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Non-Markovian open quantum systems: Input-output fields, memory, and monitoring
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Principles of monitoring non-Markovian open quantum systems are analyzed. We use a field representation
of the environment [C. W. Gardiner and M. J. Collett, Phys. Rev. A 31, 3761 (1985)] for the separation of its
memory and detector part, respectively. We claim that the system-plus-memory compound becomes Markovian;
the detector part is tractable by standard Markovian monitoring. Because of non-Markovianity, only the mixed
state of the system can be predicted; the pure state of the system can be retrodicted. We present the corresponding
non-Markovian stochastic Schrödinger equation.
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In their seminal paper [1], Gardiner and Collett used
quantum white noise and the related Markovian quantum field
to represent the dynamics of a quantum oscillator bath in the
Markovian (memoryless) limit. This allowed the construction
of exact stochastic differential equations to describe the
influence of bath B on the embedded (i.e., open) quantum
system S, the reaction of S on B, and the time-continuous
monitoring of S. The theory became standard in quantum
optics [2] and in many fields where a quantum system is
open to natural or designed environmental influence [3]. If
the memory of B cannot be ignored for S, then Markovian
tools become jeopardized. In the non-Markovian (NM) case,
S is coherently interacting with a finite part of B over a finite
time. From different theoretical efforts [4–10], we distill a
central question: How can we divide environment B into the
memory M and detector D? Part M is continuously entangled
with S but the compound S + M becomes a Markovian open
system, as we shall argue. Part D contains information on S
and can be continuously disentangled, i.e., monitored, without
changing the dynamics of S.

As a matter of fact, the Markovian field representation [1]
of B is capable of accounting for memory effects and leads to
a natural separation between M and D. The local Markov field
interacts with S in a finite range: this part makes the memory
M. The output field carries away information on S, and it makes
the detector D. Most features of the Markovian theory [1] of
monitoring apply invariably to the composite system S + M.

Earlier, Jack, Collett, and Walls realized the role of a finite
memory time in simulation [4] and in monitoring [5]. Those
authors calculated, for the first time, the retrodiction of the
mixed quantum state. Here we exploit the causality features of
the standard Markovian bath [1–3] and, among other results,
calculate the retrodicted pure state and the current mixed state.

We start with a brief summary of the standard Markovian
field theory [1]. Then we identify M and D and outline how S +
M becomes a Markovian open system. Its Markovian master
equation is derived, followed by the derivation and discussion
of the stochastic Schrödinger equation (SSE) of monitoring S.

Markovian field, non-Markovian coupling. The composite
S + B dynamics is based on the total Hamiltonian,

Ĥ = ĤS + ĤB + ĤSB, (1)
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where ĤS is the Hamiltonian of S, the bath Hamiltonian is
ĤB = ∫

ωb̂†ωb̂ωdω, and ĤSB = iŝ
∫

κωb̂†ωdω + H.c. is their
interaction, where ŝ is an S operator that couples to the B
modes. Here b̂ω are boson annihilation operators for the ω-
frequency modes of B, satisfying [b̂ω,b̂

†
ω′ ] = δ(ω − ω′). B can

be called Markovian because of the flat spectrum. Memory
effects are fully encoded in the coupling κω. If the coupling
is frequency independent, κω = const, then S is a Markovian
open system; otherwise, it has a memory. We are interested in
the latter case, i.e., in NM open systems. We assume that S
and B are initially uncorrelated. Let, for simplicity, the initial
B state be the vacuum |0〉 defined by b̂ω|0〉 = 0 for all ω.

We switch for an abstract field representation [1–3]. The
bath field b̂(z) is defined by

b̂(z) = 1√
2π

∫
b̂ωe−iωzdω, (2)

where z is a real one-dimensional spatial coordinate. For
convenience, we set the velocity of propagation to 1. The
canonical commutation relationship is local:

[b̂(z),b̂†(z′)] = δ(z − z′), (3)

hence the field can be measured independently at all locations.
In particular, it can be measured in the coherent-state over-
complete basis parametrized by the complex field ξ (z). The
(non-normalized) Bargman coherent states

|ξ 〉 = exp

( ∫
ξ (z)b̂†(z)dz

)
|0〉 (4)

form an overcomplete basis: M|ξ 〉〈ξ ∗| = 1̂. Here M stands
for the integral (mean) over ξ , with the normalized measure
according to the standard complex white-noise statistics,
specified by

Mξ (z) = 0, Mξ (z)ξ (z′) = 0, Mξ (z)ξ ∗(z′) = δ(z − z′).
(5)

If we perform the measurement, the state of B collapses on
|ξ 〉 randomly, and the complex field ξ (z) becomes the random
readout. But its statistics depends on the premeasurement state.
In the vacuum state |0〉, the readouts ξ (z) follow the statistics,
(5). This statistics gets modified by the B-S interaction.
Typically, the mean becomes nonvanishing; cf. (11) or (21).
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Both the bath and the interaction Hamiltonians can be
written in terms of the fields:

ĤB = i

2

∫
b̂†(z)∂zb̂(z)dz + H.c., (6)

ĤSB = iŝ

∫
b̂†(z)κ(z)dz + H.c., (7)

where κ(z) is the Fourier transform of κω.
The underlying picture [1–3] is that all B modes are spatial

excitations along a single direction z. The coupling κ(z) is
supposed to vanish outside the interaction range, say, z ∈
[0,T ], where T is the memory time. Memory effects are fully
confined here. (If κ(z) decays only asymptotically to 0, a finite
memory time can still be a robust approximation [4,5].) If
κ were a δ function, κ(z) ∝ δ(z), the interaction range would
reduce to a single point z = 0, memory effects would be absent,
and S would be a Markovian open system.

Heisenberg picture. The solution of the Heisenberg field
equation reads [1–3]

b̂(z,t) = b̂(z + t) +
∫ t

0
ŝ(t − τ )κ(z + τ )dτ. (8)

The first term b̂(z + t) on the right-hand side (r.h.s.) corre-
sponds to free dispersionless propagation along the line, from
right to left (cf. Fig. 1). The free field plays the role of the
“conveyor belt” that carries information or perturbations one
way: from right to left; never the opposite! As usual, the free
field will later be identified as field (2) in the interaction picture:

b̂t (z) = b̂(z + t). (9)

The second term on the r.h.s. of (8) represents the interaction
with S, localized inside the interaction range z ∈ [0,T ]. In
the input range z � T the vacuum field is freely propagating.
In the output range z � 0 the field is freely propagating and
carrying away the perturbations emerged in the interaction
range. For t > 0, the input field does not depend on whatever
happens at z < T , and the dynamics of S remains undisturbed
whatever happens at z � 0 to the output field. Most impor-
tantly, we can continuously observe the output field without

D
M

output input

Tz<0

κ (z)

0

z

S

FIG. 1. The bath field b̂(z,t), when free, is propagating from right
to left without dispersion at velocity 1. The unperturbed input field
from range z � T propagates through the interaction range z ∈ [0,T ]
of nonzero coupling κ(z); gets modified by system S, and gets
entangled by system S; then leaves to freely propagate away to left
infinity as the output field. The interaction range makes the memory
M and the output range z � 0 makes the detector D, which can be
continuously read out (monitored).

b(t+T)bout (t)

M

S

D

M

S

FIG. 2. Memory subsystem M is formed from the local field
oscillators of the interaction range. S and M constitute a Markovian
open system. It is pumped by the free Markovian input field and it
creates the Markovian output field D that can be monitored (left).
S + M are in fact pumped by the standard quantum white noise
b̂(t + T ) and monitored through the modified quantum white noise
b̂out(t) just like Markovian open quantum systems, apart from the
delay T of readout with regard to the pump (right).

altering the dynamics of S. Accordingly, the memory M will
consist of the local field inside the interaction range and the
detector D will consist of the output field. We emphasize that
the coupling of M to the rest of B is Markovian, hence S + M
becomes a Markovian open system (Fig. 2). The full armory of
Markovian continuous measurement theories [1–3], including
the Ito formalism, could be deployed—with some peculiarities,
however.

As we said, the D part of the field is the output field
b̂(z � 0,t). The earliest location of monitoring is z = 0 and
it is common to introduce the notation b̂out(t) = b̂(0,t) and
common to call it the output field:

b̂out(t) = b̂(t) +
∫ t

0
ŝ(t − τ )κ(τ )dτ. (10)

This is the famous input-output relationship, which works for
the NM case as well. The equation expresses the variable
b̂out(t), which one can continuously monitor without affecting
the dynamics of S. Since κ(τ ) vanishes for τ < 0, the measured
signal reflects a delayed and coarse-grained average of the
S-variable ŝ.

In particular, if we read out b̂out(t) in ideal heterodyne
measurement—which corresponds to the measurement in the
coherent state basis, (4)—the resulting signal bout(t) contains
the standard complex white noise (5),

bout(t) = ξ (t) +
∫ t

0
〈ŝ(t − τ )〉κ(τ )dτ, (11)

where 〈ŝ(t)〉 is the quantum expectation value of the Heisen-
berg operator.

Markovian master equation. We construct the formal
Markovian reduced dynamics of S + M in the Schrödinger
picture. The Hamiltonian of M and the interaction are just ĤB

and ĤSB , respectively, restricted for the interaction range:

ĤM = i

2

∫ T

0
b̂†(z)∂zb̂(z)dz + H.c., (12)

ĤSM = iŝ

∫ T

0
b̂†(z)κ(z)dz + H.c. (13)

We are not ready yet. The outer input field b̂(z > T ), which
we cut off, will be replaced by the time-dependent vacuum

034101-2



BRIEF REPORTS PHYSICAL REVIEW A 85, 034101 (2012)

white noise b̂(T + t), which is external with regard to (w.r.t.)
M since we take t > 0. This noise couples to b̂(T ) of the upper
edge z = T of M and pumps M via the following Hamiltonian:

ĤMt = ib̂†(T )b̂(T + t) + H.c. (14)

(This choice can be confirmed in the Heisenberg picture:
the field equation db̂(z)/dt = i[ĤM + ĤMt ,b̂(z)] yields the
correct solution, (9), for z ∈ [0,T ].) As for the output field, we
trace out the modes for z < 0, while we must retain b̂(z =
0) = b̂out if monitoring is included. The total Hamiltonian
is ĤS + ĤM + ĤMt + ĤSM . We can directly write down the
corresponding master equation for the density matrix of
S + M:

ρ̂SM

dt
= −i[ĤS + ĤM + ĤSM,ρ̂SM ]

+ b̂(T )ρ̂SMb̂†(T ) − 1

2
[b̂†(T )b̂(T )ρ̂SM + H.c.]. (15)

The non-Hamiltonian term on the r.h.s. is the typical second-
order contribution of the white noise ĤMt .

We have thus transformed the original NM open system
S into a standard Markovian open system S + M which is
pumped by the vacuum white noise b̂(T + t) and can be
monitored through b̂out (cf. Fig. 2). In principle, the Markovian
master equation, (15), would be a possible starting point to
include monitoring. Unfortunately, the obtained equation is
formal; its application would require further specifications on
ĤM regarding the boundary conditions. Rather, we choose an
alternative tool.

Stochastic Schrödinger equation. We are interested in the
dynamics of the monitored quantum state. NM SSEs [11–13]
are traditionally used to describe open system dynamics,
whereas their role in monitoring either was ignored [14–19]
or was stronly suggested for investigation [4], then it led
to difficulties [6–9]. The difficulties, related to the causal
relationship between S and D, become transparent in our new
treatment.

We work in the interaction picture: according to (9), we
replace b̂(z) with b̂t (z) = b̂(z + t) and we replace ŝ with ŝt .
Interaction (13) becomes the functional of the standard vacuum
white noise b̂(t):

Ĥt = iŝt

∫ T

0
b̂†(t + τ )κ(τ )dτ + H.c. (16)

In the interaction picture the separate pump Hamiltonian,
(14), is not needed. To construct the Schrödinger dynamics
of S + M, let |
S(0)〉 stand for the initial state of S and |0〉
for the initial vacuum state of M. We choose an uncorrelated
composite initial state:

|
SM (0)〉 = |
S(0)〉|0〉. (17)

Using (16), we get the following Schrödinger equation:

d|
SM (t)〉
dt

=
(

ŝt

∫ T

0
b̂†(t + τ )κ(τ )dτ − H.c.

)
|
SM (t)〉.

(18)

Observe that the r.h.s. depends on the field b̂(t + τ ) for τ ∈
[0,T ], i.e., for times later than t itself.

As in the case of Markovian open systems, we have to
match the unitary evolution, (18), with the continuous readout
of b̂(t). To this end, we project the M part of the composite
state |
SM (t)〉 on the coherent-state basis, (4): |
S[ξ ∗]〉 =
〈ξ ∗|
SM (t)〉. The Schrödinger equation, (18), reads

d|
S[ξ ∗; t]〉
dt

= ŝt

∫ T

0
dτκ(τ )ξ ∗(t + τ )|
S[ξ ∗; t]〉

− ŝ
†
t

∫ T

0
dτκ∗(τ )

δ|
S[ξ ∗; t]〉
δξ ∗(t + τ )

. (19)

This equation is just the Schrödinger equation, (18), in a
different representation. But it is more than that if we consider
the monitoring and readout of b̂(t). Then |
S[ξ ∗]〉 is the
(non-normalized) conditional state vector of S, depending on
the measured signal bout = ξ . Since the signal is stochastic,
we call (19) the NM SSE.

We have come to a landmark. The r.h.s. would contain the
measured signal ξ (t + τ ) at later times w.r.t. t ; these data are
not yet available at time t . We can still exploit the SSE in two
ways. Either we propagate the conditional mixed state or we
propagate the retrodicted pure state. In both cases, we prepare
the initial state, (17), of S + M at time t = 0, let it go, and start
to read out the signal bout(t) = ξ (t). The field in M becomes
entangled with S so we can never monitor the pure state |
S〉
of S. Nonetheless, at each time t > 0 we propagate (calculate)
the solution of (19) by using the latest readouts ξ (t) = bout(t)
and by setting auxiliary values for ξ (t + τ ) with τ ∈ (0,T ).
The latter data have not yet been measured; we acknowledge
our ignorance by tracing out the corresponding field degrees
of freedom. Accordingly, we derive the following conditional
mixed state from the pure-state solution:

ρ̂S[bout,b
∗
out; t] = M|
S[ξ ∗; t]〉〈
S[ξ ; t]|ξ (σ<t)≡bout(σ<t). (20)

This mixed state (with a normalizing factor) is the true
conditional state of S under monitoring. If we stick to the idea
of a conditional pure state, we exploit the measured signal
bout(t) differently. We use the SSE, (19), at time t to retrodict
the state propagation at time t − T . Until time t = T , measured
data are not sufficient to retrodict any pure state. From time
t = T on, we start to propagate the initial state |
S(0)〉, using
the signal bout = ξ measured until time t . At each time t > T ,
we have |
S[b∗

out; t − T ]〉 as the solution of the SSE. And
this (with a normalizing factor) is our retrodicted conditional
pure state for S. The pure state |
S[b∗

out; t − T ]〉 looks like a
mere mathematical construction, though it will appear—as if it
were the true state—in expression (21) of the measured output
signal.

So far we have not determined the statistics of the signal
bout. The candidate expression (11) does not resolve the
selective evolution of S under monitoring. This selection is
only given by the SSE, (19), together with its interpretation,
(20). As we said before, the signal bout would be the standard
complex white noise, (5), of zero mean had we switched off
the interaction. With the interaction on, the typical change is
that the mean of bout will be nonvanishing. Lessons from the
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Markovian special case and the nonselective NM form, (11),
suggest the following expression:

bout(t) = ξ (t) +
∫ t

0
〈ŝt−τ 〉t−τ κ(τ )dτ, (21)

where 〈ŝt−τ 〉t−τ is the quantum expectation value of ŝt−τ in the
conditional mixed state ρ̂S[bout,b

∗
out; t − τ ] or, alternatively, in

the conditional pure state |
S[b∗
out; t − τ ]〉. We show later that

the second choice is the right one.
Structured bath. NM open systems are often derived from

Markovian coupling κω = 1 to an NM bath of nonflat spectral
density αω � 0. A prototype of the NM SSE was obtained in
1997 [11]:

d|
S[a∗; t]〉
dt

= ŝt a
∗
t |
S[a∗; t]〉

− ŝ
†
t

∫ t

0
dσα(t − σ )

δ|
S[a∗; t]〉
δa∗

σ

. (22)

Here a∗
t must be a (Gaussian) complex colored noise of zero

mean and of correlation

Mata
∗
σ = α(t − σ ), (23)

where α(t) is the bath correlation function, i.e., the Fourier
transform of αω. The interpretation of this equation drew
permanent attention. Gambetta and Wiseman showed [6,8] that
no monitoring process exists for |
S[a∗; t]〉 itself. If, however,
the support of α(t) is finite (there is a finite memory time),
then SSEs like (22) can predict the mixed conditional state at t

and retrodict the pure conditional state at t minus the memory
time [7,9]. Now we are in a position to unfold the causality
structure of the 1997 SSE [11]: we rewrite it in the form of
SSE (19).

The point is that the said NM bath with Markovian coupling
can equivalently be substituted by the Markovian B with NM
coupling satisfying |κω|2 = αω. Precisely, if we solve

α(t) =
∫

κ(t + τ )κ∗(τ )dτ (24)

for κ(t) with condition κ(τ ) = 0 for τ < 0 [20], then we can
express at through the standard complex white noise, (5):

at =
∫

ξ (t + τ )κ∗(τ )dτ. (25)

By inserting this into (22), the resulting equation coincides
with NM SSE (19). Therefore the discussion and resolution of

the causality issue of monitoring (cf. the preceding paragraph)
can be directly adapted to the old form of the SSE [21].

Let us verify the Girsanov transformation ξ (t) ⇒ bout(t)
underlying our heuristic expression, (21), of the output signal.
We exploit the Girsanov transformation at ⇒ ãt accomplished
by (16) in [12]:

ãt = at +
∫ t

0
α(t − τ )〈ŝt−τ 〉t−τ dτ, (26)

where at and ãt are related to ξ (t) and bout(t), respectively, by
convolution (25). Let us arrange all terms on one side, apply
(25), and insert (24), yielding∫ (

bout(t + σ ) − ξ (t + σ ) −
∫ t

0
〈ŝt−τ 〉t−τ κ(τ + σ )dτ

)

× κ∗(σ )dσ = 0. (27)

The removal of the outer convolution, legitimated at least
when κω is nowhere 0, yields our result (21). From [12] we
know that 〈ŝt−τ 〉t−τ must be taken in the retrodicted pure
state |
S[b∗

out; t − τ ]〉. Since pure-state retrodiction needs a
minimum time delay T , the theoretical prediction, (21), of
the output signal bout(t) can only be calculated at time t + T ;
i.e., at current time t the latest statistical retrodiction concerns
bout(t − T ).

Summary. We have applied the well-known Markovian field
representation of the environmental bath at NM coupling to the
embedded open system. The field in the vicinity of the system
plays the role of memory responsible for the NM features; far
from this vicinity it remains Markovian and subject to standard
Markovian theory of monitoring. We unfolded the abstract
bath into the memory and the detector part (cf. Refs. [22–24]
for related approaches). A formal master equation has been
derived just to confirm the Markovianity of the S + M
compound. We have derived an SSE of the monitored system
and pointed out its role in predicting the conditional mixed
state and in retrodicting the conditional pure state. In future,
Ito differential and integral calculus will have to be deployed
to improve our tentative derivations.
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