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Quantum linear Boltzmann equation with finite intercollision time
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Inconsistencies are pointed out in the usual quantum versions of the classical linear Boltzmann equation
constructed for a quantized test particle in a gas. These are related to the incorrect formal treatment of
momentum decoherence. We prove that ideal collisions with the molecules would result in complete momen-
tum decoherence, the persistence of coherence is only due to the finite intercollision time. A corresponding

quantum linear Boltzmann equation is proposed.
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I. INTRODUCTION

Collisional theory of motion of a test particle through a
gas had been the oldest classical tool confirming atomic
Kinetics—e.g., in Brownian motion [1]—or using atomic
kinetics—e.g., in Millikan’s experiment [2]. If the gas is di-
Iute and hot, the interaction of the particle with the gas re-
duces to the repeated independent binary collisions between
the particle and the individual molecules. The dynamics of
the test particle is fully captured by the differential cross
section of the scattering: the linear Boltzmann equation
(LBE) describes the particle’s motion. For a quantum par-

ticle, the scattering matrix 1+iT is expected to capture the
dynamics which we describe by the quantum linear Boltz-
mann equation (QLBE)
dp N
—=—1ilH,p]+ Lp, 1
== il.p1+ Lo (1)

where p is the density matrix, H is the free Hamiltonian
(including an energy shift due to the gas), and L is the Lind-
blad [3] superoperator of the non-Hamiltonian evolution. The
microscopic derivation of £ does not differ from the classical
derivation of the LBE as long as we assume a density matrix
(P|p|P")=p(P)S(P—P’) without superpositions in momen-
tum P. The evolution of the diagonal density matrix is gov-
erned by the classical LBE applied to the distribution p(P).
This is why the classical kinetic theory has so far served as a
perfect effective theory for a quantum particle in those innu-
merable applications where complete momentum decoher-
ence was a priori assumed. A stealthy request for a system-
atic theory emerged in the field of foundations where
quantum Brownian motion became the paradigm of how the
environment (gas) “measures” the wave function (of the par-
ticle) [4-7]. For experiments, a proper quantum Brownian
particle was not available before, now it is, cf., e.g., [8].
When we are interested in the local quantum dynamics of
the particle, we need the off-diagonal elements (P|p|P’) as
well, and then the microscopic derivation of £ becomes
problematic. The classical derivation resists to a direct quan-
tum extension. The first microscopic derivation was obtained
fifteen years ago [9] by the present author. Subsequent works
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[10-12] by Vacchini and Hornberger—flavored by transient
debates [13,14]—led them to a refined version. Their up-to-
date review [15] further elucidates the subject and can serve
as an exhaustive source of references for the reader. Micro-
scopic derivations assume typically (though not necessarily)
the Maxwell-Boltzmann distribution for the molecular mo-

mentum k
312 2
(k) = (i) exp(— &) @

27m 2m

where m is the molecular mass and S is the inverse tempera-
ture. To overcome the mentioned difficulties with the off-
diagonal elements of p, Ref. [9] suggested a formal reso-
lution that became an irreducible part of all subsequent
derivations [10-15]. In all variants of QLBE, including a
most recent one [16], £ is not a linear functional of p,(k) as
it should have been, rather, £ is a quadratic functional of the
square root of p,(K). In other words, £ is the linear func-
tional of

Vpg(K)p,(k'). (3)

Therefore, no matter which QLBE is considered, we face the
following issue of consistency. Suppose the gas has two in-
dependent “components” consisting of the same molecules at
same densities while at two different temperatures. Then,
their contribution to the QLBE must be additive. But it is
not, since £ in the QLBE (1) is linear in the expression (3),
not in p (k) itself.

Before we construct a QLBE that is linear in p,(k), we
point out a surprising collisional decoherence effect appar-
ently overlooked for a long time and discovered indepen-
dently from the present work by Kamleitner and Cresser, too
[16]. It may radically alter our understanding what QLBE
should be.

A. Single collision decoheres momentum

Let us consider the kinematics of a single collision be-
tween the particle and a molecule. As a Gedanken experi-
ment, suppose we prepared the molecule with momentum k
before the collision and we detected it with momentum k
—Q after the collision, i.e., we know the momentum transfer
Q. Note that the interactions of these preparation and detec-
tion devices with the molecule are irrelevant for the reduced
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dynamics of the particle, yet such preparation and detection
devices are relevant for our arguments. We get dramatic con-
clusions for the reduced state p of the particle since, for
elementary kinematic reasons, the observation of Q is
equivalent with the observation of one component of the
particle’s momentum P. Let P stand for the postcollision
momentum, then from energy conservation

k> (P-Q? (k-Q? P’
K _ L

. (4)
2m 2M 2m 2M
we have the following relationship:
M M Q
P=_k—(_—1)_, (5)
m m 2

where the subscripts || refer to the components parallel to Q.
It is obvious that after our single collision the particle’s den-
sity matrix p, whatever it was before the collision, becomes
perfect diagonal in P;. Gradually, after many collisions, the
state p becomes a mixture of plane waves, no off-diagonal
mechanism will be left at all. This result contradicts to what
we have so far learned as QLBE. The art of deriving a plau-
sible QLBE has always been about the nontrivial treatment
of the off-diagonal elements. The above decoherence mecha-
nism, however, shows that standard scattering theory and
independent collisions do not yield any QLBE for the off-
diagonals. The apparent off-diagonal dynamics may well
have been artifacts of the square-root fenomenology (3).

In reality, the state of the particle is not necessarily the
delocalized one advocated by our decoherence argument. In
fact, our argument is relevant for the case of very dilute gas
or for very small collision cross sections. Then, the density
matrix has no off-diagonal elements at all. Such perfect mo-
mentum decoherence assumes perfect energy conservation of
the collision process. In quantum scattering, it requires infi-
nite time and this is the loophole where we concentrate. If
the intercollision time is moderate long, it still leaves ample
room for energy balance uncertainty and momentum coher-
ence.

B. QLBE with finite intercollision time

We outline the derivation of QLBE (1) where £ remains a
linear functional of p,(k) and momentum decoherence is de-
scribed correctly in function of the intercollision time 7. The
full quantum derivation introduces the box-normalized
single-molecule density matrix

. (@m)’
=",

po(K). (6)

We follow Ref. [9]. Starting from the precollision initial state
p® p,, we calculate the collisional change of the particle’s
reduced state. The parts responsible for in- and out-scattering
are respectively given by the following expressions:

Aﬁ|in = Vng trg(f‘ii ® ﬁg’jﬁ)’ (7)
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Aplow==3Vn, r{T'T,p @ fy}, (8)

where the single-collision contributions has been enhanced
by the total number Vn, of molecules at density n,. The
standard form of the transition operator for the (spin-
independent) scattering with initial laboratory momenta k
and P, respectively, reads

T=

k-Qxkl, (9)

i )A( SEEAES ok
e f dkdQe'¥f (K k) S(E})

where the ket and bra stand for the momentum eigenstates of
the molecule. The function f is the scattering amplitude. The
quantities marked by #* are the initial and final (pre- and

postcollision) c.0o.m. momenta, while E}; is the c.o.m. energy
balance, respectively,

K'=—k--—-P,
M M
ki=k/ - Q,
Erm (R - (k)2 (10)
fi_zm* f 27]1* i/ -

Here, M*=M+m and m*=Mm/M". We substitute the Egs.
(6) and (9) into Eq. (7), yielding

R 2T i0X
Aplfﬁ f f dkp,(k)dQe'®*

X U0 k) S(ER) pf; k) S(ER)e . (11)

A similar elaboration applies to Ap|., as well. And now, we
alter (and simplify) the old derivation [9]. In standard quan-
tum scattering theory, both the preparation of precollision
and the emergence of postcollision states take infinite long
time and the transition operator (9) contains the & function
for perfect energy conservation. In our case, however, the
intercollision time 7 is finite

.
o XTBm (12)

O'I’lg

o is the total scattering cross section. We take this feature

into the account if in f", we use the “smoothened” S-function
S/(E) instead of &(E)

5.(E) = sin(q:}l‘;/Z) ’ (13)

and we extend the transition amplitude f(k,k;) off-shell.
We shall approximate dp/dt|, by Apli,/ 7, when we substi-
tute Eq. (11), it yields

dp 27n f f e
—| == | dkp,(k)dQe'¥*
dt . * pg( ) Qe

X f(K;.K;) SAE) pf (K K;) SAE;)e . (14)

This form, and a similar form for dp/dt|y,, give dp/dt
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=dp/dt|,,+dp/dt|,, and explicitly indicate the following
Lindblad structure (1) of our QLBE:

A

d A 2 A A
Ll ple TS J f dkpg(k)dQ(V(k,Q)ﬁVT(k,Q)
t ™

Ly o
—EHWKQW&QLM> (15)
where the Lindblad operators read

V(k,Q) = X (K;.K))8.(E},). (16)

The cautious reader might notice that the average intercolli-
sion time 7 depends on p,(k), so that L’s exact linear depen-
dence on pg(k) is arguable. Whether a refined means of in-
cluding the random intercollision time exists, we do not
know yet. We expect the following features of the new
QLBE. In very dilute gas, we can take 7— o and &,— 6, the
off-diagonal elements of p become completely suppressed
and our QLBE recovers the standard LBE for the diagonal
elements of the density matrix. If the gas is less dilute, the
LBE remains valid for the diagonal part of p while the off-
diagonal part reappears and then 7 becomes the relevant
quantity for it. We are going to illustrate these features.

C. Diffusion limit

A common test of QLBE is Dekker’s equation [17] con-
taining the fenomenological constants 7z, D,,, and D,, of
friction, momentum and position diffusion (i.e., position and

momentum decoherence), respectively,

A

dp . .
E == I[Hv P] - Dpp[X9[X7p]] - DxX[P’ [P’p]]

- is (X () (17)

For a heavy Brownian particle (M >m), in the diffusion limit
(cf., e.g., [9,15]), this equation is recovered by all QLBEs.
They yield the same (classical) momentum diffusion con-

stant D,,, and friction constant 7

Bn=D =lﬁJJdQQdk p(k +1Q)
=6 m 1P\ K15

2
. (18)

1 1
x f(ki - Q.+ EQ)

Different QLBEs do not agree upon the value of the position
diffusion (momentum decoherence) constant D,,. Our QLBE
(15) provides a 7-dependent D,,. We are going to derive it.

Since the Dekker equation (17) corresponds to the second
order Taylor expansion of the QLBE (15) in the operators
)Z,IA’, we shall compare the respective coefficients of the term
ﬁﬁf’ in the Dekker equation and in the QLBE. In the latter,
the leading term comes from the expansion of the 57(123;)

factors around P=0. To calculate their argument for m/M
— oo, recall Eq. (10)
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QL Q) 1w . 1los
Eﬂ_m<k 2) QP =E;-QP. (19)

Therefore, we get
.~ 1 2mmn
2D, PpP = Wﬁmz dQdkp,(k)

X|f(k - Q.K)[SUE)PQPAPQ,  (20)

where we set P=0 in the arguments of f, assuming a slowly
varying f. Now, we change the integration variable according
to dky=(m/Q)dE; and perform the integral over E;. We can
ignore the variation of p(k) and f(k—Q,k) with the variation
of kj, which can only take values from a narrow vicinity of
Q/2 because of the narrow support of the &.. Hence, we
substitute ky=Q/2 in p, and f, then we perform the integral

m 7

| tsigoran =" [ g rar, = en

The resulting equation reads

AT 1277an ( 1 )
2D, PpP= ———=£ dQdk k, +=
ok P 247TM2 m Q Lpg L 2Q

2

1 1 | R
X f(kJ_ —5Qk. + EQ) EQPﬁPQ,

(22)

where rotational symmetry allows for substituting leﬁl;Q

by (Q?/ 3)13;313 We get finally that the quantum position dif-
fusion (momentum decoherence) is proportional to the clas-
sical momentum diffusion (18)

1 7)?
Dxx:ﬁ v; D,,. (23)

This result is in agreement with the conclusion of our Gedan-
ken experiment: the longer the intercollision time, the stron-
ger the momentum decoherence is. According to a universal
constraint [3,17] of complete positivity of the Dekker equa-
tion (17), the inequality D, = (8/4M)*D,,, must be satisfied,
which puts a lower bound on position diffusion at fixed fric-
tion 7. The QLBE introduced in Ref. [11] predicts this mini-
mum position diffusion. All other previous QLBEs [9-16]
predict similar position diffusion suggesting that it is irrel-
evant at high temperatures. Our result is different: position
diffusion (momentum decoherence) goes with 7, not with
B*. The above complete positivity condition gives the con-
straint 7kpT= v’gﬁ/ 2 for 7, where T is the temperature; we
restored the standard physical dimensions. Substituting Eq.
(12) and introducing the thermal de Broglie wavelength A
of the molecules, we get

\ron, =< \2/3, (24)

suggesting that our QLBE works until a volume Ao will
contain more than cca. 1 molecule on average. This may
happen when the density 7, is too high, or the temperature is
too low, or the cross section (e.g., the size of the particle) is
too big. But otherwise, there is an ample regime for our
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particle to develop a localized wave function subject to our
QLBE.

II. SUMMARY AND OUTLOOK

Quantum dynamics of a particle in interaction with a di-
lute gas is definitely tractable by the collision model. We
pointed out—in agreement with Ref. [16]—that the coher-
ence between different momentum eigenstates is heavily
suppressed (cf. related remarks in [18]) and the very persis-
tence of any localized coherent dynamics is only due to the
uncompleted quantum collisions, i.e., to the finite intercolli-
sion time 7. This brings a dramatic change in our understand-
ing the quantum behavior of the test particle. Previously,
momentum decoherence (i.e., position diffusion) was consid-
ered a weak quantum effect irrelevant at high temperatures.
Now, we must claim that such weak momentum decoherence
predicted by the previous QLBEs was an artifact. Momen-
tum decoherence is a dominating effect. In very dilute gas, at
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very small scattering rates, the true dynamics is just the clas-
sical diffusion (cf. LBE) through the momentum eigenstates.
This means, in particular, that a gradual momentum decoher-
ence under controlled conditions may become testable, e.g.,
in fullerene [8] or in nano-object interference experiments
[19].

There is no guarantee that momentum decoherence has a
universal Markovian description. The proposed QLBE cap-
tures the influence of finite intercollision time 7 within the
concept of independent collisions while the mechanism is
beyond it: the second collision literally interferes with the
first one. Might then we not think of a Lindblad structure £
that is linear functional of p(k)p(k’)? In any case, our QLBE
with the finite collision time represents a progressive fenom-
enology compared to the earlier QLBE:s.
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