
Comment on “Uniqueness of the Equation for Quantum
State Vector Collapse”

A recent Letter [1] investigated Markovian stochastic
Schrödinger equations (SSEs) under the assumption of no-
faster-than-light signaling [2]. I found that Theorem 1,
claiming that the evolution of the density matrix ρ must
be completely positive (CP), is incorrect. Theorem 2
constructs the most general diffusive SSE for the wave
function ψ , which looks different from the simpler results
in Ref. [3]. I prove that the difference is redundant.
If Theorem 1 were true, no Markovian SSE would exist

for the non-CP qubit master equation [4]

dρ
dt

¼
X3

k¼1

ckðσkρσk − ρÞ; c1 ¼ c2 ¼ −c3 ¼ 1. (1)

I consider the following SSE (cf. Ref. [5] for a jump
process):

dψ ¼ −
1

2

X3

k¼1

ckðσk − nkÞ2ψdtþ
ffiffiffi
2

p
nzψ⊥dW (2)

where nk ¼ hψ jσkjψi and ψ⊥ is orthogonal to ψ , and we
can express it by ψ⊥ ¼ ð1 − n2zÞ−1=2ðnyσx − nxσyÞψ. The
SSE (2) yields the master equation (1) for ρ ¼ Ejψihψ j.
The proof goes like this. From Eq. (2) we get

dρ
dt

¼ −
1

2
E
X3

k¼1

ckfðσk − nkÞ2; jψihψ jg þ 2En2z jψ⊥ihψ⊥j:

(3)

One can confirm the identity

2n2z jψ⊥ihψ⊥j ¼
X3

k¼1

ckðσk − nkÞjψihψ jðσk − nkÞ; (4)

which when inserted into Eq. (3), leads to the linear master
equation (1). Hence, Theorem 1 cannot be correct. The
proof fails clearly if the number n of independent Lindblad
operators Lk is bigger than the dimension d [6].
For CP master equations, the Letter’s Theorem 2 is

correct. The authors mention that Ref. [3] had answered the
same question, but the Letter does not compare the results. I
remedy the omission. An additional gauge transformation
ψ → expð−idχÞψ with phase dχ ¼ Im

P
khψ jLðψÞ

k jψi
ðlðψÞ

k dtþ dWkÞ brings the Letter’s SSE (4) to the form

dψ ¼
�
− iHdtþ

XN

k¼1

Xn

j¼1

uðψÞkj ðLj − hLjiÞdWk

−
1

2

Xn

k¼1

ðL†
kLk − 2hLki⋆Lk þ jhLkij2Þdt

�
ψ (5)

where hLki ¼ hψ jLkjψi. The matrix u has gone from the
drift part. The resulting SSE coincides exactly with
Eq. (8.1) in Ref. [3], implying the following relationship
between the noises of Ref. [3] and the Letter, respectively:

dξ�j ¼
XN

k¼1

dWkukj; j ¼ 1; 2;…; n ≤ N: (6)

In Ref. [3], all physically different SSEs are uniquely
parametrized by the n × n complex symmetric correlation
matrices sjl ¼ ðEdξjdξlÞ=dt (to avoid confusion, here we
use s for u of Eq. (4.1) in Ref. [3]). Now Eq. (6) establishes
the correspondence between the u and s,

s�jl ¼
XN

k¼1

ukjukl; j; l ¼ 1; 2;…; n ≤ N: (7)

As I said, the matrix sjl, only constrained by jjsjj,
cf. Eq. (4.3) in Ref. [3], is in one-to-one correspondence
with the physically different SSEs at a given CP evolution
of ρ. The matrix ukj is not; its part N ≥ j > n is redundant.
Now Eq. (7) shows a further redundancy: both u and Ou,
with any N × N orthogonal matrix O, yield the same SSE.
Reference [3] derived the SSEs under a CP master

equation from standard quantum monitoring. The SSE (2)
is the first diffusiveSSEconsidered ever that underlies a non-
CP master equation; its physical relevance, if any, needs
further studies.
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