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In the reversible Schrödinger–Newton equation a complex Newton coupling G exp(−iα) is proposed in
place of G . The equation becomes irreversible and all initial one-body states are expected to converge
to solitonic stationary states. This feature is verified numerically. For two-body solutions we point out
that an effective Newtonian interaction is induced by the imaginary mean-fields as if they were real.
The effective strength of such induced gravity depends on the local wave functions of the participating
distant bodies.
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1. Introduction

The Schrödinger–Newton equation (SNE) was proposed in the
context of quantum foundations [1,2]. Assuming a Newtonian self-
interaction, it realizes the concept that gravity is responsible for
the observed spatial localization of macroscopic objects. It leads
to plausible scales of localization. The SNE has been studied in
numerous works [5–15]. Its basic feature is that the Newtonian
mean-field self-interaction modifies the free Schrödinger equation
in such a way that it acquires localized ground states (solitons).
These solutions are then considered as natural ‘pointer’ states
for the macroscopic objects. On the other hand, these stationary
pointer states are expected to emerge through the evolution of the
wave function. Unfortunately, this irreversible mechanism cannot
be realized by the reversible SNE. To make the solutions converge
toward pointer states, one gives the Newton coupling G a negative
imaginary part. It turns the reversible SNE into an irreversible fric-
tional SNE (frSNE). The specific frSNE with G → −iG has been an
emergent structure in the first author’s decoherence model [3,4],
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and its relationship to the reversible SNE has been analyzed in
Refs. [15,16]. We recall the one-body frSNE in Section 2, we solve
it numerically and determine the unique stationary wave packet
in Section 3. We discuss the two-body frSNE in the special case
when the bodies are far form each other and find that the imag-
inary coupling induces gravitational attraction, as if it were real
coupling (Section 4). The strength of this induced gravity, however,
turns out to depend on the quantum state of the participating bod-
ies. The general case of complex coupling Ge−iα with 0 < α < π is
briefly discussed in Section 5.

2. One body equation

The SNE is a Schrödinger equation with a Newtonian mean-field
potential where – in contrast to textbook many-body equations –
we retain the self-interaction terms. Therefore the mean-field po-
tential is already present in the one-body SNE:

dψ

dt
= ih̄

2M
�ψ − i

h̄
Vψψ, (1)

where ψ = ψ(r) is the c.o.m. wave function of the object of mass
M , G is the Newton constant, and

Vψ = Vψ(r) = −GM2
∫ |ψ(r′)|2

′ dr′ (2)
|r − r |
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is the Newtonian mean-field potential of a point-like object. The
stationary ground states are solitons of spread (�r)0 ∼ (h̄2/GM3)

[1,2] but they do not attract other solutions. We create a basin of
attraction (convergence) if we give G an imaginary part. Robust
convergence is achieved by the replacement G → −iG:

dψ

dt
= ih̄

2M
�ψ − 1

h̄

(
Vψ − 〈Vψ 〉)ψ. (3)

The imaginary mean-field corrupts the normalization of ψ , we re-
store it by the constant counter term:

〈Vψ 〉 = −GM2
∫ |ψ(r)|2|ψ(r′)|2

|r − r′| dr dr′. (4)

The frSNE preserves both the momentum and the position expec-
tation values 〈p〉 ≡ p̄ and 〈r〉 ≡ r̄. If, for simplicity, we start a wave
function with p̄ = 0 and r̄ = 0 then the solution will converge to
the rotational invariant stationary state

ψ0(r)e−(i/h̄)E0t , (5)

where

E0 = h̄2

2M

∞∫
0

∣∣ψ ′
0(r)

∣∣2
4πr2 dr. (6)

Surprisingly, the ‘energy’ E0 of the stationary state (5) contains the
kinetic energy only, without the contribution of the Newton self-
interaction. This is a consequence of the choice G → −iG which
makes the mean-field pure imaginary, there is no real dynamical
potential left in the frSNE.

Little is known about the details of the stationary solution (5).
Dimensional analysis of the standard spread yields the same or-
der of magnitude (�r)0 ∼ (h̄2/GM3) as in case of the reversible
SNE [1]. Analytic results exist for large extended spherical objects
[4,15]; for point-like bodies we have to use numeric simulations.
Once we know the stationary solution ψ0 in the c.o.m. frame then,
thanks to the Galilean invariance of the frSNE, we know all sta-
tionary solutions:

ψ0
(|r − r̄t |

)
e(i/h̄)(p̄·r−Et), (7)

where E = E0 + (p̄2/2M) and dr̄t/dt = p̄/M while p̄ = const. If
the frSNE is perturbed by a weak smoothly varying field, real or
imaginary, we can still retain the above form if we make the c.o.m.
momentum p̄ time-dependent. This will be the case later when we
apply the frSNE to two bodies far from each other. The following
position–momentum correlation matrix will play a definitive role
in their effective interaction:

R ≡ 1

h̄
Re

(〈p ◦ r〉 − 〈p〉 ◦ 〈r〉)

= −i

2

∫
ψ∗(r)(∇ ◦ r + r ◦ ∇)ψ(r)dr − 1

h̄
p̄ ◦ r̄. (8)

Due to the rotational invariance of ψ0, the stationary matrix R0
becomes proportional to the unit matrix I, i.e.: R0 = R0I. The cor-
relation scalar R0 will be determined numerically.

3. Numerical solution

We restricted our numeric simulations for rotational invariant
states ψ(r) = ψ(r). The mean-field (2) takes the following form:

Vψ(r) = −4πGM2

∞∫
0

|ψ(r′)|2
max(r, r′)

r′ 2 dr′. (9)

The frSNE (3) reduces to:

dψ

dt
= ih̄

2M

(
2

r
ψ ′ + ψ ′′

)
− 1

h

(
Vψ − 〈Vψ 〉)ψ. (10)
¯
Fig. 1. Relaxation of the standard spread �r of the wave function ψ(r, t) toward the
stationary value (�r)0 = 5.5501 in function of time. A real Gaussian of spread 1
was the initial wave function (h̄ = G = M = 1).

Fig. 2. Spatial density |ψ0(r)|2 (full) and phase χ0(r) (dashed), resp., of the sta-
tionary wave function ψ0(r) in function of the radial coordinate r. Standard po-
sition spread is (�r)0 = 5.5501, momentum spread is (�p)0 = 0.2668, position–
momentum correlation is R0 = 0.6753 (h̄ = G = M = 1).

We have simulated the solution of this equation with various ini-
tial wave functions (Gaussian, smoothened rectangle, superposition
of two Gaussians). They all converged to the unique localized sta-
tionary solution (5). We illustrate the convergence process by mon-
itoring the time-dependence of the standard spread �r of the wave
function:

(�r)2 = 4π

3

∞∫
0

∣∣ψ(r)
∣∣2

r4 dr. (11)

A competition between the spreading kinetic term and the con-
tractive potential term is witnessed by transient oscillations until
the stationary value (�r)0 = 5.5501(h̄2/GM3) is reached (Fig. 1).
Fig. 2 shows the stationary distribution |ψ0(r)|2. It is bell-shaped
but it is not Gaussian. Also the complex phase of the numeric
solution ψ0(r) is shown in the same figure. We numerically ob-
served the constant shift of the phase at speed −E0/h̄, with E0 =
0.0356(G2 M5/h̄2). This value has independently been confirmed
by numeric integration of the expression (6) using the numeri-
cally calculated ψ0. We also determine the stationary position–
momentum correlation matrix (8) in the numerically obtained sta-
tionary state ψ0. The correlation scalar R0 can be written as:

R0 = 4π

3h̄

∞∫
0

r3
∣∣ψ0(r)

∣∣2
χ ′

0(r)dr, (12)

where χ0 = arg(ψ0). Numeric integration obtained R0 = 0.6753.
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4. Two body equation

For two identical objects the wave function reads Ψ (r1, r2) and
the frSNE has the following structure [4,15]:

dΨ

dt
= ih̄

2M
�1Ψ − 1

h̄

(
V (11)

ψ + V (12)
ψ − 〈

V (11)
ψ + V (12)

ψ

〉)
Ψ

+ ih̄

2M
�2Ψ − 1

h̄

(
V (22)

ψ + V (21)
ψ − 〈

V (22)
ψ + V (21)

ψ

〉)
Ψ, (13)

where the Laplacians �1, �2 refer to r1, r2, respectively. The
mean-field self-interactions read:

V (11)
ψ (r1) = −GM2

∫ |Ψ (r′
1, r′

2)|2
|r1 − r′

1|
dr′

1 dr′
2, (14)

V (22)
ψ (r2) = −GM2

∫ |Ψ (r′
1, r′

2)|2
|r2 − r′

2|
dr′

1 dr′
2, (15)

the mean-field cross-interactions read:

V (12)
ψ (r1) = −GM2

∫ |Ψ (r′
1, r′

2)|2
|r1 − r′

2|
dr′

1 dr′
2, (16)

V (21)
ψ (r2) = −GM2

∫ |Ψ (r′
1, r′

2)|2
|r2 − r′

1|
dr′

1 dr′
2. (17)

We do not intend to discuss the generic two-body solutions. We
are interested in the special case when the two bodies are far from
each other at locations r̄1 = 〈r1〉 and r̄2 = 〈r2〉. If |r̄1 − r̄2| is much
larger than the one-body stationary extension (�r)0 then we ex-
pect the following scenario. Considering first the limit |r̄1 − r̄2| →
∞, the cross-interactions V (12)

ψ and V (21)
ψ can be omitted, the two-

body frSNE (13) splits into two separate one-body equations (3):
both bodies reach their localized stationary states in their respec-
tive c.o.m. frames. Accordingly, the two-body solution is simply the
product

Ψ (r1, r2, t) = ψ
(1)
0 (r1, t)ψ(2)

0 (r2, t) (18)

of the one-body solutions (7):

ψ
(1)
0 (r1, t) = ψ0

(|r1 − r̄1t |
)
e(i/h̄)(p̄1·r1−E1t), (19)

where E1 = E0 + (p̄2
1/2M) and dr̄1t/dt = p̄1/M , and a similar def-

inition holds for ψ
(2)
0 , too. As we said, the effect of the cross-

interaction terms V (12)
ψ , V (21)

ψ is perturbative and leads to the slight
acceleration of the c.o.m. momenta p̄1, p̄2. Let us calculate the ac-
celeration of p̄1. First, we expand the cross-interaction term V (12)

ψ :

V (12)
ψ (r1) = V (12)

ψ (r̄1) − F · (r1 − r̄1), (20)

where

F = GM2 r̄2 − r̄1

|r̄1 − r̄2|3
. (21)

If we substitute the ansatz (18) into the two-body frSNE (13), the
following separate structure can be obtained for ψ

(1)
0 :

dψ
(1)
0

dt
= 1

h̄
F · (r1 − r̄1)ψ

(1)
0 . (22)

This is an effective frSNE, valid for (�r)0 � |r̄1 − r̄2|, to calcu-
late the c.o.m. acceleration dp̄1/dt of the stationary wave packet
of the body. The vector F is the Newton force at location r̄1 = 〈r1〉
caused by the other body at the remote location r̄2 = 〈r2〉, and
−F is the force on the second body caused by the first one. A
similar equation could be derived for dp̄2/dt , with the opposite
force −F. However, the vector F does not play the role of a real force
in the Eq. (22). If it did, it should have come with the additional
imaginary factor i. Nevertheless, we are going to prove that even
Fig. 3. The ratio of the effective coupling Gα to Newton’s G in function of the phase
α of the complex Newton coupling Ge−iα .

these imaginary Newton forces can mimic the true Newton forces.
Indeed, they do accelerate the bodies in a Newtonian way apart
from a numeric factor R0. The acceleration dp̄1/dt has the stan-
dard form:

dp̄1

dt
= −ih̄

∫ [
ψ

(1)
0 (r1)

]∗∇1
dψ

(1)
0 (r1)

dt
dr1

− ih̄

∫ [
dψ

(1)
0 (r1)

dt

]∗
∇1ψ

(1)
0 (r1)dr1. (23)

Let us substitute the effective equation (22) and recall the ma-
trix R0 for the position–momentum correlation (8) in the station-
ary state ψ0. After trivial steps we get dp̄1/dt = 2R0F which, due
to the rotational symmetry, amounts to the ultimate form:

dp̄1

dt
= 2R0F ≈ 1.3506F, (24)

and, of course, similar steps would give the opposite acceleration
dp̄2/dt = −2R0F ≈ −1.3506F for the other body. The value of R0
was obtained numerically in Section 3.

5. Complex coupling

We outline some features of the general frSNE – first advocated
in the present Letter – where the coupling G in the SNE is replaced
by Ge−iα . Obviously, α = 0 means the reversible SNE (1), α = π/2
is the case G → −iG known earlier [4,16] and studied through
Sections 2–4 while α = π would mean the reversible SNE with
repulsive Newton gravity which we exclude from considerations.
Inside the region 0 < α < π we have generalized frSNEs with fea-
tures resembling the investigated special case α = π/2. All these
frSNEs have localized one-body asymptotic states of unique shape
with parameters of the same order of magnitude. Convergence was
numerically observed already at small imaginary couplings. (We
conjecture that the ground state solution of the SNE is exactly
identical with the stationary state ψ0 of the frSNE with coupling
G − iε , where ε → +0.) For α = π/2 one has a fairly robust con-
vergence which becomes finally lost towards the edges α = 0,π .
For a general frSNE, the strength of Newton attraction has two
contributions: the true dynamics which is proportional to Re G and
the induced acceleration which is proportional to 2R0 Im G . The re-
sulting gravity is characterized by an effective coupling:

Gα = (cosα + 2R0 sinα)G. (25)

In Fig. 3, we have plotted the factor cosα + 2R0 sinα in function
of the phase α. We see that the effective Newton forces are bigger
than the standard ones by a small numeric factor about, appar-
ently, less than 2. We could renormalize the bare coupling G by
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the inverse of this factor in order to get the right effective cou-
pling. This discussion is beyond our scope now, yet we mention
a very similar issue with an alternative – and perhaps related –
concept of emergent (induced) gravity [17].

6. Summary

We have studied the simplest frictional Schrödinger–Newton
equation characterized by the pure imaginary coupling −iG . We
solved the one-body frSNE numerically and found robust conver-
gence to a unique localized wave packet in the c.o.m. frame. In case
of the two-body frSNE we discussed a heuristic solution in the spe-
cial case when the two bodies are far from each other. They quickly
form stationary wave packets in their respective c.o.m. frames. An
effective attraction emerges between them which is 2R0 times the
Newtonian attraction where R0 is the position–momentum cor-
relation of the one-body stationary wave packet. Therefore our
‘induced gravity’ depends on the details of the wave function of
the participating bodies. Before they reach their stationary states
towards the limit 2R → 2R0 ≈ 1.3506, the emergent gravity may
be very different from Newton’s. As to the stationary regime itself,
an immediate question arises: can we tune the factor R0 to 1/2?
Yes, we can. The frSNE of extended spherical bodies yields just
R0 = 1/2 [4,17]. Therefore it may well be that the concept of the
frSNE with pure imaginary coupling −iG contains a bit of real
physics: for large extended objects the frSNE would show sta-
ble convergence to one-body localized states and induces correct
Newton forces between the distant objects. Yet, we would not like
to over-interpret this theory since any SNE in itself faces serious
interpretational problems, like any other non-linear deterministic
Schrödinger equation [18]. Finally, we discussed a novel class of
frSNE with general complex coupling. Our simulations show that
for point-like objects the effective (real + induced) gravity is bigger
than Newton’s by a small factor.
In both our conceptional and numerical analysis we followed
restricted aims. Without sinking into the interpretational context
(wave function collapse, macroscopic quantum mechanics, quan-
tum gravity, etc.) we wanted to point out the hitherto unknown
mechanism of gravity induced by the imaginary mean-field. Our
numeric simulations served this aim basically, we have not tar-
geted a systematic numeric study of the frSNE. We add, nonethe-
less, the irreversible frSNE is an easy subject of simulation, com-
pared to the irreversible SNE, its numeric study might be an at-
tractive further task in itself while, more importantly, it would
serve our conceptional understanding a possible role of the frSNE
in foundations.
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