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We show that the heating effect of spontaneous wave-function collapse models implies an exper-
imentally significant increment ΔTsp of equilibrium temperature in a mechanical oscillator. The obtained
new form ΔTsp is linear in the oscillator’s relaxation time τ and independent of the mass. The oscillator can
be in a classical thermal state, also the effect ΔTsp is classical for a wide range of frequencies and quality
factors. We note that the test of ΔTsp does not necessitate quantum state monitoring just tomography. In
both the gravity-related and the continuous spontaneous localization models the strong-effect edge of their
parameter range can be challenged in existing experiments on classical oscillators. For the continuous
spontaneous localization theory, the conjectured highest collapse rate parameter values become immedi-
ately constrained by evidences from current experiments on extreme slow-ring-down oscillators.
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Spontaneous collapse models [1] suggest that macro-
scopic superpositions—large spatial superpositions of
quantum states of massive degrees of freedom—decay at
(model dependent) universal rates. These models, the
particular gravity-related (or DP) model [2–6] and the
continuous spontaneous localization (CSL) model [7,8]
predict the progressive violation of the quantum mechani-
cal superposition principle for massive degrees of freedom.
For atomic degrees of freedom this violation is irrelevant
while for massive degrees of freedom it becomes significant
though usually masked by the environmental noise. The
preparation of macroscopic superpositions is extremely
demanding, hence the direct experimental test of sponta-
neous collapse has not yet been achieved despite relentless
efforts; see, e.g., [9–15] and [16,17] for the state of the art.
Quite recently, Bahrami et al. [18] suggested a different
approach, not requesting laboratory macroscopic super-
positions. Nimmrichter et al. [19] discuss the optomechan-
ical sensing of spontaneous momentum diffusion caused
by collapse models. We further elucidate and simplify these
considerations and come to new results. We emphasize that
momentum diffusion is classical and this facilitates the
mathematical treatment, theoretical insight, and experimen-
tal proposals. Currently available mechanical oscillators
of extreme long ring-down time, e.g., in Ref. [20] by
Matsumoto et al., are immediately capable of sensing
spontaneous heating if it exists with the strongest proposed
rates.
Spontaneous collapse models are known [1] to impose

spontaneous kinetic energy increase at constant rate propor-
tional to the spontaneous collapse rate; see also [5]. This
spontaneous heating is independent of the quantum state.
It can be a classical state, it need not be a macroscopic
superposition for being spontaneously heated.
While spontaneous collapse is a genuine quantum effect,

spontaneous heating is not. This we exploit in our work: an

elementary nonquantum calculation yields the spontaneous
increment ΔTsp of the equilibrium temperature T of
damped mechanical oscillators. Full quantum calculations
can be safely replaced by classical calculations as long
as the oscillator remains in the classical domain. Most
surprisingly, it turns out that in the classical domain the
current laboratory technique is already capable to test the
spontaneous collapse models.
Spontaneous heating in oscillators.—Let us consider the

center of mass oscillation of an extended object with mass
m and frequency Ω in a harmonic potential. Its quantized
Hamiltonian reads

Ĥ ¼ p̂2

2m
þ 1

2
mΩ2x̂2; ð1Þ

where x̂; p̂ are the center-of-mass canonical variables. If
the mass is subject to spontaneous collapse, model depen-
dent stochastic Schrödinger equations are proposed for
the evolution of the state vector, cf., e.g., in the review [1].
However, when it comes to calculate experimental predic-
tions then, as observed already in [2], stochastic Schrödinger
equations are redundant: deterministic master equations for
the density matrix ρ̂ suffice. The observable spontaneous
decoherence is mathematically equivalent with the presence
of external random forces. In our particular case, the master
equation of the oscillator takes this form:

dρ̂
dt

¼ −i
ℏ
½Ĥ; ρ̂� −Dsp

ℏ2
½x̂; ½x̂; ρ̂��: ð2Þ

Its derivation can be best learned from the Supplemental
Material of Ref. [19] for both CSL and DP, or from Ref. [5]
for DP. HereDsp governs the strength (rate) of spontaneous
decoherence. It depends on the chosen model as well as
on the features of the extended object. This x̂ decoherence is
the observable quantum effect. We add immediately that x̂
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decoherence is completely equivalent with a classical effect:
p̂ diffusion of diffusion constant Dsp. To see this, observe
that the decoherence term in Eq. (2) corresponds to the
average influence of a random force FðtÞ with correlation
hFðtÞFðt0Þi ¼ 2Dspδðt − t0Þ. In classical physics, such
random force corresponds to momentum diffusion at
strength Dsp.
From now on and through our work, we assume that

the oscillator is in the classical domain. Therefore, we
can describe it by the classical Liouville density ρðx; pÞ and
the quantum master equation (2) can be replaced by the
Liouville equation where the classical momentum diffusion
term replaces the quantum decoherence term:

dρ
dt

¼ fH; ρg þDsp
∂2

∂p2
ρ: ð3Þ

Hðx; pÞ is the classical Hamilton function of the oscillator,
the Poisson bracket fH; ρg stands for −ðp=mÞð∂=∂xÞρþ
mΩ2xð∂=∂pÞρ. In a realistic situation, the mechanical
oscillator is in a thermal environment of temperature T,
which will modify the Liouville equation:

dρ
dt

¼ fH; ρg þDsp
∂2

∂p2
ρþ η

∂
∂ppρþDth

∂2

∂p2
ρ; ð4Þ

where η is the damping rate of oscillations and Dth ¼
ηmkBT is the constant of thermal momentum diffusion.
With Dsp ¼ 0 we would get the classical Fokker-Planck
equation whose stationary solution is the Gibbs canonical
distribution N expð−H=kBTÞ. It is trivial to see that with
Dsp > 0 the stationary solution is the Gibbs canonical
distribution

ρ∞ðx; pÞ ¼ N exp

�
−
Hðx; pÞ
kBT 0

�
ð5Þ

at the higher temperature

T 0 ¼
�
1þDsp

Dth

�
T ≡ T þ ΔTsp: ð6Þ

This result can be interpreted as the extension of the
Einstein-Smoluchowski relationship Dth ¼ ηmkBT for
DthþDsp¼ηmkBT 0, supported by the underlying Fokker-
Planck equation.
The increment ΔTsp > 0 over the environmental temper-

ature T is the contribution of spontaneous heating, this is
the very observable quantity that we wish to test. From
Eq. (6), we can express it as

ΔTsp ¼
Dsp

mkB
τ; ð7Þ

where τ ¼ 1=η will stand for the (energy) relaxation time
of the oscillator. Our classical description is valid as long

as the spontaneous heating concerns many quanta of the
oscillator:

kBΔTsp ≫ ℏΩ: ð8Þ

Measurement.—Since we restrict ourselves for the
classical domain (8) of spontaneous heating ΔTsp, a
single-shot classical (or quantum) measurement of preci-
sion δTm would detect ΔTsp provided δTm ≲ ΔTsp. If this
condition does not hold, we can wait until the oscillator
“forgets” the backaction of the first measurement and
reaches the equilibrium state again, then we do a second
measurement, etc., many times. In principle, the equilib-
rium state of the oscillator can be fully determined on large
statistics of repeated independent single shot measurements
like in quantum state tomography even if the precision
of the individual measurements is poor. On the contrary,
in most experiments the oscillator is being continuously
monitored, which is equivalent to frequently repeated
measurements such that their backaction changes the
original equilibrium. Therefore, tomography is the more
suitable means to detect spontaneous temperature increase
of the previously prepared equilibrium oscillator state.
Cumulative precision of tomography is not limited quan-
tum theoretically.
For completeness, nonetheless, let us recapitulate the

features of monitoring which is usually accompanied
by some classical and/or quantum noise (backaction).
We characterize this backaction by a further diffusion
constant Dm, meaning that the backaction is modeled by
a random force of correlation 2Dmδðt − t0Þ. The complete
Liouville equation (4) reads

dρ
dt

¼ fH; ρg þ η
∂
∂ppρþ ðDsp þDth þDmÞ

∂2

∂p2
ρ: ð9Þ

Suppose we start to measure the temperature of the
oscillator at t ¼ 0. The initial state of the oscillator is
the Gibbs state (5) of temperature T þ ΔTsp. When the
“thermometer” is switched on, the measurement noise
starts to heat the oscillator towards the new stationary
Gibbs state of temperature increased by

ΔTm ¼ Dm

mkB
τ: ð10Þ

Trivial dynamics of heating follows from Eq. (9) in the limit
η ≪ Ω:

T 0ðtÞ ¼ T þ ΔTsp þ ð1 − e−t=τÞΔTm: ð11Þ

Observe that the temperature effect of backaction is
gradually reaching its steady state value. Backaction can
be ignored for times much shorter than ΔTm=ΔTsp times τ.
There is no fundamental limitation on the measurement

precision (fluctuations) δTm in the classical domain. There
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is a quantum trade off between the spectral components of
δTm and ΔTm at a chosen frequency ω:

δTmΔTm ≥
ℏ2

4k2B

jΩ2 − ω2 þ iηω=2j2
η2

; ð12Þ

as it follows from Ref. [21], cf. also Ref. [19]. The
minimum of δTm þ ΔTm is achieved when

δTm ¼ ΔTm ¼ ℏ
2kB

jΩ2 − ω2 þ iηω=2j
η

≡ ΔTSQL; ð13Þ

which is called the standard quantum limit. This limitation
concerns the steady state spectral component of the pre-
cision and backaction, respectively. Formonitoring duration
much shorter than τ (yet sufficient to gather significant data
on ΔTsp) the backaction will not influence the system, we
can choose finer precisions δTm than ΔTSQL.
Spontaneous heating: DP model.—In the gravity-related

spontaneous collapse model (DP model), the spontaneous
diffusion is proportional to the Newton constant G. For the
oscillating object made of cubic crystal, considered in [19]:

DDP ¼
ℏ
2
mω2

G ¼ ℏ
2
m
4πGϱ
3

�
a

2
ffiffiffi
π

p
σDP

�
3

; ð14Þ

where ϱ is the mass density, and a is the lattice constant,
while ωG is the effective parameter used by [3–5]. The
expression (14) is valid for σDP ≪ a. Reference [19] lost
a factor 2, now restored in Eq. (14) which was derived,
e.g., in [5]. Accordingly, the result (14) is valid for bulk
materials in general, not restricted for cubic crystals
considered in [19]. The relevant parameter is the average
nuclear mass (ρa3 in cubic crystal). In the range σDP ≪ a of
validity of (14), the coefficient DDP is independent of the
shape of the mass since each nucleus contributes inde-
pendently. The spatial resolution σDP is the free parameter
of the DP model, conjectured to be in the following range:

10−12 cm≲ σDP ≲ 10−5 cm: ð15Þ

The upper limit is borrowed from the CSL model, the lower
limit is about the nuclear size which may be a finest spatial
resolution nonrelativistically [3]. Using (14) for Dsp, we
can write (7) as

ΔTDP ¼
ℏω2

G

2kB
τ; ð16Þ

where ω2
G is read out from (14). It is remarkable that ΔTDP

does not depend on the mass m.
Now we assume the strongest possible DP decoherence;

i.e., we take the finest conjectured spatial resolution
σDP ¼ 10−12 cm, favored by certain theoretical consider-
ations [3–5]. If the lattice constant is set toa ¼ 5 × 10−8 cm,

for concreteness, we obtain ωG ≈ 1.3 kHz for the effective
parameter. The spontaneous heating effect (16) can be
written as

ΔTDP ≈ τ½s� × 4.0 × 10−5 K: ð17Þ

(Unit of measure indicated in square brackets here and
henceforth.) This is a convenient expression of the effect
ΔTDP to discuss possible choices of the frequency Ω
and the quality factor Q ¼ Ωτ of the oscillator. The mass
m has, as we noticed before, canceled from ΔTDP.
Experimental implications.—Applying Eq. (17) to a

broad range of frequencies Ω and quality factors Q, we
calculated the spontaneous heating ΔTDP in Table I.
The lesson is transparent. If ΔTDP ≫ ℏΩ=kB, and this is

the case except for a few highestΩ and lowestQ examples
(in brackets), the DP effect would prevent us from ground
state cooling. This should be a significant detectable
effect. But we do not need to try ground state cooling,
the heating effect ΔTDP equally shows up far from the
ground state. Low frequency oscillators with high quality
factors are the favorable test bed. If the ring-down time
τ ¼ Q=Ω of the oscillator is chosen between 102 and
106 s, the spontaneous heatingΔTDP scales between 1 mK
and 10 K, respectively. This is a striking result. Classical
(nonquantum) thermometers of precision δTm ∼ 1 mK
should exist in principle. Technically, nonetheless, we
might need to operate the measurement device in the
quantum domain especially when the oscillator itself is
cooled and/or controlled via high precision quantum
devices. Even in this case the oscillator is assumed to
stay away from its ground state since the effect ΔTDP is
robust classical.
Following Ref. [19], and for a selection of experiments

considered therein, we calculated the effect ΔTDP; see

TABLE I. Magnitudes of the spontaneous heating effect ΔTDP
of the DP model on classical oscillators are shown at currently
available or nearly available combinations of frequencies Ω
(1st column) and quality factors Q (1st row). The spatial
resolution σDP ¼ 10−12 cm assumes the strongest effect. The
lattice constant is set to a ¼ 500 pm. Data around the upper-left
corner (in brackets) are not in the classical domain
kBΔTDP ≫ ℏΩ. Data above the millikelvin range are enhanced
(typed in boldface) because their detection may not require
millikelvin cooling or cooling at all.

Q

102 103 104 105 106

Ω

105 Hz [10−8 K] [10−7 K] [10−6 K] 10−5 K 10−4 K
104 Hz [10−7 K] 10−6 K 10−5 K 10−4 K 10−3 K
103 Hz 10−6 K 10−5 K 10−4 K 10−3 K 10−2 K
102 Hz 10−5 K 10−4 K 10−3 K 10−2 K 10−1 K
10 Hz 10−4 K 10−3 K 10−2 K 10−1 K 1 K
1 Hz 10−3 K 10−2 K 10−1 K 1 K 10 K
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Table II. The experiments [22] and [20], both performed
at room temperature T ¼ 300 K, can promise an earliest
detection of spontaneous heating. On the one hand,
cooling is a reserve of higher sensitivity of detecting
ΔTDP. On the other hand, the experiment [20] even at
room temperature might attempt to detect the 6.4 K
spontaneous warming up.
As we mentioned before, monitoring may be neither

convenient nor sufficient for detection. Let us consider
the constraint (12) at the detection band around
ω ¼ 2π × 500 Hz, yielding δTmΔTm¼ΔT2

SQL¼ð37KÞ2.
Such a standard quantum limit 37 K gives insufficient
precision on the steady state: i.e., in monitoring of a
duration much longer than τ ¼ 1.6 × 105 s. If we choose
δTm ¼ 1 K the duration of monitoring must be limited
to the order of hundred seconds before the backaction
reaches the range of 1 K, cf. Eq. (11). This is obviously not
the way to go in general. In this particular experiment
measurement precisions below 1 K are not available by
standard quantum monitoring. A single-pulse measurement
must be considered instead, where state preparation is
followed by a one-shot measurement and the preparation-
detection cycle is repeated many times.
CSL model.—In the CSL model the diffusion constant

is proportional to the rate parameter λCSL. For the
perpendicular momentum diffusion of a disk whose thick-
ness d and radius are much larger than σCSL ¼ 10−5, we
rewrite the result of Ref. [19] (times its lost factor 2) into an
equivalent form displaying the ultimate 1=d dependence:

DCSL ¼ λCSL
ℏ2

m2
0

4πσ2CSL
ϱm
d

; ð18Þ

where m0 is the standard atomic unit. The value of the CSL
collapse rate parameter has been constrained by a lower [7]
and an upper estimate [8], cf. also [1]:

2.2 × 10−17 Hz≲ λCSL ≲ 2.2 × 10−8�2 Hz: ð19Þ

Using DCSL (18) for Dsp in (7) yields

ΔTCSL ¼ λCSL
ℏ2

m2
0kB

4πσ2CSL
ϱ

d
τ: ð20Þ

Note that the shape (thickness) of the oscillator matters, the
mass m does not.
Suppose the strongest CSL decoherence rate from the

range (19), let us take the estimate λCSL ¼ 2.2 × 10−8�2 Hz
[8]. Using this value in (20) we obtain

ΔTCSL ≈ τ½s� ϱ½g=cm
3�

d½cm� × 3.2 × 10−6�2 K: ð21Þ

Recall that d ≫ σCSL ¼ 10−5 cm; hence, the strongest
heating effect is achieved when d ≈ σCSL, leading to

ΔTCSL ≈ τ½s� × 6.2 × 10−1�2 K; ð22Þ
where we kept ϱ ¼ 2 g=cm3 as before. Comparing this
result with (17) we conclude that, in classical oscillators,
the strongest conjectured CSL effect ΔTCSL would exceed
the strongest conjectured DP effect ΔTDP by at least
2 orders of magnitude.
Let us consider the Ω ¼ 3.14 Hz oscillator [20], also

discussed in Ref. [19] in the context of the CSL model.
Recall that the strongest DP effect turned out to be
ΔTDP ¼ 6.4 K, cf. Table I. This oscillator has the high
quality factorQ ¼ 5 × 105, the ring-down time is extremely
long: τ ¼ 1.6 × 105 s. The resonator is a 5 mg disk of
thickness d ¼ 0.2 mm, Eq. (21) yields the spontaneous
heatingΔTCSL ¼ 5.1 × 101�2 K, corresponding to the rates
λCSL ¼ 2.2 × 10−8�2, respectively. Presumably the values
λCSL ≳ 10−7 are not compatible with the experiment and
the values λCSL ∼ ð10−8–10−10Þ remain to be challenged.
Summary.—The so far hypothetic spontaneous wave-

function collapse on massive degrees of freedom possesses
a complementary classical effect: classical momentum
diffusion. This produces a certain spontaneous increase
ΔTsp of the equilibrium temperature. This typical classical
effect must be testable classically, without facing the
standard quantum limitations of sensing. Therefore we
must get spontaneous diffusion in the cross hairs instead of
spontaneous collapse. We have derived the spontaneous
heating ΔTsp for mechanical oscillators in the classical
thermal state, only using the classical Einstein-
Smoluchowski relation. We found that ΔTsp is proportional
to the relaxation (ring-down) time and independent of the
mass. Experimental implications become more transparent
than before, for both leading models DP and CSL of

TABLE II. Spontaneous heating ΔTDP for the selection of optomechanical setups quoted in [19]. Values ΔTDP are
calculated from Eq. (16), assuming the largest spontaneous decoherence rates considered for the time being,
corresponding to ωG ¼ 1.3 kHz. Two of the data (in brackets) are not in the classical domain kBΔTDP ≫ ℏΩ.

System m Ω=2π (Hz) Q T (K) ΔTDP (K)

Gravitational wave detector [22] 40 kg 1 25 000 300 0.16
Suspended disc [20] 5 mg 0.5 5 × 105 300 6.4
SiN membrane [23] 34 ng 1.6 × 106 1100 4.9 [4.4 × 10−9]
Aluminium membrane [24] 48 pg 1.1 × 107 3.3 × 105 0.015 [1.9 × 10−7]
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spontaneous collapse. We conclude that currently available
extreme low-loss mechanical oscillators can already con-
firm the presence of spontaneous diffusion if its rate is close
to the conjectured maximum. Alternatively, nondetection
would not yet invalidate the spontaneous collapse models
but enforce the update of the current constraints, cf.
in Refs. [1,25], on the collapse model’s parameters. The
requested measurement precisions 1 mK–1 K may not be
reached in standard steady state quantum monitoring
typically preferred so far. Instead, we propose that state
tomography fits the demands better.
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