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General open quantum systems display memory features, their master equations are non-Markovian. We
show that the subclass of Gaussian non-Markovian open system dynamics is tractable in a depth similar to
the Markovian class. The structure of master equations exhibits a transparent generalization of the Lindblad
structure. We find and parametrize the class of stochastic Schrödinger equations that unravel a given master
equation, such a class was previously known for Markovian systems only. We show that particular
non-Markovian unravelings known in the literature are special cases of our class.
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The most successful and popular theories of open
quantum systems request the Markovian approximation [1].
Markovian master equations (MMEs), Markovian stochastic
Schrödinger equations (MSSEs) [2,3], as well as Markovian
quantumLangevin equations [4] (not discussed here) proved
to be powerful tools. However, non-Markovian dynamics are
acquiring a growing importance. Many ultrafast processes
are non-Markovian, such as, e.g., light harvesting in photo-
synthesis [5], ultrafast chemical reactions [6], and photonic
band gap materials [7]. The Markovian approximation is
useful only when the system time scale is much slower
than the one of the environment. When the time scale of
the system is comparable to that of the bath (as in the
examples listed above), the bath is not fast enough to go back
to equilibrium, and some “memory effects” build up. The
dynamics of the open system cannot be described by the
approximate memoryless MMEs and MSSEs, but it requires
a general non-Markovian description. The need of non-
Markovian dynamics arose independently in foundations,
too. Based on Strunz’s work [8], the discovery of non-
Markovian SSEs [9] paved the way to relax the artificial
Markovianity of dynamical wave function collapse theories
[10], leading to various non-Markovian models [11]. One
should bear in mind that non-Markovian is simply any
dynamics that does not fall under the Markovian approxi-
mation, no further structure is implied. To further character-
ize a non-Markovian dynamics one must specialize the
underlying structure. The more particular this structure is,
the less usable, themore general, the less analyzable in detail.
The aim of this Letter is to study a class of open systems

that is analytically tractable and applicable to a wide class
of physical systems. We consider the most general non-
Markovian structure for a Gaussian master equation (GME)
and the related Gaussian stochastic Schrödinger equations
(GSSEs). No restriction is placed on the system’s dynamics,

just on the structure of the environment and the coupling. A
Gaussian bath is commonly used in non-Markovian studies;
see, e.g., influence functional [12,13], MEs, and other
methods [14]. All known diffusive non-Markovian SSEs
[9,11,15] fall in our Gaussian class. We shall see that our
GME represents a very simple and intuitive generalization
for non-Markovian dynamics of the Lindblad MME.
Markovian versus non-Markovian.—Generic MEs are

given by the integral form

ρ̂t ¼ Mtρ̂0; ð1Þ
where the evolution superoperatorMt is a trace-preserving
time-dependent completely positive (CP) map with M0¼1.
In the special Markovian case, the superoperator Mt can be
written as

Mt ¼ T exp

�Z
t

0

dτLt

�
; ð2Þ

and the MME takes the differential form

dρ̂t
dt

¼ Ltρ̂t; ð3Þ

where the Lindblad superoperator Lt has a precise structure.
If this formdoes not exist,we call the open systemand itsME
non-Markovian.Fromnowonweuse theHeisenberg picture,
where time-dependent operators Âj

t solve the Heisenberg
equations with some system Hamiltonian Ĥ. For later nota-
tional convenience, we introduce the left-right (LR) formal-
ism [16–18], denoting by a subscript L (R) the operators
acting on ρ̂ from the left (right), e.g., Âk

LÂ
j
Rρ̂ ¼ Âkρ̂Âj. With

this notation the Lindblad superoperator reads

Lt ¼ DjkðtÞ
�
Âk
tLÂ

j
tR −

1

2
Âj
tLÂ

k
tL −

1

2
Âk
tRÂ

j
tR

�
; ð4Þ
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where the Einstein summation over repeated Latin indices
has been assumed. Djk is an arbitrary non-negative matrix,
and Âj

t are Hermitian operators. In the special case of real
coefficientsDjk ¼ D⋆

jk the MME describes fluctuations and
decoherence without dissipation, so we call the MME non-
dissipative, otherwise we call it dissipative. We note that one
could rewrite Eq. (4) into the well-known Lindblad diagonal
form with non-Hermitian linear combinations of the oper-
ators Âj

t ; see a related non-Markovian example in Eq. (30).
MMEs represent an approximation of the general non-

Markovian ones: their simple mathematical structure allows
for considerable insight and understanding [1–4]. One imp-
ortant feature is that each MME can be identified as the
reduced dynamics of the unitary dynamics of the system plus
a suitably chosen “heat” bath.As an alternative toMEs, SSEs
are equally flexible tools. One can construct a SSE such that
the mean of the random solutions jψ ti recovers the solution

ρ̂t ¼ E½jψ tihψ tj� ð5Þ
of the given ME. Then the SSE is said to unravel the ME.
Each MME can be unraveled by an infinite number of
equivalent MSSEs. The full class of MSSEs unraveling the
same MME is known and parametrized uniquely, identified
as the modified unitary dynamics of the system under time-
continuous quantum measurement [3].

Unlike MMEs, the features of generic MEs [Eq. (1)] are
little known since a general time-dependent CP map Mt
does not allow for much insight. We have to study specific
MEs: our choice will be the class of GMEs.
Non-Markovian Gaussian ME.—We introduce the trace-

preserving CP Gaussian evolution superoperatorMt as the
reduceddynamics of the unitary dynamics of the systemplus
a bosonic heat bath. We assume the following Hamiltonian
bilinear coupling between our system and the bath:

Âj
t ϕ̂jðtÞ; ð6Þ

where Âj
t are Hermitian system operators, and ϕ̂jðtÞ are

bosonic fields of the bath in interaction picture.We consider
a central Gaussian bath initial state ρ̂B that is fully charac-
terized by the fields correlation function:

TrB½ϕ̂jðτÞϕ̂kðsÞρ̂B� ¼ Djkðτ; sÞ: ð7Þ
This relationship will be discussed later. The system-bath
state ρ̂SB evolves with the von Neumann equation

dρ̂SBt
dt

¼ −i½Âj
tLϕ̂jLðtÞ − Âj

tRϕ̂jRðtÞ�ρ̂SBt: ð8Þ

For an uncorrelated initial state ρ̂0ρ̂B, one can write the
reduced dynamics into the form (1):

Mtρ̂0 ¼ TrB

�
T exp

�
−i

Z
t

0

dτ½Âj
τLϕ̂jLðτÞ − Âj

τRϕ̂jRðτÞ�
�
ρ̂0ρ̂B

�
≡ TrB½T expð−iX̂Þρ̂0ρ̂B�: ð9Þ

Now the Gaussian assumption for ρ̂B allows us to simplify
the expression of Mt. Following, e.g., Refs. [16,17], we
apply the identity

TrB½T expð−iX̂Þρ̂B� ¼ T exp

�
−
1

2
TrB½TX̂2ρ̂B�

�
; ð10Þ

where X̂ is an arbitrary linear functional of the bosonic
fields. [In Gaussian state ρ̂B, Wick’s theorem [18] reduces
to TrB½T expð−iX̂Þρ̂B� ¼ expð−1

2
TrB½TX̂2ρ̂B�Þ for any bath

operator X̂ linear in the bosonic fields. If X̂ contains system
operators as well, an additional time ordering survives on
the right-hand side.] Identifying X̂ as the integral in Eq. (9),
one finds

TrB½TX̂2ρ̂B� ¼ −2
Z

t

0

dτ
Z

t

0

dsDjkðτ; sÞ

× ðÂk
sLÂ

j
τR − θτsÂ

j
τLÂ

k
sL − θsτÂ

k
sRÂ

j
τRÞ ð11Þ

up to operator ordering. Using this result in Eqs. (9) and
(10), one obtains the general form of a Gaussian evolution
superoperator:

Mt ¼ T exp

�Z
t

0

dτ
Z

t

0

dsDjkðτ; sÞ

×ðÂk
sLÂ

j
τR − θτsÂ

j
τLÂ

k
sL − θsτÂ

k
sRÂ

j
τRÞ

�
; ð12Þ

where the step function θτs is 1 for τ > s and 0 otherwise,
and T denotes time ordering for both L and R operators
[19]. The kernelDjkðτ; sÞmust be non-negative; we assume
that it can be arbitrarily chosen otherwise. Like in the
Markovian case, for real kernel D ¼ D⋆ we call the GME
nondissipative, and we call it dissipative otherwise.
It is easy to see that the Markovian evolution Mt of

Eq. (2) is a special case of Eq. (12). Using the Lindblad
form (4), the Markovian superoperator (2) reads

Mt ¼ T exp

�Z
t

0

dτDjkðτÞ

×

�
Âk
τLÂ

j
τR −

1

2
Âj
τLÂ

k
τL −

1

2
Âk
τRÂ

j
τR

��
: ð13Þ

This coincides exactly with the generic Gaussian Mt (12),
with the special time-local choice of the kernel Djkðt; sÞ ¼
DjkðtÞδðt − sÞ. Viceversa, one can formally obtain theGME
from the MME by promoting the matrixDjkðtÞ to a double-
time non-negative kernel and adding a second integral over
time. This represents an interesting insight into GMEs.
Let us come back to the relationship (7). We confirm the

existence of the Gaussian state ρ̂B for time-translation
invariant kernels:

Djkðτ; sÞ ¼
Z

e−iωðτ−sÞ ~DjkðωÞ
dω
2π

; ð14Þ
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where ~DjkðωÞ is an arbitrary non-negative Hermitian
matrix function of ω ∈ ð−∞;∞Þ. Let the heat bath consist
of a continuum of harmonic oscillators of both positive and
negative frequencies ω [20]. Let the fields interacting with
our system be Hermitian linear combinations of the free
bosonic modes of the bath:

ϕ̂jðtÞ ¼
Z

κljðωÞb̂lωe−iωtdωþ H:c:; ð15Þ

with ½b̂jω; b̂†kω0 � ¼ δjkδðω − ω0Þ. Assume the vacuum state
for ρ̂B, defined by b̂kωρ̂B ≡ 0. The field correlation is

Tr½ϕ̂jðτÞϕ̂kðsÞρ̂B� ¼
Z

κljðωÞκl�k ðωÞe−iωðτ−sÞdω: ð16Þ

Comparing this result with Eq. (14), we see that the desired
relationship (7) is satisfied if ~DjkðωÞ ¼ 2πκljðωÞκl�k ðωÞ,
which can always be ensured by the choice of the complex
coefficients κljðωÞ.
We have shown that the bath correlation functions

exhaust all time-translation invariant non-negative kernels.
Hence, the Gaussian Mt is a trace-preserving CP map
contributing to a correct GME for all non-negative kernels
D that are time-translation invariant. The correctness of our
GME for all non-negative kernels D will be proved in an
alternative way below.
We have to prove that the superoperatorMt [Eq. (12)] is

a trace-preserving CP map for all t > 0. The LR formalism
is surprisingly powerful to prove that Mt preserves the
trace. Let us introduce the notations Âj

Δ ¼ Âj
L − Âj

R and
Âj
c ¼ ðÂj

L þ Âj
RÞ=2, cf. Refs. [17,18]. Then the exponent of

Eq. (12) takes the following equivalent form:

Mt ¼ T exp

�
−
1

2

Z
t

0

dτ
Z

t

0

dsDðReÞ
jk ðτ; sÞÂj

τΔÂ
k
sΔ

−2i
Z

t

0

dτ
Z

τ

0

dsDðImÞ
jk ðτ; sÞÂj

τΔÂ
k
sc

�
; ð17Þ

where DðReÞ ¼ ReD and DðImÞ ¼ ImD are real symmetric
and antisymmetric kernels, respectively. Obviously, Âj

τΔ,
Âk
sΔ represent commutators, which never make the trace of

Mtρ̂0 change. The superoperators Âk
sc represent anticom-

mutators, which might makeMt change the trace, but they
do not since they always appear in combination like
Âj
τΔÂ

k
sc: the anticommutation is always followed by at

least one commutation. Hence, the map Mt preserves the
trace of ρ̂t. The notion that Mt is CP will be proved later.
Non-Markovian Gaussian SSE.—We begin with the

simple nondissipative case D ¼ D⋆. We show that the
GME (12) is equivalent, in the sense of unraveling (5), with
the average unitary dynamics of the system in colored
classical Gaussian real noises ϕjðtÞ. Consider the bilinear
coupling Âj

tϕjðtÞ, and choose the real (nondissipative)

correlation of the noises such that E½ϕjðτÞϕkðsÞ� ¼
Djkðτ; sÞ. Then the wave function evolves according to
the following GSSE:

djψ ti
dt

¼ −iÂj
tϕjðtÞjψ ti: ð18Þ

The solution can be written in the compact form
jψ ti ¼ Gt½ϕ�jψ0i by introducing the Green operator

Ĝt½ϕ� ¼ T exp

�
−i

Z
t

0

dsÂj
sϕjðsÞ

�
: ð19Þ

Thereby, one finds that ρ̂t evolves according to Eq. (1) with
superoperator

Mt ¼ E

�
T exp

�
−i

Z
t

0

dsðÂj
sL − Âj

sRÞϕjðsÞ
��

: ð20Þ

Performing the stochastic average, since the rule (10)
applies invariably if TrB½…ρ̂B� is replaced by E½…�, one
recovers Eq. (12).
This proves that a nondissipative GME is equivalent to

the averaged unitary dynamics with real colored noise. The
corresponding GSSE (18) represents one of the (infinite
many) possible unravelings of the nondissipative GME.
Of course, it also means the superoperator Mt (12) is a
trace-preserving CP map for all real kernels D ¼ D⋆.
Unlike the nondissipative GME, a dissipative GME

(i.e., with complex kernel D ≠ D⋆) cannot be unraveled
by the simple GSSE (18). One has to relax the unitarity of
the dynamics, letting the Hamiltonian coupling be non-
Hermitian. Still, we start from the old coupling Âj

tϕjðtÞ,
GSSE (18), andGreen operator (19). NowϕjðtÞ are complex
colored noises, to allow for a complex (dissipative) corre-
lation, that we set equal to the kernel D of the GME:

E½ϕ�
jðτÞϕkðsÞ� ¼ Djkðτ; sÞ: ð21Þ

There is a further independent complex symmetric (non-
Hermitian) correlation:

E½ϕjðτÞϕkðsÞ� ¼ Sjkðτ; sÞ; ð22Þ
which is only constrained by positivity of the full correlation
kernel:

�
D S
S� D�

�
≥ 0: ð23Þ

The Green operator of Eq. (19) is not unitary in the
dissipative case. It does not preserve the normalization of
jψ ti, but the crucial unraveling condition (5) must remain
valid. Hence, we have to check whether or not

ρ̂t ¼ Mtρ̂0 ¼ EfĜt½ϕ�ρ̂0Ĝ†
t ½ϕ��g ð24Þ

yields the solution ρ̂t with the Gaussian evolution super-
operator (12). We insert Eq. (19) and evaluate the stochastic
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mean. Because of the symmetry of the kernel S, the resulting
superoperator can be written as follows:

Mt ¼ T exp

�Z
t

0

dτ
Z

t

0

ds½Djkðτ; sÞÂk
sLÂ

j
τR

−θτsSjkðτ; sÞÂj
τLÂ

k
sL − θsτS�jkðτ; sÞÂk

sRÂ
j
τR�

�
: ð25Þ

This is clearly different from the desired form (12). The LR
term is correct, but the kernels of the LL and RR terms are
Sjkðτ; sÞ and S�jkðτ; sÞ, respectively, instead of the correct
Djkðτ; sÞ. However, one can correct the Green operator (19)
by adding suitable counterterms:

Ĝt½ϕ�¼T(exp

�
−i

Z
t

0

dsÂj
sϕjðsÞ

−
Z

t

0

dτ
Z

t

0

dsθτs½Djkðτ;sÞ−Sjkðτ;sÞ�Âj
τÂ

k
s

�
):

ð26Þ
If we reevaluate Eq. (24) with the new Green operator
above, we get exactly the desired superoperator (12).
Following the method of Ref. [9], we readout the GSSE

from the solutions Ĝt½ϕ�jψ0i:

djψ ti
dt

¼ −iÂj
t

�
ϕjðtÞþ

Z
t

0

ds½Djkðt; sÞ

− Sjkðt; sÞ�
δ

δϕkðsÞ
�
jψ ti: ð27Þ

This form is valid if the kernelsD and S have no equal-time
finite-measure singularity.On the contrary, in theMarkovian
case, when the kernel D of the GME is time local (yielding
to the MME), the symmetric kernel must also be reduced
to a time-local one: Sjkðt; sÞ ¼ SjkðtÞδðt − sÞ. Using the
Markovian kernels in the Green operator, we readout the
following MSSE:

djψ ti
dt

¼
�
−iÂj

tϕjðtÞ−
1

2
½DjkðtÞ− SjkðtÞ�Âj

t Â
k
t

�
jψ ti; ð28Þ

the symmetric matrix SjkðtÞ yields the parameters of the
different MSSEs unraveling the same MME, in accordance
with the Markovian theory [2,3].
The result [Eq. (27)] is the most general non-Markovian

GSSE in the interaction picture to unravel a general GME.
Similarly to the MMEs, there is an infinite variety of GSSEs
for each GME. The symmetric kernel S represents the
continuum many free parameters. Note, finally, that the very
existence of our unravelings does prove thatMt is a CP map
because it is of the Kraus form (24). Since we previously
proved that Mt is trace preserving, the proof of the correct-
ness of ourGMEwith any non-negative kernelD is complete.
We now show that by exploiting the freedom of tuning S

we choose specific noises in Eq. (27) and we can recover
all previously known SSEs. If ϕ is complex Hermitian

noise, then S ¼ 0 and Eq. (27) reduces to the quantum state
diffusion SSE first proposed in [9]:

djψ ti
dt

¼ −iÂj
t

�
ϕjðtÞ þ

Z
t

0

dsDjkðt; sÞ
δ

δϕkðsÞ
�
jψ ti: ð29Þ

In standard non-Markovian quantum state diffusion SSE
the operators Âj are not necessarily Hermitian.We show in a
simple example how our GMEs yield this general case as
well. Suppose we have just two Hermitian operators Â1; Â2,
and assume a degenerate kernel satisfying D11 ¼ D22 ¼ D
andD12¼D⋆

21¼−iD. This means we have two perfect cor-
related Hermitian noises satisfying ϕ1¼ iϕ2¼ϕ. Applying
this setting in the GSSE (27), for L̂¼ Â1þ iÂ2 we get

djψ ti
dt

¼
�
−iL̂†

tϕðtÞ − iL̂t

Z
t

0

dsDðt; sÞ δ

δϕðsÞ
�
jψ ti; ð30Þ

which really generalizes Eq. (29) for non-Hermitian oper-
ators. These equations have been studiedwidely and applied
in different contexts, from quantum foundations to quantum
chemistry [21].
The following cases represent two extreme GSSEs

unraveling the same nondissipative GME. The first special
case corresponds to unitary evolution while the second
corresponds to a process of dynamical collapse. This
duality was elucidated for a MME with two different
MSSEs a long time ago [22]; here we are going to point
out the same duality for our non-Markovian open systems.
If we choose S ¼ D, hence ϕ is a real noise, and we recover
the nondissipative unitary GSSE (18) previously discussed.
On the contrary, if we set S ¼ −D, hence ϕ is purely
imaginary, and we obtain the collapse SSE [15]:

djψ ti
dt

¼ −iÂj
t

�
ϕjðtÞ þ 2

Z
t

0

dsDjkðt; sÞ
δ

δϕkðsÞ
�
jψ ti: ð31Þ

These equations describe the evolution of a wave function
subject to random unsharp collapses on the eigenstates of
Âj. Of particular interest is the case when Â is the position
operator, which has been the subject of thorough study
[11,23] in the context of quantum foundations.
Markovian limit.—We have already shown that, by choos-

ing local kernels D and S, one recovers the known MMEs,
in both the dissipative and nondissipative cases. More than
that, a general GMEmay possess a Markovian limit in some
particular regimes, recovering the well-known Lindblad
equation (4). A precise way to perform the Markovian
limit of open quantum systems in stationary baths is the
so-called rotating wave approximation [1], provided that
the Fourier transform Âj

ω of Âj
t is discrete, for all j: i.e.,

Âj
t ¼

P
ωÂ

j
ωe−iωt. Applying the rotating wave approxima-

tion to our superoperator Mt (12), one obtains a stationary
Lindblad superoperator. We might apply this approximation
perturbatively to the system plus bath unitary dynamics (8),
as is usually done. Herewe apply it directly toGaussian open
system dynamics, i.e., to the exponent in the Gaussian
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superoperator Mt (12). Comparing the result with Eq. (2),
we get the following stationary Lindblad superoperator:

L¼
X
ω

~DjkðωÞ
�
Âk
ωLÂ

j†
ωR −

1

2
Âj†
ωLÂ

k
ωL−

1

2
Âk
ωRÂ

j†
ωR

�
: ð32Þ

If one considers the dissipative dynamics of a free particle,
the rotating wave approximation cannot be used. In this case,
for a high-temperature heat bath, one can approximate the
kernel by a quasi-time-local expression. Following some
heuristic steps, the calculation leads to a Lindblad MME of
quantum Brownian motion [17].
Summary.—Weanalyzed the classofGMEs that is suitably

general yet analytically tractable. We generalized the funda-
mental featuresof thewell-knownandwell-tractableLindblad
MMEs for theproposednon-MarkovianGMEs. Interestingly,
the evolution superoperator (12) of the GME can be formally
generalized from the Lindblad structure (4), by promoting the
LindbladmatrixDjkðtÞ to adouble-timekernelDjkðτ; sÞ.This
relationship gives a concrete insight into the way the GMEs
work compared to the much studied and simpler MMEs.
The GME is completely determined by a set of Heisenberg
operators Âj

t and by the non-negative kernel D. It was
known before, e.g., from Refs. [13,16], that the structures
like our GME are reduced dynamics in bosonic reservoirs.
Remarkably enough, we found it nontrivial whether or not all
GMEs are reduced dynamics; the proof exists for time-
translation invariant kernels only. One major result is that
we proved the correctness of the GMEs for all non-negative
kernels D whether or not the embedding heat bath exists.
Furthermore, we have generalized the classification of all
stochastic unravelings for the non-Markovian GMEs. For a
givenGME, all GSSEs are uniquely parametrized by a certain
symmetric kernel Sjkðτ; sÞ, in full analogy with the corre-
sponding symmetric matrix that parametrizes the Markovian
SSEs in Refs. [2,3].We showed that all non-Markovian SSEs
known before are specific cases of ourGSSEs, corresponding
to various choices of the symmetric kernel S.
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