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Abstract
Thirty years ago, the present author discussed the pure state unraveling 
(stochastic quantum trajectories) of Markovian open system dynamics. The 
fact that he considered all positive dynamics, not restricted to the Lindblad–
Gorini–Kossakowski–Sudarshan complete-positive subclass, has remained 
unnoticed so far. We emphasize the importance of the transition-rate-operator 
W and the merit of the invariant (representation-independent) approach. From 
the urtexts we point out the condition W 0⩾  of positive dynamics, the extension 
of quantum state diffusion for positive dynamics, and as a major new result, 
the description of all the diffusive unravelings of positive dynamics.
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Introduction

In 1986 and 1988, the present author published two papers [1, 2] on what later became known 
as stochastic quantum trajectories [3] and quantum state diffusion [4], which are now standard 
methods for open quantum systems [5]. Both papers considered the master equation for the 
density operator ρ of the Markovian open quantum systems:

ρ ρ=˙ ,L (1)

requiring positive dynamics, i.e. that the superoperator L conserve the positivity of ρ. Then, 
stochastic Schrödinger equations  (SSEs) were constructed to generate pure state solutions 
(quant um trajectories) ψ, constituting the so-called stochastic unraveling dynamics (1). This 
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means that the stochastic average of the quantum trajectories must yield the ensemble density 
operator

ψψ ρ=†E (2)

which is the solution of the master equation (1).
The seminal works of Lindblad [6] and Gorini et al [7] were mentioned, but the dynamics 

was not restricted to that of the complete-positive (CP) variety. Hence, the Lindblad–Gorini–
Kossakowski–Sudarshan structure

ρ ρ ρ ρ= − + −α α α αH F F F F˙ i ,
1

2
,[ ] { }† † (3)

was not assumed. (Here and henceforth the Einstein convention of summation for repeated 
indices is used.) No particular representation of the master equation (1) was introduced at all. 
All the results were derived and explained in terms of the superoperator L, all results were 
representation-independent, i.e. invariant, and all results were valid for positive, not necessar-
ily CP, dynamics (1).

Since the typical Markovian open quantum systems satisfy the CP master equation  (3), 
all standard works on quantum trajectories in general, and on quantum state diffusion (QSD) 
[3–5] in particular, have imposed the structure (3). Perhaps the only exception was Gisin’s 
paper in 1990 [8], which determined all the diffusive quantum trajectories for all the positive 
2D Markovian dynamics, including those of the non-CP variety. The jump unraveling of a 
non-CP master equation in 2D appeared next only in [9]. Very recently, a detailed work [10] 
has extended QSD for non-CP master equations.

Below we are going to recapitulate the cornerstones of the urtexts [1, 2] to emphasize the 
merit of the invariant approach and to unearth the unnoticed results.

Positive dynamics

Diósi [1] understands that the conservation of ρ’s positivity is guaranteed if it holds for any 
pure initial state differentially in time. Hence, in infinitesimal time td  any pure state must 
evolve into a non-negative density matrix:

ψψ ψψ ψψ+ ≡ +t tL0 d d ,⩽ ( )† † †L (4)

where ψψ=L ( )†L  is a useful shorthand notation. The central object, related to the superop-
erator L, is the transition rate operator:

ψψ ψψ= − +W L L L, ,{ }† † (5)

with the notation ψ ψ=L L† . The other central object is the frictional Hamiltonian satisfying

ψ ψ− = −H L Li .fr ( ) (6)

Hfr is non-linear and non-Hermitian, but a norm-conserving Hamiltonian. The term to ensure 
normalization coincides with the total transition rate = = −w W LTr , as it follows from 
equation (5). By substituting equations (5) and (6) on the rhs of the master equation (1), the 
time-derivative of an initial pure state density operator ρ ψψ= † takes the form

ρ ρ ρ ρ= − + + −H i H W w˙ i .fr fr
† (7)

Accordingly, the inequality (4) takes this form:

ψψ ψψ ψψ ψψ− + + −H t i H t W t w t0 i d d d d .fr fr⩽ † † † † † (8)
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Since ψ ψ= =W W 0†  by construction (5), the above inequality is equivalent to the non-nega-
tivity of the transition rate operator:

W 0,⩾ (9)

which is understood in [1]—where the non-negativity of W is taken for granted—as the neces-
sary and sufficient condition on the superoperator L to conserve the positivity of ρ. This theo-
rem is explicitly stated and derived in [10], starting from the oldest conditions of Kossakowski 
[11], which were mentioned in [2] in the following invariant form. The dynamics (1) is posi-
tive if the operator ψψ=L ( )†L  satisfies

ψ ψ ψ ψ⊥ ⊥L L0, 0⩽    ⩾† (10)

for any pair of orthogonal pure states ψ ψ⊥, . As pointed out correctly in [10], these conditions 
are equivalent to the positivity (9) of the transition rate operator.

Quantum state diffusion

Based on the decomposition (7) of the master equation (1), a jump (piece-wise deterministic) 
process was constructed in [1], unraveling the generic CP as well as all positive dynamics both 
for the first time. Below we concentrate on the diffusive unravelings.

When the state vector ψ is subject to diffusion, it turns out from (7) that a correct unrave-

ling can be obtained if the drift velocity of ψ is ψ ψ− +H wi fr
1

2
( )  and the matrix of diffusion is 

W. In a given basis numbered by lower-case Latin indices running from 1 to N, the probabil-

ity distribution p of the complex amplitudes ψ ψ,n n{ }�  satisfies the following Fokker–Planck  
equation, as shown in [2]:

( )
ψ

δ ψ

ψ ψ

=
∂
∂

+ +

+
∂

∂ ∂ �

p H w p

W p

˙ i
1

2
c.c.

.

n
nm nm m

n m
nm

fr,

2 
(11)

Now we digress from the urtexts [1, 2]. As is well known from mathematics, a Fokker–
Planck equation is always equivalent to a stochastic differential equation. Percival and Gisin 
considered the CP subclass (3) of master equations and proposed the following Ito-SSE [4]:

⎜ ⎟
⎛
⎝

⎞
⎠ψ ψ

ψ ξ

= − + − −

+ −

α α α α α α

α α α
�

H F F F F F F t

F F

d i
1

2

1

2
d

d ,( )

† †

 
(12)

where each ξα is a standard Hermitian white-noise process with the correlations

ξ ξ δ ξ ξ= =α β αβ α βtd d d , d d 0,  �
 (13)

and with ξ =αd 0E . One can inspect that the drift part on the rhs of (12) is indeed 

ψ ψ− +H wi fr
1

2
( ) , while the correlation of the diffusive part yields

( ) [( ) ]

( ) ( )

†

† † †

ψ ξ ψ ξ

ψψ

− −

= − − =

α α α α α α

α α α α

� �F F F F

F F F F t W t

d d

d d
 

(14)

as it should do.
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The equations  (12) and (13) became the standard representation of QSD. The Fokker–
Planck representation (11), valid beyond CP dynamics, went forgotten for several reasons. 
First, visualization of the stochastic quantum trajectories is more direct in terms of SSEs. 
Second, the SSEs serve directly for Monte-Carlo to simulate the solutions of the CP mas-
ter equation  (3). Third, SSEs treat diffusion in finite and infinite dimensions equally well 
mathematically. Nonetheless, we emphasize the merit of the Fokker–Planck representation, 
which only depends on the superoperator L and is thus explicitly invariant against the equiva-
lence transformations of the CP structure. This invariance is less obvious on the standard 
 equations (12) and (13), although one can directly prove it [4].

But back to the main point: the Fokker–Planck form of QSD is, as we said, valid for all 
positivity-conserving master equations, even if their CP representation does not exist. The 
equivalent SSE reads

⎜ ⎟
⎛
⎝

⎞
⎠ψ δ ψ χ= − + +H w td i

1

2
d dn nm nm m nfr, (15)

where χn are W-correlated Hermitian white-noise processes:

χ χ χ χ= =W td d d , d d 0,n m nm n m  �
 (16)

while χ =d 0nE . As we said, this form is representation-independent, only depending on the 
invariant operators Hfr and W. If we prefer a form with standard Hermitian white-noise pro-
cesses, resembling standard CP-QSD equations (12) and (13), we decompose W into the mix-

ture of (not necessarily normalized) pure states orthogonal to ψ: ϕ ϕ= α α⊥ ⊥W † . Then the SSE 
reads

ψ ψ ϕ ξ= − + + α α⊥H w td i
1

2
d d( ) � (17)

where the ξα satisfy (13). It is advisable for the ϕ α⊥  to be linearly independent. Caiaffa et al 
[10] took the spectral decomposition of W to define (N  −  1) states ϕ α = … −α⊥ N; 1, 2, , 1,{ } 
orthogonal to each other (and to ψ).

All diffusive quantum trajectories

It is straightforward to find all diffusive unravelings of positive dynamics (1) if we start from 
the invariant form of QSD (15, 16). Observe that the ensemble average (2) of the quantum 
trajectories depends on the Hermitian correlations of the noises, it is independent of χ χd dn m. 
We can make the χn correlate with themselves, generalizing (16):

χ χ χ χ= =W t S td d d , d d d ,n m nm n m nm  �
 (18)

although we get diffusive unravelings of the same superoperator L. While QSD corresponds 
to ≡S 0nm , the matrix Snm uniquely characterizes all diffusive unravelings, under the only con-
straint that the total correlation matrix of the noises must be non-negative:

⎜ ⎟
⎛

⎝
⎜

⎞

⎠
⎟ ⎛

⎝
⎞
⎠

χ χ χ χ
χ χ χ χ

= W S
S W

d d d d

d d d d
0.⩾

†

† † † † (19)

If we start from the non-invariant representation (17, 13) of QSD, the general diffusive 
unravelings are characterized by the correlations

J. Phys. A: Math. Theor. 50 (2017) 16LT01



5

ξ ξ δ ξ ξ= =α β αβ α β αβt s td d d , d d d ,  �
 (20)

with the constraint s 1∥ ∥ ⩽ . Note that [12, 13] have obtained this result for the restricted class 
of CP dynamics. Rigo et al [12], citing Gisin’s finding of all diffusive unravelings for 2D 
positive dynamics [8], anticipated that it might be be done in arbitrary dimensions. This has 
been done now. Wiseman and Diósi [13] had a different merit: they started from the invariant 
decomposition (7) of the dynamics (1). This decomposition shows explicitly that the only 
constraint on the stochastic increment ψd  of a diffusive quantum trajectory reads

ψ ψ = W td d d†

whereas ψ ψd d  is free. It is of course possible to derive correct SSEs in many ways, in par-
ticular representations, although the invariant method results in shorter calculations and better 
insights.

Closing remarks

This time we have not intended to discuss the relevance or physical interpretation of the unrav-
elings itemized in table 1. (For CP diffusive SSEs, [13] gave an exhaustive answer in terms of 
the monitoring and control of ψ, see [14] on the most recent QSD interpretations.) The role of 
non-CP dynamics in physics is not yet fully understood. The theory of their unraveling might 
get us closer to an interpretation.
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