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Research Institute for Particle and Nuclear Physics H-1525 Budapest 114, POB 49, Hungary

(Received 31 October 2007; published 25 February 2008)

We reconsider the non-Markovian time-continuous measurement of a Heisenberg observable x̂ and
show for the first time that it can be realized by an infinite set of entangled von Neumann detectors. The
concept of continuous readout is introduced and used to rederive the non-Markovian stochastic
Schrödinger equation. We can prove that, contrary to recent doubts, the resulting non-Markovian quantum
trajectories are true single system trajectories and correspond to the continuous measurement of a retarded
functional of x̂.
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Time-continuous measurement in quantum mechanics
has long been an open theoretical issue because of the
peculiarity of single quantum measurement itself. The
Markovian theory emerged 20 years ago [1–3] from foun-
dational considerations. The requests in quantum optics
(and elsewhere) triggered another, partly independent, line
of progress with expanding applications [4]. So far the
Markovian theory of continuous measurement has become
completely understood while the general non-Markovian
one has remained an open issue even conceptionally.

Markovian time-continuous quantum measurement the-
ory [2,3] includes the Markovian stochastic Schrödinger
equation (MSSE) of the postmeasurement state vector  t
(cf. [1]), as correlated with the readout xt of the detector
system that measures a certain Heisenberg observable x̂t. A
formal extension for the non-Markovian (even relativistic)
case was published in Ref. [5]. This work calculated the
asymptotic state  1�x�, only as a function of the whole
readout fxt; t 2 ��1;1�g, and determined correctly its
probability distribution functional p1�x�. It could not in-
terpret intermediate conditional states because the concept
of continuous readout was missing. This incomplete non-
Markovian continuous measurement theory remained
largely ignored; it has not been improved or advanced.
Meanwhile, Strunz found non-Markovian quantum trajec-
tories [6], and we invented their non-Markovian stochastic
Schrödinger equation (NMSSE) [7,8]. This NMSSE and its
modifications have been studied in subsequent works [9–
12]. As in the Markovian case, one expected that the
solutions of the NMSSE turn out to be realizable on a
single copy of our quantum system via infinite many
von Neumann detectors coupled to it. Such a realizability
theorem holds for the solutions (quantum trajectories) of
all diffusive MSSE [13]. Yet, Gambetta and Wiseman
conjectured that the solution of the NMSSE cannot be
observed on a single system [10]; I wrote cautiously
[14]: these non-Markovian trajectories cannot be realized
by any known way of monitoring [15].

The present work reaches the positive conclusion: the
non-Markovian trajectories are measurable single system

trajectories. A particular example can be the continuous
measurement of a Heisenberg coordinate x̂t with detectors
of finite inertial time 1=�. Then the measured quantity
becomes, e.g.,

 ẑt � �
Z t

0
e���t���x̂�d�: (1)

Our work includes the more general case; see Eq. (22)
later. We describe the detector system and prove that the
NMSSE is indeed the equation of the continuously mea-
sured state. The proofs are based on the approach of
Refs. [5–10], and an independent direct proof might be
the subject of future research. The knowledge of the super-
operator formalism is a request; it can be understood from
[5,16] or learned from [17].

Stochastic unraveling.—Assume that a Heisenberg vari-
able x̂t of the system couples for times t � 0 to a harmonic
reservoir variable whose equilibrium correlation function
���� �� will determine the reduced dynamics of the open
system density operator �̂t:

 �̂t �Mt�̂0: (2)

For simplicity, let ���� �� be real. Then the evolution
superoperator Mt takes the following compact form [16]:

 Mt � T exp
�
�

1

2

Z t

0
d�

Z t

0
d�x̂�;����� ��x̂�;�

�
: (3)

Superoperator notation x̂�;�Ô means �x̂�; Ô� for any opera-
tor Ô standing to the right of x̂�;�, and T prescribes time
ordering for all Heisenberg (super)operators standing to
the right of T .

We could consider the reservoir as the detector of x̂t.
Technically, it is more tractable if we consider standard
von Neumann detectors; hence, we replace the reservoir by
them. However, we require that their influence on the
system be the same as the reservoir’s. We assume, for
simplicity, that the detectors are able to fully monitor the
system’s trajectory  t�x� for all time t � 0, in a function of
the detection readout fx�; � 2 �0; t�g whose probability
distribution is denoted by pt�x�. Then the stochastic
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mean of the trajectories will reproduce the open system
evolution:

 �̂t �M t�x� 
y
t �x�; (4)

for all t � 0, since the detector’s influence is the same as
the reservoir’s. We say that the trajectories  t�x� unravel
the open system dynamics (2).

In the Markovian special case ���� �� � g2���� ��.
Then the conditional state vector  t�x� satisfies the MSSE
[1–3]. The NMSSE [7,8] became a candidate of being the
equation of non-Markovian continuous measurement of x̂t.
Here we use the simple real-noise version [10–12]. For the
unnormalized state vector �t�z�, the NMSSE reads:

 

d�t�z�
dt

� ztx̂t�t�z� � 2x̂t
Z t

0
��t� ��

��t�z�
�z�

d�; (5)

where z� is a real random variable for � 2 �0; t�. The true
postmeasurement state is obtained via normalization
 t�z� � �t�z�=k�t�z�k. The probability distribution of z
is the following:

 pt�z� � ~G�0;t��z�k�t�z�k2; (6)

where ~G�0;t��z� is defined by (A3). With this statistics, the
solutions  t�z� unravel the non-Markovian open system
dynamics (2) and (3):

 �̂t �M t�z� 
y
t �z�: (7)

Although to calculate the analytic form (6) of pt�z� would
be cumbersome, it follows from the method [8] that

 M zt � 2
Z t

0
��t� ��hx̂�itd�; (8)

where hx̂�it is x̂�’s quantum expectation value at time t in
the conditional state  t�z�. This suggests that the NMSSE
(5) measures the retarded functional of x̂t rather than x̂t
itself. Compared to the Markovian case, there has been one
serious issue left: Whether the trajectory  t�z� can, like the
Markovian trajectories, be realized on a single system by
sequential von Neumann measurements of which zt is the
readout? We answer in the positive and construct the
corresponding von Neumann detectors.

Non-Markovian measurement device.—The construc-
tion will be very similar to the Markovian one [2,18] in
that we replace the reservoir by a dense sequence of
standard von Neumann detectors. To learn what happens,
let us first consider a single von Neumann detector of ini-
tial density matrix D0�x; x0� and couple it to our system at
time � in order to measure the current Heisenberg opera-
tor x̂�. Following von Neumann (last three pages in [19]),
we choose ��t� ��x̂���i@=@x� for the interaction
Hamiltonian. We can write the initial composite state of
the detector� system as D0�x; x0��̂0. Fortunately, we can
and shall restrict all forthcoming calculations on the ele-
ments x � x0 since we shall eventually collapse on (or trace

over) the pointer coordinates. After the interaction, the
total state becomes entangled at � and the pointer x gets
shifted by x̂�:

 D0�x; x��̂0 ! D0�x� x̂�;L; x� x̂�;R��̂0: (9)

In superoperator notations x̂�;LÔ � x̂�Ô and x̂�;RÔ � Ôx̂�.
It is the readout of the pointer x that turns the total state
into the following conditional postmeasurement state, de-
pending on the readout, of the system alone:

 �̂�x� �
1

p�x�
D0�x� x̂�;L; x� x̂�;R��̂0: (10)

The readout x has the probability distribution p�x� whose
expression follows from the normalization of the above
conditional state:

 p�x� � TrD0�x� x̂�;L; x� x̂�;R��̂0: (11)

Now, let us choose a fine discretization � � n� of the
time, n � 0;	1;	2; . . . . We install an infinite sequence of
von Neumann detectors; they could be numbered by the
integers n, but we label them by the discretized times � �
n�. The pointer coordinates of the detectors will be, re-
spectively, denoted by x�. The detector of label � � n�
measures the Heisenberg operator x̂� of the system via the
mechanism (9)–(11) provided we switch the von Neumann
interactions on. We do so for the non-negative labels; i.e.,
we choose the interaction Hamiltonian

P
��0��t�

��x̂���i@=@x��.
We depart from the Markovian construction and assume

initially correlated detectors. Let their initial wave func-
tion be:

 �0�x� �
�������
N
p

exp
�
��2

X
�;�

x����� ��x�

�
; (12)

where the summation extends for all discretized values of
both � and �. The notation �x� anticipates the continuous
(or weak-measurement) limit [2,18] �! 0 where the
above wave function becomes the square root of the
Gaussian functional (A1): i.e., �0�x� �

����������
G�x�

p
. We carry

out the explanation in the continuous limit. The total initial
density matrix reads:

 �̂0�x; x0� �
����������
G�x�

p
�̂0

�����������
G�x0�

p
: (13)

As we switched on the detectors of labels � � 0 only, at
time t > 0 each pointer coordinate x� with � 2 �0; t� will
have been shifted by x̂� and the following composite state
emerges [cf. (9)]:

 �̂t�x; x� � T
�������������������������������
G�x� 	�0;t�x̂L�

q �������������������������������
G�x� 	�0;t�x̂R�

q
�̂0; (14)

where 	�0;t� denotes the characteristic function 	�0;t���� of
the period �0; t�. This can be written into the following
compact form:

 �̂t�x; x� � TG�x� 	�0;t�x̂c�Mt�̂0; (15)
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using the Eqs. (3) and (A1) and the superoperator notation
x̂cÔ �

1
2 fx̂; Ôg. This remarkable novel form guarantees

explicitly that the reduced density matrix �̂t of the system
satisfies the open system evolution (2) and (3) as it should.
Indeed, the tracing over the detectors’ Hilbert space is
equivalent with the functional integration of the diagonal
elements (15) over all x�, which cancels the factor G and
leaves us with (2).

Continuous readout.—It is crucial to realize that the true
time evolution of the system’s conditional state depends on
our chosen schedule of reading out the pointers x�. We can
read out any x� at any time since all detectors are always
available. Of course, we better read out the value x� at a
time that is later than the label � of the detector because the
detector will only have coupled to the system at time �.
Hence, a natural schedule is that we read out x� immedi-
ately at time �. Hence, until any given time t > 0 we would
read out all pointers x� for the period �0; t� and no others.
To calculate the conditional postmeasurement state �̂t�x�
of the system at time t, we trace (integrate) the total density
matrix (15) over all x� with � =2 �0; t�:

 �̂t�x� �
1

pt�x�

Z
�̂t�x; x�

Y
�=2�0;t�

dx�: (16)

This postmeasurement density matrix �̂t�x� of the system
depends on the readouts x� of � from �0; t� only. By
substituting (15), we obtain

 �̂t�x� �
1

pt�x�
TG�0;t��x� x̂c�Mt�̂0; (17)

where G�0;t��x� is the marginal distribution of G�x�, similar
to (A3). This is our ultimate equation for the non-
Markovian continuous measurement of the Heisenberg
observable x̂t, completing the theory [5] (which only
gave �̂1�x�). Recall that, as always, the denominator
pt�x� assures Tr�̂t�x� � 1 as well as it yields the probabil-
ity distribution of the readouts.

In order to find the measurement process that corre-
sponds to the NMSSE (5), we alter our readout schedule.
Instead of the Heisenberg variables fx�; � 2 �0; t�g we read
out the following linear functional of them:

 z� � 2
Z 1
�1

���� ��x�d�; (18)

which we also write as z � 2�x. We reexpress the total
density matrix (15) in the new pointer variables:

 �̂t�z; z� � T ~G�z� 2�	�0;t�x̂c�Mt�̂0; (19)

where we used the identity G�x� � Jacobian
 ~G�z�.
Again, we suppose that we read out each pointer of label
� (i.e., z�) at time �. Until time t > 0, this schedule implies
that all pointers z� for the period �0; t� are read out and the
rest of them are not. The conditional state of the system is
defined by

 �̂t�z� �
1

pt�z�

Z
�̂t�z; z�

Y
�=2�0;t�

dz�; (20)

which transforms (19) into

 �̂t�z� �
1

pt�z�
T ~G�0;t��z� 2�	�0;t�x̂c�Mt�̂0; (21)

where ~G�0;t��z� is the marginal distribution (A3) of ~G�z�.
This is our ultimate equation for the non-Markovian con-
tinuous measurement of the observable

 ẑt � 2
Z t

0
��t� ��x̂�d�; (22)

which is a retarded functional of the Heisenberg variable
x̂�. This interpretation of �̂t�z� can shortly be inspected.
Recall that at time t we read out the pointer of label t: i.e.,
zt. The factor ~G�0;t��z� 2�	�0;t�x̂c� in the expression (21)
of the measured state shows that at time t the pointer zt
localizes around (i.e., measures) the observable (22).
Equation (8) holds between the readout zt in (21) and the
retarded variable ẑt (22); instead of the direct proof we are
going to prove the complete equivalence of the NMSSE (5)
with our construction summarized by Eq. (21).

Stochastic Schrödinger equation.—We are going to
prove that the NMSSE (5) governs the evolution (21).
Let us find �̂t�z� in the form

 �̂t�z� �
1

pt�z�
~G�0;t��z��t�z��

y
t �z�; (23)

where �t�z� is the unnormalized conditional state vector of
the system. Taking the trace of both sides, the norm con-
dition yields exactly the pt�z� (6) that belongs to the
NMSSE (5). Inserting (23) as well as �̂0 �  0 

y
0 into

(21), it reduces to

 �t�z��
y
t �z� �

1
~G�0;t��z�

T ~G�0;t��z� 2�	�0;t�x̂c�Mt 0 
y
0 :

(24)

Substituting Eqs. (3) and (A3), the right-hand side factor-
izes and we can write equivalently:
 

�t�z��T exp
�Z t

0
z�x̂�d��

Z t

0
d�
Z t

0
d�x̂�������x̂�

�
 0:

(25)

This �t�z� is the solution of the NMSSE (5), as can be seen
by substitution. That completes our proof.

Summary.—We proved for the first time that both the
formalism [5] of non-Markovian measurement theory and
the NMSSE [7] are equivalent with using correlated
von Neumann detectors in the weak-measurement continu-
ous limit, i.e., with the continuous readout of the values of a
given retarded functional of a Heisenberg variable on a
single quantum system. Our merit is the constructive proof
of existence of the underlying standard quantum mechani-
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cal measurement process. The results should be general-
ized in various directions. We can interpret complex reser-
voir correlation functions, too, if we include the
mechanism of feedback [5]. We might retain the original
reservoir as a detector [10], to extract information by
measuring the reservoir but without altering the non-
Markovian reduced dynamics of the monitored system.
Then the measured retarded observable might be identified
by a reservoir field. (Theories advocating non-Markovian
stochastic modification of quantum theory [11,12,20]
refuse the measurement interpretation of the stochastic
field.) The concept of relativistically invariant continuous
measurement [5] can be reconsidered for the intermediate
states  t�x� as well. Our work might lead to efficient
numeric simulation algorithms or, conversely, might
make us understand why they do not exist.

Appendix.—Let x� be a random time-dependent real
variable and consider the normalized Gaussian distribution
functional of fx�; � 2 ��1;1�g:

 G�x� �N exp
�
�2

Z 1
�1

d�
Z 1
�1

d�x����� ��x�

�
;

(A1)

���� �� is a real positive definite kernel. We define its
inverse by

R
1
�1 �

�1��� s���s� ��ds � ���� ��.
Introduce the normalized functional Fourier transform of
G�x�, too:

 

~G�z� � ~N exp
�
�

1

2

Z 1
�1

d�
Z 1
�1

d�z���1��� ��z�

�
:

(A2)

We need certain marginal distributions as well, e.g.,

 

~G �0;t��z� �
Z

~G�z�
Y
�=2�0;t�

dz�; (A3)

and similarly for G�0;t��x�. These marginal distributions are
also Gaussian, e.g.,

 

~G �0;t��z� � ~N �0;t� exp
�
�

1

2

Z t

0
d�

Z t

0
d�z���1

�0;t���; ��z�

�
;

(A4)

where the restricted new kernel ��1
�0;t���;�� is defined byR

t
0 �
�1
�0;t���; s���s� ��ds � ���� �� for all �, � 2 �0; t�.
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(1998); W. T. Strunz, L. Diósi, and N. Gisin, Phys. Rev.
Lett. 82, 1801 (1999).
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