, since the post-selected qubit has
effectively created a “magnetic field” which is equal to the
weak value f��̂z�i.

The weak value anomaly is also persistent dynamically
�in the same sense that it is robust under multiple weak mea-
surements�. The mechanism is a natural extension of the
usual mean-field mechanism to the case of post-selection.
The surprising consequence in the use of post-selected states
is that the mean field of the qubit can be many times larger
than the common �i.e., not post-selected� mean field. Note,
however, that the interpretation requires either a weak field
or a short interaction time, that is, the condition
�t� f��̂z�i��1. To produce such a “multiplied field” over a
longer time would require repeated post-selected measure-
ments, so that the probability of success quickly goes to zero.

We have restricted ourselves to the interpretation of the
real part of the effective field �26�. The imaginary part is a
separate issue, perhaps corresponding to a nondynamical ir-
reversible effect, superimposed on the purely dynamical ef-
fect of the real part. The interpretation deserves further in-
vestigation; cf., e.g., �13�.

Realizing such a dynamical test is straightforward. For the
pre- and post-selected qubit, we choose the example �18�,
which we have already shown to produce arbitrarily large
weak values z. Let the probe be a second qubit of dipole
moment �̂= �̂x and initial state ���= �0�. We must perform the
following weak interaction:
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��� � �0� → �1 − i�t�̂z � �̂x���� � �0� . �27�

This is not a standard quantum-logical operation, but it
should certainly be realizable by the hardware of a quantum
computer. The effect �25� of this interaction on the probe is
thus

��� → �1 − i�tz�̂x���� , �28�

as if the first qubit creates a “mean field” z and rotates the
probe qubit from state �0� to �0�− i�tz�̂x�0�. We could choose,
e.g., z=100 and �t=1 /1000, measure the state of the probe
in the computational basis, and detect the rate of �1� out-
comes. It must be ���tz�2=1 /100, corresponding to a two-
order-of-magnitude enhancement of the mean field. How-
ever, we recall that �z2+1� /�w

2 �10 000 experimental runs
would be needed to confirm the anomalous value z=100 by
weak measurements �see Sec. III�. Since the dynamical effect
of the post-selected qubit remains perturbative, we would
need even higher statistics to confirm the enhanced value z
=100 of the post-selected “magnetic field”—approximately
106 runs in the case described above.

Of course, the coupling to the probe qubit could also be
added to the weak measurement device of Secs. III and IV
and the dynamical effect of the post-selected qubit will turn
out to be consistent with the outcome of the weak measure-
ment. Moreover, we could implement further probe qubits
with different couplings �̂, which would all “feel” the same
mean field f��̂z�i.

VI. SUMMARY

We have presented a detailed analysis of a realistic
scheme to probe the concept of “weak value” in quantum
mechanics �1�, based on a quantum computer of just two or
three qubits. This seems to be in comparatively easy reach of
current quantum technology �5–7�. We have also discussed
the appearance of the weak value anomaly, which is measur-
able with just two qubits. It is possible, as we show, to test
both the consistency of weak values and the simultaneity of
weak values of noncommuting observables using three qu-
bits. Finally, the dynamic implications of a weak value
“mean field” were analyzed.

We strongly believe that the realization of a weak mea-
surement in such a few-qubit quantum system will help to
clarify the true meaning and relevance of the concepts sur-
rounding the “weak value” in quantum mechanics. We look
forward to seeing our proposal implemented in existing
quantum computers.
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