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Wigner Research Centre for Physics, H-1525 Budapest 114, P.O. Box 49, Hungary
(Received 24 November 2015; published 7 July 2016)

We discuss the abstract structure of sequential weak measurement (WM) of general observables. In all orders,
the sequential WM correlations without postselection yield the corresponding correlations of the Wigner function,
offering direct quantum tomography through the moments of the canonical variables. Correlations in spin- 1

2
sequential weak measurements coincide with those in strong measurements, they are constrained kinematically,
and they are equivalent with single measurements. In sequential WMs with postselection, an anomaly occurs,
different from the weak value anomaly of single WMs. In particular, the spread of polarization σ̂ as measured
in double WMs of σ̂ will diverge for certain orthogonal pre- and postselected states.
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From textbooks on quantum mechanics we learn that the
ideal measurement of observable Â collapses the premea-
surement state ρ̂ into an eigenstate of Â hence erasing all
memory of ρ̂. If the measurement is nonideal (i.e., unsharp
and imprecise), the collapse still happens, although it may
keep some well-defined features of ρ̂. On one hand, the
larger the unsharpness, the more faithfully the premeasurement
state will be preserved. On the other hand, the imprecision
of the measurement can be compensated by measuring on
a larger ensemble of identically prepared premeasurement
states. The concept of weak measurement (WM) corresponds
to the asymptotic limit of zero precision and infinite statistics
[1] when the premeasurement state ρ̂ would invariably survive
the measurement. WM was used by Aharonov et al. [2] as
a noninvasive quantum measurement between preselection
(preparation) and postselection of the pre- and postmea-
surement states, respectively. Noninvasiveness of WM is a
remarkable feature both with and without postselection, and
this noninvasiveness can be maintained for a succession
of WMs on a single quantum system. General features of
such sequential WMs form the subject of the present Rapid
Communication.

WMs without postselection. We outline WM of a single
observable Â at the abstract level of generalized (unsharp and
imprecise) measurements [3]. Consider the premeasurement
state ρ̂ and the unsharp measurement of Â with precision a.
Let Gσ (A) stand for a Gaussian function of standard width a.
The unnormalized postmeasurement state conditioned on the
outcome A takes this form

ρ̂a(A) =
√

Ga(A − Â)ρ̂
√

Ga(A − Â), (1)

where the outcome probability satisfies

pa(A) = tr ρ̂a(A) = 〈Ga(A − Â)〉ρ̂ . (2)

If we calculate the stochastic mean MA of A, we get

MA =
∫

pa(A)AdA = 〈Â〉ρ̂ . (3)

We are interested in the WM limit of infinite imprecision
a → ∞, i.e., when a is so large that the difference between
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pre- and postmeasurement states is negligible. In practice it
means a � �A where (�A)2 = 〈Â2〉ρ̂ − (〈Â〉ρ̂)2. Although
the relationship MA is independent of a, the probability
distribution pa(A) diverges so that p∞(A) does not exist.
Note with Ref. [1] the WM limit of the unsharp measurement
(1–2) had been used earlier for the theory of time-continuous
measurement [4].

Before constructing sequential WMs, let us write the
postmeasurement state (1) into the equivalent form

ρ̂a(A) = exp

(−Â2
�

8a2

)
Ga(A − Âc)ρ̂, (4)

where Â�,Âc are commuting superoperators [5] defined by
Â�Ô = [Â,Ô] and ÂcÔ = 1

2 {Â,Ô}. As an example of se-
quential WMs, we consider the sequence of three independent
WMs of Â,B̂,Ĉ, in this order. In the WM limit, we can
apply Eq. (4) without the exponential factor to construct the
un-normalized postmeasurement state,

ρ̂a(A,B,C) = Ga(C − Ĉc)Ga(B − B̂c)Ga(A − Âc)ρ̂. (5)

The joint probability distribution of the three outcomes is
determined by the trace of the postmeasurement state,

pa(A,B,C) = tr ρ̂a(A,B,C)

= tr {Ga(C − Ĉc)Ga(B − B̂c)Ga(A − Âc)ρ̂},
(6)

which, as we said already, diverges in the WM limit, and
p∞(A,B,C) does not exist. Nonetheless, the stochastic aver-
age of the product ABC is independent of a in the WM limit.
Using Eq. (6), we obtain

MABC =
∫

pa(A,B,C)ABC dAdB dC

= 1

8
〈{Â,{B̂,Ĉ}}〉ρ̂ . (7)

This important result was obtained by Bednorz and Belzig [6]
assuming a quasidistribution, which this time we justify as
follows.

Since the right-hand side (rhs) of the above expression is
independent of a, therefore we can calculate it for a = 0. This
means, we get the following quasidistribution from the true
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pa(A,B,C):

p0(A,B,C) = tr{δ(C − Ĉc)δ(B − B̂c)δ(A − Âc)ρ̂}. (8)

This quasidistribution can have negative domains. (For the
true distribution, pa(A,B,C) � 0 holds in the WM limit.) The
merit of this quasidistribution is that it does not contain
the diverging parameter a and correctly yields the mean for
the product ABC exactly like pa(A,B,C) did:

MABC = 1

8
〈{Â,{B̂,Ĉ}}〉ρ̂

=
∫

p0(A,B,C)ABC dAdB dC. (9)

The same is true for the means of A, B, C, AB, AC, and
BC, respectively. But all other means diverge in reality, i.e.,
with pa(A,B,C) in the WM limit, whereas p0(ABC) suggests
incorrect finite values for them.

The above results can trivially be extended for an arbitrary
long sequence of WMs. Let us consider a sequence of
observables Â1,Â2, . . . ,Ân which are weakly measured in the
given order on the premeasurement state ρ̂. If A1,A2, . . . ,An

denote the corresponding measurement outcomes, then

MA1A2 · · · An = 1

2n
〈{Â1,{Â2,{ · · · {Ân−1,Ân} · · · }}}〉ρ̂ .

(10)

The stochastic mean of the product of sequential WM
outcomes coincides with the quantum expectation value of
the stepwise-symmetrized (also called time-symmetric [7])
product of quantum observables. This is the central result for
sequential WMs without postselection. If we regard a subset
of the n outcomes and discard the rest of them, then the
similar identity holds, e.g., MA2A7A8 = 1

8 〈{Â2,{Â7,Â8}}〉ρ̂ .
In general,

MAi1 · · · Ai2 · · · Air = 1

2r
〈{Âi1 ,{Âi2 , . . . ,Âir }}〉ρ̂ (11)

holds for (i1,i2, . . . ,ir ) ⊆ (1,2, . . . ,n), i.e., for any ordered
subsets of indices from 1 to n, as it follows easily from
the derivation of Eq. (10). Also we can derive all the above
stochastic means from the quasidistribution,

p0(A1,A2, . . . ,An)

= tr {δ(An − Â1,c)δ(A2 − Â2,c) · · · δ(An − Ân,c)ρ̂}.
(12)

Generalization of the relationship (9) holds

MA1A2 · · · An

= 1

2n
〈{Â1,{ · · · {Ân−1,Ân} · · · }}〉ρ̂

=
∫

p0(A1,A2, . . . ,An)A1A2 · · ·AndA1dA2 · · · dAn.

(13)

The last two WMs in a stepwise-symmetrized sequence are
always interchangeable, but the rest of them are not: Order
of WMs matters in general. There is, however, a remarkable
class when all WMs are interchangeable. Let us discuss the

example of the sequence Â, B̂, and Ĉ. To find a simplest
sufficient condition of complete interchangeability, we require
that the superoperators Âc, B̂c, and Ĉc in Eq. (7) all commute.
Take, e.g., the identity [Âc,B̂c]Ô = 1

4 [[Â,B̂],Ô], which says
that Âc and B̂c commute if [Â,B̂] is a c number. Therefore
the interchangeability of the three WMs is ensured if all
three commutators [Â,B̂], [Â,Ĉ], and [B̂,Ĉ] are c-number.
In the general case, the order of WMs within the sequence
Â1,Â2, . . . ,Ân becomes irrelevant if

[Âk,Âl] = c-number (k,l = 1,2, . . . ,n). (14)

This is not necessary, just a sufficient condition of complete
interchangeability of the n WMs. Under this condition, the
stepwise symmetrization on the rhs of Eq. (10) reduces to
symmetrization,

MA1A2 · · ·An = 〈SÂ1Â2 · · · Ân〉ρ̂ , (15)

where S stands for symmetrization of the operator product
behind it.

Canonical observables. The conditions (14) hold typically
for the linear combination of canonical variables, e.g., for the
choice,

Âk = ukq̂ + vkp̂ (k = 1,2, . . . ,n), (16)

where [q̂,p̂] = i. Then symmetrization S is nothing else than
Weyl ordering. Since the Weyl-ordered correlation functions
of canonical variables q̂,p̂ or of their linear combinations,
such as on the rhs of Eq. (15) coincide with the corresponding
correlation functions (moments) calculated from the Wigner
function W (q,p) of ρ̂, we conclude that the rhs can be rewritten
in terms of Wigner function correlations,

MA1A2 · · ·An =
∫

W (q,p)A1A2 · · · Andq dp

≡ 〈A1A2 · · · An〉W . (17)

This means that, for sequential WMs of canonical observables,
the generic quasidistribution (12) is redundant for n > 2, its
role is taken over by the Wigner quasidistribution. The coin-
cidence p0(q,p) = W (q,p) in the special case n = 2, Â1 =
q̂, Â2 = p̂ was recognized in Ref. [6].

Suppose, for instance, we perform two WMs of q̂ with
outcomes q1,q2 and two WMs of p̂ with outcomes p1,p2. Then
independent of the orders of the four WMs, a sufficiently large
statistics of outcomes allows us to determine all second-order
moments of the Wigner function,

〈q2〉W = Mq1q2,

〈p2〉W = Mp1p2, (18)

〈qp〉W = Mq1p1 = Mq1p2 = Mq2p1 = Mq2p2,

as well as a few higher-order ones 〈q2p〉W, 〈qp2〉W, 〈q2p2〉W ,
and, of course, the first-order moments 〈q〉W,〈p〉W too.

Spin- 1
2 observables. Sequential measurement of spin- 1

2
observables is exceptional: Eq. (10) is valid no matter if the
measurements are weak, ideal (strong), or even alternating
within the sequence between the two extreme strengths.
Consider the following choice of observables:

Â1 = σ̂1, Â2 = σ̂2, . . . ,Ân = σ̂n, (19)
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where σ̂k is the polarization parallel to the unit vector 	ek for
k = 1,2, . . . ,n. Denote the measurement outcomes by A1 =
σ1, A2 = σ2, etc., and invoke Eq. (10) for them,

Mσ1σ2 · · · σn = 1

2n
〈{σ̂1,{σ̂2,{ · · · {σ̂n−1,σ̂n} · · · }}}〉ρ̂ . (20)

To confirm it for strong measurements as well, we introduce the
projectors P̂± = 1

2 (1 ± σ̂ ) diagonalizing the Pauli polarization
matrix σ̂ . The standard expression for sequential strong
measurements reads

Mσ1σ2 · · · σn = tr
∑

σn=±1

σnP̂
(n)
σn

· · ·
[ ∑

σ2=±1

σ2P̂
(2)
σ2

( ∑
σ1=±1

σ1P̂
(1)
σ1

ρ̂P̂ (1)
σ1

)
P̂ (2)

σ2

]
· · · P̂ (n)

σn
. (21)

Observe the identity
∑

σ=± σ P̂σ ÔP̂σ = 1
2 {σ̂ ,Ô} valid for

auxiliary 2 × 2 matrices Ô, and apply it n times. We obtain
Eq. (20). Evaluating its rhs yields

Mσ1σ2 · · · σn =
{

(	e1	e2)(	e3	e4) · · · (	en−1	en), n even,

〈σ̂1〉ρ̂(	e2	e3) · · · (	en−1	en), n odd.
(22)

Outcome correlations of n-sequential WMs on a spin- 1
2

system coincide exactly with the correlations obtained from
strong measurements of the same sequence. Correlations are
kinematically constrained by the chosen directions of polar-
ization measurements. For n even, correlations are completely
determined by the single mean 〈σ̂1〉ρ̂ and just independent of
the premeasurement state ρ̂ if n is even.

WMs with postselection. So far, we have established the
general features of outcome statistics in sequential WMs with-
out postselection. Including postselection requires straightfor-
ward modifications. For mixed state postselection [1,8], the
statistics (6) of the ABC-sequential WM modifies, such as this,

pa(A,B,C|�̂)

= tr{�̂ρ̂a(A,B,C)}
tr{�̂ρ̂}

= tr{�̂Ga(C − Ĉc)Ga(B − B̂c)Ga(A − Âc)ρ̂}
tr{�̂ρ̂} , (23)

where 0 � �̂ � 1. Accordingly, the postselected mean (7),
i.e., the mean restricted for the postselected subset ABC|psel

of ABC, becomes

MABC|psel = 1

8
〈{Â,{B̂,{Ĉ,�̂}}}〉ρ̂/〈�̂〉ρ̂ . (24)

The general result must be the following:

MA1,A2, . . . ,An|psel = 〈{Â1,{Â2, . . . ,{Ân,�̂} · · · }}〉ρ̂
2n〈�̂〉ρ̂

.

(25)
In the basic case, both initial and postselected states
are pure states, and we are going to take this option:
ρ̂ = |i〉〈i|, �̂ = |f 〉〈f |. Then, following Mitchison et al. [9],
we introduce the sequential weak values,

(A1,A2, . . . ,An)w = 〈f |ÂnÂn−1 · · · Â1|i〉
〈f |i〉 , (26)

and rewrite Eq. (25) in time-symmetric form [9]

MA1,A2, . . . ,An|psel

= 1

2n

∑
(Ai1 ,Ai2 , . . . ,Air )w(Aj1 ,Aj2 , . . . ,Ajn−r

)�w, (27)

where the summation is understood for all partitions
(i1,i2, . . . ,ir ) ∪ (j1,j2 · · · jn−r ) = (1,2, . . . ,n) where i’s

and j ’s remain ordered. Degenerate partitions r = 0,n too
must be counted. Certain options of reduction, shown above
for sequential WMs of canonical or spin- 1

2 observables, may
still survive postselection, and here we are not going to discuss
them. We show a particular anomaly, not present in single
postselected WM but present in sequential WMs, even for the
simplest ones.

Reselection. Consider the special case |i〉 = |f 〉 of posts-
election, and call it reselection. In the case of a single WM,
reselection is equivalent with no postselection,

MA = MA|rsel = 〈Â〉ρ̂ . (28)

Since WMs are considered noninvasive, we expect that the
postmeasurement state does not differ from initial state |i〉 in
the WM limit and the reselection rate tends to 1 hence the
discarded outcomes would not alter the statistics. No doubt,
this is the case for a single WM. As for sequential WMs,
however, a glance at (27) shows that reselection does not yield
equivalent results with no postselection (10). Even the simplest
sequential WM will illustrate the anomaly. We consider two
WMs, moreover, we consider the case when Â1 = Â2 = Â,
i.e., we weakly measure Â twice in a row, yielding outcomes
A1 and A2, respectively. Without postselection, Eq. (10) and
with reselection Eq. (27) yield, respectively,

MA1A2 = 〈i|Â2|i〉, (29)

MA1A2|rsel = 1

2
〈i|Â2|i〉 + 1

2
(〈i|Â|i〉)2. (30)

Reselection decreases MA1A2 by half of the squared quantum
uncertainty (�A)2 in state |i〉,

MA1A2 − MA1A2|rsel = 1

2
(�A)2. (31)

This is an unexpected anomaly. The reason must lie in
the contribution of outcomes discarded by reselection, i.e.,
MA1A2|disc × (discard rate) → 1

2 (�A)2 must be satisfied.
As an example, consider a spin- 1

2 system in the upward
polarized initial state |i〉 = | ↑〉. Let us begin with a single WM
of σ̂ ≡ σ̂x with outcome σ1. The contribution of the discarded
outcomes reads

Mσ1|disc = 〈↓|[ exp
( − 1

8 σ̂ 2
�/a2

)
σ̂c|↑〉〈↑|]|↓〉

〈↓|[ exp
( − 1

8 σ̂ 2
�/a2

)|↑〉〈↑|]|↓〉 , (32)

where we use the exact expression of the post-WM state with
the exponential factor as in Eq. (4) otherwise we get 0 for the
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rate of discarded events. This rate is just the denominator in
the above fraction, yielding ∼ 1

4a−2 asymptotically. This rate
goes to zero in the WM limit, but Mσ1|disc vanishes anyway
since the numerator is zero identically. Now, let us weakly
measure σ̂ ≡ σ̂x twice in a sequence, yielding outcomes σ1,σ2.
Since the quantum spread is �σx = 1 in state |↑〉, we have
to prove that in reselection the contribution of the discarded
events satisfies Mσ1σ2|disc × (discard rate) → 1

2 . Its analytic
form can be written as

Mσ1σ2|disc = 〈↓|[ exp
( − 1

4 σ̂ 2
�/a2

)
σ̂ 2

c |↑〉〈↑|]|↓〉
〈↓|[ exp

( − 1
4 σ̂ 2

�/a2
)|↑〉〈↑|]|↓〉 . (33)

The denominator yields rate ∼ 1
2a−2 of discards, and it is

vanishing in the WM limit. The exponential factor in the
numerator can be neglected in the WM limit, and we get the
following result:

Mσ1σ2|disc = 2a2〈↓|(σ̂ 2
c |↑〉〈↑|)|↓〉

= 2a2 1

4
〈↓|{σ̂ ,{σ̂ ,|↑〉〈↑|}}|↓〉

= a2. (34)

As we see, the correlation of two subsequent σ̂x polarization
WMs diverges on the discarded events in reselection. This is in
itself a different and stronger anomaly than the paradigmatic
large but finite mean values obtained in single WMs with post-
selection [2]. What we wished to confirm here is that the diver-
gent mean a2 compensates the vanishing rate 1

2a−2 to yield the
finite contribution 1

2 of the discarded outcomes in reselection.
Summary and discussion. Superoperator formalism has

helped us to determine the correlation functions of sequential
WMs in terms of the quantum expectation values of the step-
wise symmetric product of the corresponding observables. The
condition of interchangeability of WMs within the sequence
has been found. Canonical variables are interchangeable,
and without postselection their WM correlation functions
coincide with the corresponding correlation functions of the
Wigner function. It follows from our result how all nth-order
correlation functions (moments) of the Wigner function can,
in principle, be determined directly on the outcome statistics

of the sequence of n WMs. This makes sequential WMs a
tool of direct quantum state tomography (limited normally
by the highest available order n in a given experiment).
Sequential WMs may demonstrate quantum paradoxes since
the negativity of the Wigner function leads to nonclassical
statistics of sequential WMs, such as in Ref. [6], see also
Ref. [10]. Earlier suggestions associated outcomes of single
postselected WMs with Bohmian velocities [11]. As for the
outcomes of sequential WMs, our result suggests Wigner
phase space coordinates as the natural interpretation. (This
interpretation proves to be universal if the sequential WM
of spin- 1

2 observables is related to the Wigner function in the
Grassmann variables introduced in Ref. [12], an issue we leave
open here.) Spin- 1

2 observables behave very differently. Two
polarization WMs yield no new information at all compared
to single measurements since the correlation is determined by
the angle between the two polarizers and independent of the
quantum state, just like for two strong (ideal) polarization
measurements. This is more than resemblance. We found
that a sequence of n weak or, alternatively, strong spin- 1

2
measurements yield identical n-order correlation functions,
respectively.

Finally, we studied the marginal case |f 〉 = |i〉 of postselec-
tion which we called re-selection and found that in sequential
WMs it is not equivalent with lack of postselection. This
means that in sequential WMs with reselection the discarded
statistics matters however close we are to ideal WMs. This
unexpected effect roots in a novel weak value anomaly this
time referring to the anomalous (divergent) value of the
weakly measured (i.e., in sequential WM) autocorrelation on
the statistics discarded by reselection. This phenomenon is
a robust feature of sequential WMs, and it is not tractable
in terms of standard weak values. As an example, we have
shown that the correlation of outcomes in double WMs of σ̂x

in the preselected state |i〉 = |↑〉 and postselected on |f 〉 = |↓〉
will diverge whereas any correlation larger than ‖σx‖2 = 1 is
counterintuitive.
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