
Monitoring the wave function by time continuous position measurement

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2010 New J. Phys. 12 043038

(http://iopscience.iop.org/1367-2630/12/4/043038)

Download details:

IP Address: 148.6.66.134

The article was downloaded on 28/04/2010 at 18:35

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1367-2630/12/4
http://iopscience.iop.org/1367-2630
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


T h e  o p e n – a c c e s s  j o u r n a l  f o r  p h y s i c s

New Journal of Physics

Monitoring the wave function by time continuous
position measurement

Thomas Konrad1,2,4, Andreas Rothe1, Francesco Petruccione1,2

and Lajos Diósi3
1 Quantum Research Group, School of Physics, University of KwaZulu-Natal,
Private Bag X54001, Durban 4000, South Africa
2 National Institute for Theoretical Physics, University of KwaZulu-Natal,
Private Bag X54001, Durban 4000, South Africa
3 Research Institute for Particle and Nuclear Physics, H-1525 Budapest 114,
PO Box 49, Hungary
E-mail: konradt@ukzn.ac.za

New Journal of Physics 12 (2010) 043038 (11pp)
Received 30 November 2009
Published 21 April 2010
Online at http://www.njp.org/
doi:10.1088/1367-2630/12/4/043038

Abstract. Motivated by the technical requirements of quantum information
processing and nanotechnology, the control of individual quantum systems such
as single atoms, ions or even photons has become a highly desirable aim. The
monitoring of quantum systems—a direct test and in many cases a prerequisite
of their control—has been investigated so far only for certain observables such
as the position or momentum of quantum particles. Here, we describe a method
to monitor in real time the complete state of a quantum particle with unknown
initial state moving in a known potential. The method is based on successively
updating an estimate by the results of a continuous position measurement. We
demonstrate by numerical simulations that even in a chaotic potential tracking
the wave function of a particle is possible, and we show with an example that the
monitoring scheme appears to be robust against sudden random perturbations.
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1. Introduction

Monitoring—continuous observation—of a dynamical system in the presence of randomness
is not only employed in physics and chemistry, e.g. to survey the motion of comets, the
growth of thin layers or the dynamics of chemical reactions. In addition, it is a sub-discipline
of robotics and also plays a vital role in other fields such as earth science and aeronautics,
with its numerous applications including those in climate observation, the control of robots
and vehicles, and remote sensing. Monitoring tasks can be modelled by stochastic processes
supported by continuous updates of estimates according to the observed random data—also
called stochastic filtering [1]. A special challenge, however, is posed in the realm of quantum
physics; the preparation—not to mention monitoring or control—of individual atoms, electrons
and photons remained experimentally unattainable for half a century. The theory of quantum
monitoring emerged only 20 years ago [2–5]. Now, however, nanotechnology and quantum
information processing strongly inspire a mathematical theory of monitoring and control of
single quantum degrees of freedom like, e.g., the position of an atom or a nano-object. A more
challenging aim is to monitor and control the entire state of individual quantum systems.

In monitoring a quantum system the principal difficulties one encounters lie in the
characteristic traits of quantum nature itself: incompatible observables such as position and
momentum, as well as an irreversible state change introduced by measurements. Methods have
been developed to employ monitoring in order to determine the pre-measurement state [6], for
parameter estimation [7], to track oscillations between distinguishable states [8]–[10] and—
combined with feedback—for cooling purposes [11] or to reach a targeted state [12]. Moreover,
the possibility of state monitoring has been studied for special systems [13, 14]. We will show
here that monitoring the position of a single quantum particle promises—via our theory—the
monitoring of the full wave function, i.e. the complete state of a particle; we demonstrate its
power by numerical simulations. As is always the case in the quantum realm, monitoring will
unavoidably alter the original (unmonitored) evolution of the wave function. Strong monitoring
ensures a high-fidelity record of the system’s dynamics but has little to do with the evolution
of the unmonitored wave function, because of the disturbing influence of the monitoring.
Fortunately, in many cases, a suitably small strength of monitoring ensures both a slight change
of self-dynamics and—after a certain waiting period—robust fidelity of the record. Here, the
length of this period increases with decreasing strength of the monitoring. Needless to say, such
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compromise is not due to any weakness in our theory. It is definitely an ultimate necessity
enforced by the Heisenberg uncertainty relations.

In the following, the concept of continuous observation is interpreted as the asymptotic
limit of dense sequences of unsharp position measurements on a single quantum particle. We
describe the inference of its wave function from the sequence of measured position data and
then compare the true wave function with its estimate using simulations of quantum particles
moving in various potentials. Among them is the Hénon–Heiles potential, which in classical
physics implies chaotic behaviour and thus exposes tracking of dynamics to extreme conditions.

2. Monitoring the position

Time-continuous position measurement can be understood as an idealization of a sequence
of discrete unsharp position measurements carried out consecutively on a single quantum
particle [3]. The notion of unsharp measurement is instrumental here. Such an unsharp
measurement of the position q̂ can be realized as indirect von Neumann measurement; instead of
measuring the particle’s position directly, an ancilla system is scattered off the particle and then
the ancilla is measured [15]–[19]. The observed results yield limited information on the position
q̂ of the scatterer as well as less average state change than a projection measurement—both
characteristic traits of an unsharp measurement of q̂. In order to realize an unsharp measurement,
the ancillas should be interacting weakly with the particle or initially be prepared in a sufficiently
non-localized state. In a simple description, a single unsharp measurement of resolution σ
collapses the wave function onto a neighbourhood with characteristic extent σ of a random
value q̄:

ψ(q)−→
1

p(q̄)

√
Gσ (q − q̄)ψ(q) , (1)

where Gσ (q)= (1/
√

2πσ 2) exp(−q2/2σ 2) is a central Gaussian function. The random quantity
q̄ is the measured position that determines the collapse, i.e. the weighted projection, of the wave
function. The probability of obtaining the measurement result q̄—which also plays the role of a
normalization factor of the post-measurement wave function—reads as

p(q̄)=

∫
Gσ (q − q̄)|ψ(q)|2dq . (2)

As a matter of fact, sharp (direct) von Neumann position measurements are the idealized special
case, while unsharp measurements—although not necessarily with the Gaussian profile—are the
ones that we encounter in practice and that suit a tractable theory of real-time monitoring of the
position of a single quantum particle.

In our discretized model of monitoring a single particle, we assume an unknown initial
wave function ψ0(q) and perform consecutive unsharp position measurements of resolution σ
at times t = τ, 2τ, . . . , respectively, yielding the corresponding sequence q̄t of measurement
outcomes. Between two consecutive unsharp measurements, the wave function evolves
according to its Schrödinger equation (self-dynamics).

The resolution σ and the frequency 1/τ of unsharp measurements should be chosen in such
a way as to not heavily distort the self-dynamics of the particle. It turns out that the relevant
parameter is σ 2τ ; we call

γ =
1

σ 2τ
(3)
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the strength of position monitoring. The strength of position monitoring γ is related to the
average strength of the back action the measurements exert on the system. This can be seen
in the continuum limit τ → 0 and σ → ∞, such that γ stays finite (cf the appendix). In the
absence of unitary dynamics, the system’s density matrix in position representation ρ(q, q ′, t)=

〈q|ρ̂(t)|q ′
〉 would evolve due to a continuous position measurement in the non-selective regime

according to the Master equation [16]:

∂ρ(q, q ′, t)

∂t
= −

γ

8
(q − q ′)2ρ(q, q ′, t), (4)

which means that the off-diagonal elements of the density matrix decay exponentially with a
rate given by γ times the square of the distances between the corresponding positions. We
should keep this decay rate modest compared to the rate of the Schrödinger evolution due to
the Hamiltonian Ĥ of the monitored particle. Low values of the strength γ may, however, result
in low efficiency of position monitoring and slow convergence of our method of wave function
estimation, cf section 4. The above constraint on σ 2τ can in general be matched with further
ones—see the appendix—that ensure the applicability of the continuum limit and its analytic
equations.

3. Monitoring the wave function

While it seems plausible that after a sufficiently long time t the sequence of unsharp position
measurements provides enough data to estimate |ψt(q)|2, it may come as a surprise that position
measurements enable a faithful monitoring of the full wave function ψt(q) as well. The reason
for this is as follows. Measuring the position q̂ at times t = τ, 2τ, . . . on a system with evolving
Schrödinger wave function ψt is equivalent to consecutive measurements of the Heisenberg
observables q̂t = exp(it Ĥ)q̂ exp(−it Ĥ) on a system with static wave function ψ0. The set of
Heisenberg coordinates {q̂t} will exhaust a sufficiently large space of incompatible observables
so that their measurements will lead to a faithful determination of ψ0 and—in this way—
to our faithful determination of ψt for long enough times t . In the degenerate case Ĥ = 0,
monitoring turns out to be trivial: for long enough times, a large number t/τ of unsharp position
measurements of resolution σ is equivalent to a single sharp measurement of resolution σ/

√
t/τ ;

position monitoring thus yields just preparation of a static sharply localized wave function—an
approximate ‘eigenstate’ of q̂.

Our monitoring of the wave function means a real-time estimation of it, where the quality
of monitoring depends on the fidelity of the estimation. We start from a certain initial estimate
ψ e

0 and simulate its evolution according to the self-dynamics of the particle, which is assumed
to be known, until time t = τ . Immediately after we have learned the first position q̄τ from the
first measurement on the particle, we update the estimate according to the same rule (1) as the
actual wave function of the particle and renormalize it:

ψ e
τ (q)−→ normalization ×

√
Gσ (q − q̄τ )ψ

e
τ (q). (5)

This update resembles the Bayes principle of non-parametric statistical estimation. We repeat
this procedure for t = 2τ, 3τ, . . . expecting that the estimated ψ e

t and the observed wave
function ψt will converge! A rigorous proof of convergence is missing. In the continuum
limit, nonetheless, it was conjectured that convergence occurs if the common eigenspace of
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all Heisenberg operators q̂t is empty or one-dimensional [20]. As an illustration, consider the
case of independent dynamics in the two coordinates x̂, ŷ, where only the coordinate x̂ is
monitored and the above condition is thus not met; the estimate will in general not converge
to the true wave function. However, measurement of one of the coordinates—say x̂—yields the
desired convergence according to the conjecture, for example, if the unitary dynamics rotates
the Heisenberg operator x̂t in the plane spanned by both coordinates. Rather than pursuing
the rigorous theoretical conditions of convergence cf [21], we turned to numerical tests of
continuous measurements that have definitely confirmed our method.

4. Numerical simulations

We simulated the evolution of a single hydrogen atom subjected to continuous measurements
at several potentials. However, the conclusions of our discussion are not restricted to hydrogen
atoms; similar results can be expected for atoms with higher masses in appropriately scaled
potentials.

The coupled evolutions of the wave function, measurement readout and the estimated wave
function were simulated numerically by discretizing the corresponding stochastic differential
equations (cf the appendix). For this purpose, we employed a numerical algorithm of Kloeden
and Platen, which is accurate up to second order in the time step of the discretization [18, 22].

In order to study the relation between the evolution of the wave function of the particle, on
the one hand, and the evolution of its estimate, on the other hand, we first confine ourselves to
a one-dimensional spatial motion. In this case, the graphical representation is the simplest and
thus gives a clear picture of the convergence between real and estimated wave functions. As an
example we consider a hydrogen atom situated in a quartic double well potential with a shape
as depicted in figure 1.

We assume a continuous measurement of the position of the hydrogen atom with strength
γ = 9.9856 (µm)2 s−1. In order to get an impression of the dimensions of the measurement, let
us invoke equation (3) to note that this value of γ may correspond, e.g., to single Gaussian
measurements with a spatial resolution of σ = 1.4 mm repeated at time periods τ = 50 ns.
The spatial resolution of the single weak measurements [23] is thus 140 times poorer than
the width σ = 10µm of the initial Gaussian wave function of the atom. In figure 1, we have
depicted snapshots recorded at different times of the spatial probability density |ψ(x)|2 of the
H atom (blue solid line) and the squared modulus |ψ e(x)|2 of the estimated wave function (red
dashed line). Initially, both probability densities assume the form of Gaussians that differ in
width and location within the double-well potential. The sequence of pictures demonstrates the
convergence of the densities in the course of a continuous measurement.

The real probability density |ψ(x)|2 of the H atom, which possesses initially a slightly
higher mean energy than the middle peak of the potential, oscillates back and forth between the
sides of the potential. The oscillatory motion of the centre of |ψ(x)|2 would also be expected
qualitatively without measurements—as well as from a classical particle of the same mass
moving in the double well. However, the real probability density does not spread as it would
without measurements. This localization effect caused by the continuous unsharp position
measurement adapts the motion of the H atom to that of a classical particle that is perfectly
localized at each instance. This illustrates the influence of the measurements and points to a
particular kind of control of the wave function that can be exercised by means of unsharp
position measurements. A smaller measurement strength would lead to less disturbance of

New Journal of Physics 12 (2010) 043038 (http://www.njp.org/)

http://www.njp.org/


6

Figure 1. Motion in a double-well potential. The frames show a time sequence
of the real probability density of atomic position |ψ |

2 (blue solid line) and
the estimated probability density |ψ e

|
2 (red dashed line). The solid black line

represents the double-well potential as a function of position. Its minima are
189µm apart and the height of the central maximum is given by 1 × 10−13 eV.

the unitary motion in the potential, but also to lower speed of convergence between real and
estimated probability densities.

The estimated probability density |ψ e(x)|2, which is centred initially on the right-hand
side of the potential, follows the real wave function until after approximately one oscillation
period, the corresponding probability densities coincide and evolve identically thereafter. But
not only the probabilities to find the atom at a certain position converge, in fact the complete
wave function ψ(x) and its estimate ψ e(x) coincide after a sufficiently long period! It can
be proved analytically that the estimation fidelity F = |〈ψ |ψ e

〉|, which measures the overlap
between the wave functions ψ and ψ e, when averaged over many realizations of the continuous
measurement, increases with time and converges to 1 [20]. Numerical simulations for the
double-well potential show that in a typical realization with initial values as described above
and measurement strength γ = 9.9856 (µm)2 s−1 the fidelity amounts to more than 95% after
1.5 oscillation periods.

Figure 2 shows the evolution of estimation fidelity for a continuously measured H atom
moving in a plane under the influence of a Mexican-hat potential. The latter is a rotationally
symmetric version of the double well in two spatial dimensions. For the sake of simplicity,
we assume that both position coordinates are simultaneously and independently measured with
the same strength γ . Such a continuous measurement of both the coordinates typically yields
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Figure 2. Estimation fidelity for the Mexican-hat potential. The fidelity of
estimation F is plotted as a function of the duration of continuous measurement
of an H atom moving in a Mexican-hat potential for different values of
measurement strength γ in units of 10 (µm)2 s−1. The height of the Mexican
hat’s central peak situated at the origin of the reference frame is given by
1.07 × 10−12 eV, its minima lie on a concentric circle with a radius of 40µm
around the origin. The wave function ψ(x) and its estimate ψ e(x) are initially
Gaussians centred at (−55, −14.8µm) and (−103.6 , −103.6µm) with widths
of 10µm as well as 5µm, respectively. The plots demonstrate that perfect fidelity
is reached eventually for all considered measurement strengths. However, the
convergence time decreases with increasing γ .

evolutions of the estimation fidelities, which are shown in figure 2 for several values of the
measurement strength γ . In all depicted cases, the fidelity comes very close to 1 within a period
of 5 ms, i.e. estimated and real wave functions then coincide. Thereafter the dynamics of the
wave function including the influence of the measurement can thus be monitored with perfect
fidelity.

One might doubt that our monitoring remains efficient for heavily complex wave functions
like those developing in classically chaotic systems. Instead of the integrable Mexican-hat
potential, this time we study the chaotic Hénon–Heiles potential, which depends on the radius
r as well as on the azimuth φ:

V (x, y)= A
[
r 4 + ar 2 + br 3 cos(3φ)

]
. (6)

For this potential, we simulated continuous position measurement and monitoring with the
following results. The saturation of fidelity is reassuring: the estimate converges to the real wave
function (figure 4), which is found at a slightly longer time scale than in the integrable Mexican-
hat potential, whereas the wave functions show an apparently irregular complex structure.
Figure 3 shows the estimated and real wave functions with an average overlap (i.e. a fidelity) of
91.58%. Indicating already an accurate overall estimation of the real wave function, this value
still includes in small areas of the potential differences of the corresponding probability densities
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Figure 3. Monitoring of complex wave functions. The real (blue) and estimated
(red) spatial probability densities |ψ |

2 and |ψ e
|
2, whichever assumes a greater

value, are depicted in the Hénon–Heiles potential after time 3.15 ms, at fidelity
0.9158, for the same initial states as in figure 4.

Figure 4. Convergence for the Hénon–Heiles potential. The fidelity of estimation
F is plotted as a function of the duration of the continuous measurement at
strength γ = 12.351 (µm)2 s−1 of a H atom in the non-integrable Hénon–Heiles
potential (6) with parameters A = 5.44 × 10−17 eV (µm)−4, a = 13.09µm2 and
b = 36.18µm. The wave function ψ(x) and its estimate ψ e(x) are initially
Gaussians centred at (−14.8 , −29.6µm) and (−29.6 , −29.6µm), both with
widths of 10µm, respectively. We find that the fidelity converges to 1 and
therefore our estimate becomes a good approximation of the real wave function.

up to 35% of their highest peak. In particular, figure 3 indicates that faithful monitoring is not
only possible when the shape of the wave function of the particle is close to a Gaussian, but also
for rather complex shapes.

Monitoring, i.e. continuous unsharp observation, has a specific capacity. It is its
robustness against external unexpected perturbations. To demonstrate such a robustness, we
assumed that close to saturation of the estimation fidelity, as in figure 3, our atom in the
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Figure 5. Robustness of the estimation scheme. At t = 3.15 ms and fidelity
0.9158, exactly when the snapshot of figure 3 was taken, the H atom is hit
by another thermal H atom, which causes an immediate drop in fidelity. We
supposed a single momentum transfer px =

√
mkBT in the x-direction only, at

different temperatures. The fidelity recovers and converges to 1 after some time,
which depends on the temperature, i.e. on the strength of the momentum kick.

Hénon–Heiles potential is suddenly perturbed, e.g., by a collision with an environmental particle
(here another hydrogen atom). For simplicity, we assume a momentum kick px along the
x-direction, which implies a multiplication of the real wave function by the complex function
exp(ipx x/h̄); hence the estimated wave function has to start a new cycle of convergence.
We map the momentum kick px to a temperature by kBT = p2

x/m as if it had a thermal
origin, just to give a hint of its strength. Numeric results (figure 5) show that the estimation
fidelity recovers against these momentum perturbations (cf supplementary video, available
from stacks.iop.org/NJP/12/043038/mmedia). In reality, repeated random perturbations might
prevent perfect monitoring and fidelity will saturate at less than 1. Although this case is beyond
the scope of our present work, its study will be of immediate interest since real systems are
subject to various noises that are not measured at all. The monitoring theory at non-optimum
efficiency has been outlined earlier [20].

5. Discussion

We simulated numerically continuous position measurements carried out on a single quantum
particle in one- and two-dimensional potentials. In order to monitor the evolution of an initially
unknown state of the particle in a known potential, we estimated its wave function and updated
the estimate continuously employing the measurement results.

Our simulations show that for all the considered potentials, the overlap between estimated
and real wave functions comes close to 1 after a finite period of measurement—guaranteeing
thereafter precise knowledge of the particle’s state and real-time monitoring of its further
evolution with high fidelity. The power of our method is indicated by the ability to monitor
even the motion of a particle in a classically chaotic potential subjected to continuous position
measurement.
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We have thus demonstrated that monitoring the complete state of a quantum system with
infinite-dimensional state space is feasible by continuously measuring a single observable on
a single copy of the system. Moreover, the simulations indicate that our monitoring method is
robust against sudden external perturbations such as occasional random momentum kicks. How
much and what kinds of external noise this monitoring scheme tolerates is important for its
applicability in control and error correction tasks, and might be the object of future research.
As an example of a control task, we mention the cooling of a mechanical oscillator by position
monitoring augmented with feedback in the form of counter momentum transfer.
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Appendix. The Itō method

The discrete sequence of unsharp measurements (1, 2) and wave function updates (5) possess
their continuum limit [24] if we take τ → 0 and σ 2

→ ∞ at 1/γ = τσ 2
= const. In this

‘continuum limit’, both the true wave function ψt(q) and the estimated wave function
ψt(q) become continuous stochastic processes such that they are tractable by two stochastic
differential equations, respectively. The position measurement outcomes q̄t do not yield a
continuous stochastic process themselves. It is their time integral Qt , specified below, that
becomes a continuous stochastic process.

Let us consider the discrete increment of the true wave function during the period τ ,
cf equation (1). In Dirac formalism, we obtain

1|ψ〉 = exp(−iτ Ĥ)
1

p(q̄)

√
Gσ (q̂ − q̄)|ψ〉 − |ψ〉. (A.1)

For simplicity, we omit notations of time dependence t . The symbol 〈q̂〉 stands for 〈ψt |q̂|ψt〉.
In the continuum limit, equation (A.1) transforms into the following Itō-stochastic differential
equation [3]:

d|ψ〉 =

(
−iĤ −

γ

8
(q̂ − 〈q̂〉)2

)
dt |ψ〉 +

√
γ

2
(q̂ − 〈q̂〉)(dQ − 〈q̂〉dt)|ψ〉. (A.2)

The equation of the discrete increment 1|ψ e
〉 of the estimate (slight change) assumes the same

form as equation (A.1) of1|ψ〉 but the normalization factor differs from 1/p(q̄), cf equation (5).
Yet, it yields the same Itō stochastic differential equation as the equation above. The estimated
state |ψ e

t 〉 must be evolved according to the same nonlinear differential equation (A.2) that
describes the evolution of the monitored particle’s state |ψt〉. These two equations are coupled
via the stochastic process Q, whose discrete increment is defined by1Q = q̄τ ; in the continuum
limit this means formally Qt =

∫ t
0 q̄s ds, where q̄s is the measured position at time s. In

reality, the random process Qt is obtained from the measured data {q̄t}. If the measurement
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is just simulated, like in our work, then in the continuum limit 1Q transforms into the Itō
differential dQ whose random evolution can be generated by the standard Wiener process W via
dQ = 〈q̂〉dt + γ −1/2dW . Of course, Qt breaks the symmetry between the stochastic processes
ψt and ψ e

t because dQ/dt fluctuates around 〈ψt |q̂|ψt〉 and not around 〈ψ e
t |q̂|ψ e

t 〉.
The stochastic differential equation (A.2)—combined with the same one for |ψ e

〉—is a
suitable approximation of our discrete model (see above) under two conditions. (i) A single
measurement does not resolve any particular structure of the wave function, i.e. σ � σψ , where
σψ is the width of the spatial area on whichψ is not negligibly small. Thus σψ can, e.g., be of the
order of magnitude of the available width of the confining potential. (ii) The length of the time
period τ between two consecutive measurements is small compared to the timescale of self-
dynamics generated by the Hamiltonian Ĥ . Then the discrete model of position monitoring and
wave function estimation becomes tractable by the time-continuous equation (A.2) depending
on the single parameter 1/γ = τσ 2, cf equation (3).
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