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We propose a simple structure for stationary non-Markovian quantum chains in the framework of collisional
dynamics of open quantum systems. To this end, we modify the microscopic Markovian system-reservoir model
and consider multiple collisions with each of the molecules with an overlap between the collisional time intervals.
We show how the equivalent Markovian quantum chain can be constructed with the addition of satellite quantum
memory to the system. We distinguish quantum from classical non-Markovianity. Moreover, we define the counts
of non-Markovianity by the required number of satellite qubits and bits, respectively. As the particular measure
of quantum non-Markovianity, the discord of the satellite with respect to the system is suggested. The simplest
qubit realizations are discussed and the significance for real system-environment dynamics is also pointed out.
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I. INTRODUCTION

In recent years, we have seen increasing interest in abstract
modeling of time evolution of open quantum systems coupled
to their environment via different quantum channels. While
decrypting fundamental laws is their ultimate goal, inspirations
of such models and possible future applications of their
results range from solid-state physics to quantum biology and
quantum information technology [1–4].

Dynamics modeled microscopically as a series of discrete
interactions or “collisions” between a central system and en-
vironmental (reservoir) molecules leads to abstract collisional
system-reservoir models. For a memoryless Markovian time
evolution, the reservoir has the idealized ability of forgetting
new information faster than the rate of collisions; i.e., after each
collision, the reservoir would totally relax to its precollisional
state before the next collision occurs. For the (central) system,
this results in what we call a Markovian quantum chain. In each
step along the chain, the system undergoes decoherence, i.e.,
leakage of information out to the reservoir to be forgotten there.
Mathematically, the Markov quantum chain’s irreversible
dynamics is obtained from reduction of the unitary time
evolution of the system-environment compound by means of
partial trace over degrees of freedom of the environment.
In the special case of stationarity, the mathematical tool
of semigroups of completely positive (CP) trace-preserving
dynamical maps can be used [2–6].

The collisional model of Markovian chains has been studied
in numerous works [7,8]. It will be particularly useful if we
want to monitor the system [9–11]. Although we are never
allowed to directly measure the system state, we can measure
each reservoir molecule after its collision with the system.
By their regular selective measurements, we can monitor the
system state indirectly. The corresponding resolved evolution
of the quantum chain is called selective Markovian quantum
chain.

A more realistic description requires an account of the
reservoir memory and the induced non-Markovianity of the
dynamics of the central system (the chain). For analyzing
new dynamical properties and quantifying the difference from
the simple Markovian processes, several non-Markovianity

measures have been proposed so far. These make use of
different aspects of non-Markovian (NM) evolutions, e.g.,
the nondivisibility of the underlying quantum dynamical map
[12,13], the increasing trace distance (i.e., distinguishability)
of two initial quantum states, accompanied by the backflow
of information from the reservoir to the system [14], or the
discord between system and reservoir [15]. Non-Markovianity
is a field of active debates (cf. e.g., [16]) so we emphasize the
importance of abstract models to capture fundamental aspects
of memory-keeping processes.

In this paper, we study the structural features of NM open
quantum systems by constructing discretized NM processes,
i.e., quantum chains. Starting from the generic structure of a
Markovian quantum chain, we are going to impose a certain
NM structure on it. The proposed abstract NM structure
corresponds to an open quantum system in a reservoir of
noninteracting molecules which only collide with the central
system through unitary collisions. The initial, for the moment
Markovian, quantum chain can be seen in Fig. 1(a). To
engineer the NM element, we allow each molecule to collide
with the system more than a single time, say twice, while
the molecules’ collisional intervals overlap, by assumption,
with the collisional periods of both previous and consecutive
molecules; cf. Fig. 1(b). Instead of separating what is forgotten
and what is not by different time scales, our abstract model has
a built-in exact memory time. Most importantly, we show how
our NM chains become Markovian at the price of attaching
satellite-memory subsystems. Due to our proposed specific
NM structure, the identification of the satellite memory within
the environment is straightforward compared especially to the
efforts requested in oscillatory reservoir models; cf. [17,18]
and references therein. (The simplest case [19], nonetheless,
is perfectly analogous to our model: a single oscillator
constitutes the satellite memory.) Then a natural count of
non-Markovianity follows: let it be the size (in qubits) of
the requested satellite memory. We can refine this count into
informatic measures of non-Markovianity, as we show later.

The NM quantum collisional dynamics is not new in itself.
Alternative NM structures are shown in Figs. 1(c) and 1(d).
Reference [20] introduces the NM mechanism by starting all
molecules from an a priori entangled state; cf. Fig. 1(c). This
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FIG. 1. Quantum chains: different system-reservoir collision
models (�: system state; ξ : reservoir molecule state; U :
system-molecule unitary collision operator). (a) Standard Markovian
chain: the system interacts with each independent molecule once. (b)
The proposed NM chain: the system interacts with each independent
molecule twice, with overlap between collisional intervals of
“nearest” molecules. (c) NM chain in [20]: the system interacts with
each molecule only once, but the molecules are initially entangled.
(d) NM chain in [21]: the system interacts with the same molecule
multiple times.

work focuses on the molecular realization of a single NM
step instead of general NM chains. In [21], the environment
consists of a single molecule and this molecule collides with
the system consecutively, many times; cf. Fig. 1(d). In [22],
the system qubit is repeatedly interacting with an environment
consisting of only two qubits. In [23], the previous molecule
interacts with the next before finally leaving the compound.
It shows a strong relationship and shares advantages with
our work. (Using our circuit representation, the identification
of the satellite memory and the derivation of the equivalent
Markovian chain is straightforward.) An important advantage
of our NM structure is that it can invariably host the monitoring
of the system, which was so instrumental for quantum Markov
chains but becomes complicated in structure Fig. 1(c) and
impossible in Fig. 1(d).

In Sec. II, the exact notion of a nonselective and a
selective quantum Markovian chain is defined. The definition
is extended for quantum NM chains in Sec. III. Then, Sec. IV
contains our results demonstrated on the toy models of
one-qubit NM chains. Based on these results, we discuss in
Sec. V an alternative measure of quantum non-Markovianity,
as well as a distinction between classical and truly quantum
non-Markovianity.

II. QUANTUM MARKOV CHAIN

To define Markov chains, we apply the toolbox containing
CP maps, Kraus matrices, positive operator-valued measures
(POVMs), and selective and nonselective quantum measure-
ments, detailed by the monographs [2–6]. We understand
by a nonselective Markov chain a series of quantum states
�0,�1, . . . ,�t of a given system where each state along the
chain depends only on the preceding state, respectively:

�t+1 = Mt �t ; t = 0,1,2, . . . , (1)

where Mt are CP maps. If not stated otherwise, we restrict
ourselves to stationary chainsMt = M. A CP map can always

λ

U U
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ξξ

λ

FIG. 2. Selective Markov chain: the refinement of the nonselec-
tive one in Fig. 1(a). The post-collisional state of the molecule is
measured and yields the random outcome λ.

be represented by certain Kraus matrices Mλ such that

M� =
∑

λ

Mλ�M
†
λ. (2)

Accordingly, nonselective Markov chains (1) can be decom-
posed into selective Markov chains given by the recursion
relation

�t+1 = 1

pλ,t

Mλ�tM
†
λ. (3)

λ may represent the random outcome of a POVM measurement
characterized by the matrices Mλ. Here, TrMλ�tM

†
λ is the

outcome probability. As a matter of fact, the selective chain
�t depends on all measurement outcomes λ prior to t ; this
dependence is suppressed in our notation. The stochastic av-
erage of the selective Markov chain (3) over the measurement
outcomes λ yields the nonselective Markov chain (1).

We can always construct a microscopic model for a
given quantum Markov chain. Consider an abstract ideal gas
(reservoir) of identical molecules each in state ξ . Independent
unitary collisions will generate the CP map M of (1):

�t+1 = Trres[U (�t ⊗ ξ )U †], (4)

where U is the collision matrix and Trres is the partial trace
over the molecule state. The process is shown in Fig. 1(a). Any
map (2) can be generated by a suitable unitary mechanism (4),
whereas the choice of U and ξ is never unique [5,6]. If we
inspect, i.e., measure, the post-collisional state of the molecule,
we get the underlying microscopic model of the selective
Markov chain (3), shown in Fig. 2. As to determining Kraus
matrices Mλ, their possible choice is simple if the molecules
are prepared in pure state ξ = |�〉 〈�|,

Mλ = 〈λ| U |�〉 . (5)

We show concrete examples in Sec. IV.

III. QUANTUM NON-MARKOV CHAIN

Consider the chain

�t = M(t)�0, t = 0,1,2, . . . , (6)

where M(t) is a t-dependent CP map. The chain is Markovian
[see (1)] ifM(t) is divisible, i.e., can be written in the following
form:

M(t) = MtM(t − 1), t = 1,2, . . . , (7)

with some sequence of CP maps M1,M2, . . . ,Mt . To be
clear, we require that

M(1) = M1, M(2) = M2M1,
(8)

M(3) = M3M2M1, etc.
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FIG. 3. Selective NM chain: the refinement of the nonselective
one in Fig. 1(b). The post-collisional (i.e., after the double collision)
state of the molecule is measured and yields the random outcome λ.

If such a sequence M1,M2, . . . ,Mt does not exist, i.e., when
M(t) is not divisible into the same set of factors for all t , then
the chain �t is NM.

The microscopic mechanism of quantum non-Markovianity
can be quite complicated. A recent study [20] considers
single-qubit maps which are not divisible at all. To model
such maps microscopically, a class of finite NM chains has
been constructed. Its key mechanism has been independent
collisions with entangled molecules; the general structure
is shown in Fig. 1(c). Another work [21] considered a
single-qubit environment, interacting unlimited times with
the system qubit via a controlled rotation. Our approach
will be different and elementary. We construct a class of
stationary non-Markovianity. Our molecules are independent
and do not become entangled prior to their collisions with
the system. However, they will collide multiple times—
twice, for simplicity’s sake—and this constitutes the memory
mechanism. Figure 1(b) shows the general NM structure.
Unlike the previous NM structure shown in Fig. 1(d), ours
allows us, by its construction, to insert measurements without
changing the physics of the process. Obviously, we can insert
measurements on each molecule after its second collision, as
shown in Fig. 3.

Rather than discussing this NM model generally, in what
follows we concentrate on its simplest qubit realizations.

IV. ONE-QUBIT NON-MARKOV CHAINS

In order to highlight the similarities and differences, first,
in Sec. IV A, we are going to construct a one-qubit Markov
chain, and then, in Secs. IV B and IV C, by extending it, we
study two different NM structures.

Throughout this section, the molecules constituting the
reservoir are single qubits in pure initial states ξ = |�φ〉〈�φ|,
where

|�φ〉 = cos φ|0〉 + sin φ|1〉. (9)

For later convenience, we write the state of the molecule as

|�φ〉 = exp(iφσy) |0〉 . (10)

A. One-qubit Markov chain

Let our central system be a single qubit, and let us construct
a Markov chain (1)–(3); also see Figs. 1(a), 2, and 4. Couple
the molecule in state ξ to the system qubit in state �t via the
XOR gate. The corresponding two-qubit unitary operator U is
the following:

U = XORsys−mol. (11)

ξ

λ λ

ρ
ξ

FIG. 4. Selective one-qubit Markov chain: collisional model.
The system qubit � interacts (collides) with the reservoir qubits
(molecules) ξ via XOR gates; the post-interaction states of the
molecular qubits are measured, yielding the random outcomes λ.

The XOR gate installs the unsharp measurement of the system
qubit by the molecular qubit. The strength of the measurement
is controlled by the parameter φ of the molecular precollisional
state. If φ = 0,π/2, the measurement is projective, while
φ ≈ π/4 yields a weak measurement [24]; the value φ = π/4
decouples the system from the molecules.

The two Kraus matrices are defined by Mλ = 〈λ|U |�φ〉 for
λ = 0,1; cf. Eq. (5). Inserting (10), we have

Mλ = 〈λ| U exp(iφσy) |0〉 . (12)

To perform the partial trace operation (4) from the four-
dimensional state U (�t ⊗ ξ )U † to the two-dimensional state
�t , we use the deeper-level selective form (3) for technical
reasons.

The unitary evolution of the molecule-system compound
ξ ⊗ �t in the product basis |mol,sys〉 = {|00〉,|01〉,|10〉,|11〉}
is given by

U exp(iφσy) =

⎛
⎜⎜⎜⎜⎜⎝

cos φ − sin φ

sin φ cos φ

sin φ cos φ

cos φ − sin φ

⎞
⎟⎟⎟⎟⎟⎠. (13)

The two Kraus matrices in this representation are simply the
left block matrices of U ,

M0 =
(

cos φ

sin φ

)
, M1 =

(
sin φ

cos φ

)
. (14)

The non-selective Markov chain (1) is as trivial as 1

�t+1
00 = �t

00, �t+1
11 = �t

11, �t+1
01 = sin(2φ)�t

01, (15)

i.e., the diagonal elements are preserved while the off-
diagonals will step towards zero unless we took the singular
molecular states with φ = π/4:

�∞ =
(

�0
00 0

0 �0
11

)
. (16)

We can say that our Markov chain with φ �= π/4 is asymp-
totically equivalent with a single von Neumann projective
measurement. Even if the single collisions are in the weak
measurement regime, their cumulative effect is the projective
measurement, as is well known, e.g., from [9–11].

1Be cautious: we swing from notation �t to �t whenever we must
indicate matrix indices as well.
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B. Repeated XORs with time overlap

To construct the simplest non-Markov chain, let each
molecule interact with the system qubit twice, and let there
be an overlap between subsequent collisional periods; see
Fig. 5(a). We are interested in stationary chains, hence the
pattern of double collision will identically repeat itself along
the chain. Note, however, that the starting pattern must always
be a “broken” one, i.e., in the beginning there is a molecule
that collides only once with the central system.

From the classical theory of NM chains with finite memory
time, we know that adding a suitable amount of memory
(bits) to the system yields an equivalent Markovian chain.
Similarly, we attach a memory qubit to the system qubit.
We can make, e.g., one distinguished molecule the memory.
Consider the resulting scheme in Fig. 5(b), equivalent with
Fig. 5(a). The system + memory compound is a two-qubit
composite system whose state will be denoted by �̃t and, as
we see, it undergoes independent collisions with the rest of the
molecules of state ξ each. Our trick is that we repeatedly swap
all system-environment entanglement into the system-memory
compound.

Accordingly, we have obtained a Markovian quantum chain
for the system + memory compound �̃t instead of the system
�t alone. Markovian structure (1)–(4) applies invariably. The
molecule-memory-system compound is a three-qubit system.
The three-qubit unitary operation U is the following:

U = XORsys−mol SWAPmol−mem XORsys−mol. (17)

In the basis |mol,mem,sys〉 = {|000〉,|001〉,|010〉, . . . ,
|111〉}, we calculate the collision matrix (17) times exp(iφσy),

ρ

λ

ξ

λ

λ

ξξ

~

λλ λ

ξξξ

{ρ

(a) NM qubit chain

(b) Equivalent Markov chain

FIG. 5. Equivalent one-qubit NM and two-qubit Markov chains.
(a) NM chain: the system qubit � interacts (collides) twice with
the same reservoir qubits (molecules) ξ via two XOR gates, with
overlap between “nearest” molecules; the post-interaction states of the
molecular qubits are measured, yielding the random outcomes λ. (b)
Equivalent Markov chain: the system-satellite two-qubit �̃ compound
interacts (collides) with the reservoir qubits (molecules) ξ via the
SWAP and two XOR gates, but without the overlap between collisional
intervals of different molecules; the post-interaction states of the
molecular qubits are measured, yielding the random outcomes λ.

with notations c = cos φ and s = sin φ:

U exp(iφσy) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c −s

s c

s c

c −s

c −s

s c

s c

c −s

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (18)

According to (12), the two Kraus matrices M0 and M1 in
the basis |mem,sys〉 = {|00〉,|01〉,|10〉,|11〉} are given by the
upper-left and lower-left 4 × 4 blocks, respectively,

M0 =

⎛
⎜⎜⎜⎝

c 0

0 s

s 0

0 c

⎞
⎟⎟⎟⎠, M1 =

⎛
⎜⎜⎜⎝

0 c

s 0

0 s

c 0

⎞
⎟⎟⎟⎠. (19)

Using these Kraus matrices, the nonselective Markov chain
(1) reads

�̃t+1 =⎛
⎜⎜⎜⎝

c2
(
�̃t

00 + �̃t
22

)
cs

(
�̃t

03 + �̃t
21

)
cs

(
�̃t

00 + �̃t
22

)
c2

(
�̃t

03 + �̃t
21

)
cs

(
�̃t

30 + �̃t
12

)
s2

(
�̃t

11 + �̃t
33

)
s2

(
�̃t

30 + �̃t
12

)
cs

(
�̃t

11 + �̃t
33

)
cs

(
�̃t

00 + �̃t
22

)
s2

(
�̃t

03 + �̃t
21

)
s2

(
�̃t

00 + �̃t
22

)
cs

(
�̃t

03 + �̃t
21

)
c2

(
�̃t

30 + �̃t
12

)
cs

(
�̃t

11 + �̃t
33

)
cs

(
�̃t

30 + �̃t
12

)
c2

(
�̃t

11 + �̃t
33

)

⎞
⎟⎟⎟⎠.

(20)

On the right-hand side, we can identify the diagonal part
of the system density matrix �t

00 = (�̃t
00 + �̃t

22) and �t
11 =

(�̃t
00 + �̃t

33) as well as the specific correlation Ct
x− = Tr(σx ⊗

σ−�̃t ) = (�̃t
03 + �̃t

21) between the memory and the system.
Observe that all of these quantities are invariants along our
NM chain. Not surprisingly then, the chain will immediately
reach the stationary state �̃1 = �̃2 · · · = �̃∞ fully parametrized
by the above invariants,

�̃∞ =

⎛
⎜⎜⎜⎝

c2�0
00 csC0

x− cs�0
00 c2C0

x−
csC0

x+ s2�0
11 s2C0

x+ cs�0
11

cs�0
00 s2C0

x− s2�0
00 csC0

x−
c2C0

x+ cs�0
11 csC0

x+ c2�0
11

⎞
⎟⎟⎟⎠. (21)

The free parameter C0
x± depends on the starting “broken”

pattern. For the case shown in Figs. 5(a) and 5(b), it can be set
to zero, assuming uncorrelated initial satellite memory with
〈σx〉 = 0. The above stationary state of the memory+system
compound then becomes a separable, disentangled state,

�̃∞=�0
00|�φ〉〈�φ| ⊗ |0〉〈0| + �0

11|� ′
φ〉〈� ′

φ| ⊗ |1〉〈1|, (22)

where the memory state |� ′
φ〉 = s |0〉 + c |1〉 is not orthogonal

to
∣∣�φ

〉 = c |0〉 + s |1〉 (unless φ = π/4). The stationary den-
sity matrix �1 = �2 . . . = �∞ of our central system is trivial,

�∞ = Trmem�̃∞ =
(

�0
00 0

0 �0
11

)
. (23)
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It is the mixture of the basis states with the initial population, as
if �0 were ideally measured by the collective of the molecules,
like in the case of the Markovian chain; cf. Sec. IV A.

The repeated-XOR model has trivial invariants, and this is
the reason it already reaches the asymptotic state in one step.

C. Distributed XORs with time overlap

In order to make a NM chain evolve asymptotically towards
the stationary state, we must assure that there are fewer trivial
invariants. Let us go back for a moment to the Markovian
chain with single XOR collisions (13) and introduce a NM
variant. Suppose that each XOR collision takes a finite time
and subsequent XOR operations overlap in time. To construct a
simplest discrete model of time-distributed XOR, we make XOR

in two steps separated by unit time. Let both steps correspond

to the following square root of XOR:

√
XOR =

⎛
⎜⎜⎜⎝

1

1 √
i/2 −i

√
i/2

−i
√

i/2
√

i/2

⎞
⎟⎟⎟⎠. (24)

(Here the convention
√

i/2 = eiπ/8/
√

2 has been chosen.) Our
non-Markovian model is shown in Fig. 5(a), with the XOR

collisions replaced by the above
√

XOR.
Obviously, we have the equivalent Markov chain, like in

Fig. 5(b), and we can perform the same calculations as before.
We calculate the unitary matrix

U = √
XORsys−mol SWAPmol−mem

√
XORsys−mol (25)

times exp(iφσy), and read out the two Kraus matrices,

M0 =

⎛
⎜⎜⎜⎝

c 0

iβ̄ β̄

s 0

β −iβ

⎞
⎟⎟⎟⎠, M1 =

⎛
⎜⎝

0 c

β̄ iβ̄

0 s

−iβ β

⎞
⎟⎠, (26)

with β = eiφ/2. These Kraus matrices in (2) yield, after direct calculations, the following Markovian chain (1) for the memory-
system compound,

�̃t+1 =

⎛
⎜⎜⎜⎝

c2
(
�̃t

00+�̃t
22

)
cβ
t cs

(
�̃t

00+�̃t
22

)
icβ̄
t

cβ̄
̄t 1/2
(
�̃t

11+�̃t
33

)
sβ̄
̄t 2iβ̄2

(
�̃t

11+�̃t
33

)
cs

(
�̃t

00+�̃t
22

)
sβ
t s2

(
�̃t

00+�̃t
22

)
isβ̄
t

−cβi
̄t −2iβ2
(
�̃t

11+�̃t
33

) −sβi
̄t 1/2
(
�̃t

11+�̃t
33

)

⎞
⎟⎟⎟⎠, (27)

where


t = −i
(
�̃t

01 + �̃t
23

) + (
�̃t

03 + �̃t
21

)
(28)

and it satisfies a closed evolution equation,


t+1 = sin(2φ)
t, (29)

and therefore this is a convenient parametrization. It follows
from (27) that the matrix elements not containing 
 will take
their final stationary values immediately after the first step, just
like in our previous model in Sec. IV B. However, the elements
with 
 show an exponential relaxation (29) toward zero if
sin(2φ) �= 0. The relaxation of 
t governs the asymptotic
diagonalization of the system density matrix,

�t = Trmem�̃

=
(

�t=0
00 [1 + i sin(2φ)]
t/2

[1 − i sin(2φ)]
̄t/2 �t=0
11

)
.

(30)

Indeed, for t = ∞, one has 
∞ = 0; the system density matrix
�∞ becomes diagonal with the initial populations �0

00,�
0
11. As

to the stationary density matrix �̃∞ of the memory-system
compound, the Markov chain (27) yields a separable state
again, like in our previous model in Sec. IV B. This time we

get

�̃∞ = �0
00|�φ〉〈�φ| ⊗ |0〉〈0| + �0

11|� ′
φ〉〈� ′

φ| ⊗ |1〉〈1|, (31)

where the memory state |� ′
φ〉 = (|0〉 + ie2iφ |1〉)/√2, which

is different from |� ′
φ〉 in the model in Sec. IV B, is

never orthogonal to |�φ〉. This is what makes our system
quantum NM, which is a distinction discussed in the next
section.

V. CLASSICAL AND QUANTUM NON-MARKOVIANITY

Our construction of NM quantum chains may become
universal if we allow for more than two repeated collisions
with a single molecule and/or overlaps of collision periods
between more than two molecules. Whether or not an arbitrary
NM chain will be reducible to ours remains an open theoretical
issue. Our class of NM chains is unique for at least one thing:
we can always identify the satellite memory to make the
time evolution of the resulting system-memory compound a
Markovian chain. We can always read-out from the circuit of
the NM chain how many qubits are needed for the satellite
memory. This number of qubits is a useful count of non-
Markovianity of our chain, e.g., in computational simulation,
this number gives an upper bound on how much data should
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be stored dynamically together with the data of our system of
interest.

However, this count may be significantly larger than the
amount of information to be contained in the satellite. Suppose
that we have determined the minimum number of qubits
needed for the satellite, so the count of non-Markovianity
is known. Then, a suitable informatic quantity, such as the
mutual information [5,6] of the satellite memory (M) and the
system (S), might play the role of non-Markovianity measure
μNM. In the stationary regime, one gets

μNM = I (S : M) = H (S) + H (M) − H (S,M), (32)

where H stands, in turn, for the von Neumann entropy of the
S state Trmem�̃∞ = �∞, of the M state Trsys�̃∞, and of the
composite state �̃∞.

We should stop for a second and distinguish quantum from
classical non-Markovianity. The attentive reader may have
noticed that our construction of quantum NM chains in itself
has nothing particular for quantum chains; it roots in a similar
construction of classical NM chains. In fact, any classical NM
chain can be represented by an equivalent Markovian chain
if we assign a sufficient satellite memory. The minimum size
of the satellite memory (e.g., in bits) is the natural count of
non-Markovianity; the mutual information may be the measure
of non-Markovianity. In the case of a generic quantum NM
chain, it may happen that the minimum satellite memory still
consists of bits, and qubits are not required at all. In this
case, we say that the chain is classically NM, and its quantum
non-Markovianity is zero. It is remarkable that both NM chains
in Sec. IV have turned out to be quantum NM. If we look at
the composite states (22) and (31) of the system + satellite
compound, we see that classical satellite bits would not work,
and we need satellite qubits. Although we got zero stationary
entanglement between the system and satellite, it does not
mean the lack of quantumness. The price of getting rid of
quantum non-Markovianity cannot be paid in classical bit
instead of qubit. The count of quantum non-Markovianity
is 1 for both NM chains. In order to distinguish quantum
from classical non-Markovianity, we use the notion of discord
[25]. The classical measure of non-Markovianity may be
defined by

μcl
NM = J (S : M){�M

j } = H (S) − H
(
S
∣∣{�M

j

})
, (33)

where the right-most term means the average von Neumann
entropy of S when the satellite memory is undergoing the
projective measurement via the set �M

j . The quantum non-
Markovianity measure is the discord itself,

μ
qu
NM = I (S : M) − J (S : M){�M

j }. (34)

The sum of quantum and classical non-Markovianity measures
yields the total measure μNM.

We can check our proposal on the two models of Sec. IV.
Since the memory states |�φ〉,|� ′

φ〉 are nonorthogonal, we get
nonzero discord. If they were orthogonal, we could get zero
discord, and also we could measure the memory after each
collision so that a single classical bit 0,1 could be retained
instead of the memory qubit: the chain would be classically
NM in the stationary regime, with non-Markovianity
count 1 (bit).

ξ

ρ

ξ ξ ξ

FIG. 6. NM quantum chain of advanced overlap: the system
interacts with each independent molecule twice, with overlap between
collisional intervals of “nearest” and “next-to-nearest” molecules.
(Boxes connected with vertical lines represent the bipartite unitary
collisions.)

VI. BRIEF SUMMARY AND OUTLOOK

In the framework of the abstract collision model of system-
reservoir interactions, we constructed quantum chains meeting
the minimal requirements for NM stationary time evolution. A
method of systematic construction of the equivalent Markovian
quantum chains using explicit memory allocation is discussed.
Due to the transparent NM structure, we can always identify
a well-defined part of the reservoir as the memory; this part is
called the satellite memory of the system. The time evolution
of the system-plus-satellite-memory compound is Markovian.
We suggest an alternative distinction: a given quantum NM
chain is either quantum NM (if the satellite requires qubits) or
classical NM (if bits suffice for the satellite). Accordingly, we
suggest the numbers of satellite qubits and bits, respectively,
as counts of quantum and classical non-Markovianity of a
given quantum chain. The mutual information and discord
is proposed to measure non-Markovianity and quantum non-
Markovianity, respectively.

Two examples of one-qubit NM chains are discussed.
In both examples, the corresponding satellite memory is a
single qubit. The stationary state is exactly calculable: the
nonvanishing discord of the satellite qubit with respect to
the system qubit indicates that our examples are quantum
non-Markovian.

Although our calculations are restricted for nonselective
NM chains, the structural transparency allows for the selective
refinements. The option of monitoring the NM system is
inherent in the model.

For achieving a higher level non-Markovianity than dis-
cussed in our work [Fig. 1(b)], one can construct a similar chain
with more collisions per molecule and/or longer intervals of
overlap. For example, in Fig. 6, the number of collisions is in-
variably two, whereas the lengths of overlapping intervals have
been increased for three collisions. In return, the equivalent
Markovian structure needs two satellite qubits instead of one;
the non-Markovianity count is 2. The ability to handle complex
NM processes may pave the way to the construction of environ-
mental interaction models which better approximate reality.
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12 (1), 81 (2005); V. Scarani, Eur. Phys. J. Spec. Top. 151, 41
(2007); V. Scarani, M. Ziman, P. Štelmachovič, N. Gisin, and
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