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Solution of free particle quantum master equation with spatial decoherence can be unravelled into 
stochastic quantum trajectories in many ways. The first example (Diósi, 1985) proposed a piecewise 
deterministic jump process for the wave function. While alternative unravellings, diffusive ones in 
particular, proved to be tractable analytically, the jump process 1985, also called orthojump, allows 
for few analytic results, it needs numeric methods as well. Here we prove that, similarly to diffusive 
unravellings, it is localizing the quantum state.

© 2017 Elsevier B.V. All rights reserved.
1. Introduction

A single Schrödinger particle becomes a simple open quantum 
system if the particle is interacting with a thermal reservoir. Its dy-
namics is given by a master equation which can take the following 
simple form valid typically at high temperatures:

dρ̂

dt
= − i

h̄
[Ĥ, ρ̂] − D

h̄2
[x̂, [x̂, ρ̂]], (1)

where Ĥ = (p̂2/2m) is the particle’s Hamiltonian, x̂, p̂ are its co-
ordinate and momentum resp., and D is the diffusion constant. 
Joos and Zeh suggested this equation as the simplest model of 
spatial decoherence [1] while at the time similar single particle 
master equations were known from various fields, cf., e.g., [2,3]. 
The Wigner function of ρ̂ satisfies

dρ(x, p)

dt
= − p

m
∂xρ(x, p) + D∂2

pρ(x, p), (2)

which coincides with the classical Fokker–Planck–Kramers equa-
tion [4] in the high-temperature (diffusion dominated, frictionless) 
limit. This elucidates the importance of the master equation (1) as 
the quantized version of momentum diffusion. Accordingly, D is 
the coefficient of spatial decoherence as well as of momentum 
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diffusion: the two effects are alternative interpretations of the non-
Hamiltonian mechanism in the master equation. It is well-known 
that the classical diffusion (2) can be equivalently described by 
random trajectories (xt , pt) in phase space. The same concept ap-
plies to the master equation (1) as well. The stochastic quantum 
trajectories are featured by state vectors Ψt evolving by a stochas-
tic process such that the stochastic mean

MΨtΨ
†

t = ρ̂t (3)

satisfies the master equation (1). Then the quantum trajectories Ψt

are said to unravel the master equation.
The unravelling is never unique, one can choose diffusive unrav-

ellings, jump unravellings, or even their combinations. The earliest 
unravelling was the orthojump process [5]. It turned out subse-
quently that any master equation possesses a standard jump and 
a standard diffusive unravelling [6]. All possible diffusive unravel-
lings can be parametrized uniquely [7,8], each of them corresponds 
to a given structure of time-continuous monitoring the system in 
question [8]. Similar classification is still missing for jump unrav-
ellings.

While quantum trajectories became instrumental soon for 
quantum optics [9–11], their invention happened earlier in studies 
of foundations. In the nineteen-eighties, diffusive quantum trajec-
tories were invented by Gisin to model quantum state collapse 
in a discrete system [12]. One of the present authors constructed 
jump [5] and diffusive [13] unravellings of the master equation (1)
for his gravity-related spontaneous state collapse theories [14]
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and [15], respectively. (On three decades of various spontaneous 
collapse theories, all based on unravellings, see the recent review 
by Bassi et al. [16].)

Analytic proof was found for the wave function localization in 
diffusive quantum trajectories [17]. The wave function is approach-
ing a steady localized shape for long times, as we recapitulate it 
below. Localization in the specific jump unravellings [5] has, how-
ever, never been studied. The problem is more complicated than 
the diffusive case because jumps will never allow for a steady 
shape. An analytic proof of localization has not yet been found, 
we shall rely on numeric (Monte-Carlo) simulations. Jump quan-
tum trajectories of spatial decoherence were carefully studied by 
Gisin and Rigo [18], and in a sequence of works by Hornberger and 
co-workers [19–21] for modifications of the master equation (1)
which included friction. Due to friction, quantum trajectories did 
reach a localized steady shape, calculable analytically. The effect 
and proof was bound to the presence of friction. Localization in 
the frictionless case (1) has remained to be studied in the present 
work.

We are going to study localization of quantum trajectories in 
both position and momentum. Consider the unitary transformation 
of a state Ψ to its centre-of-mass frame:

Ψ̃ = exp
(
i
〈
x̂
〉

p̂ − i
〈
p̂
〉
x̂
)
Ψ, (4)

where the centre-of-mass state satisfies 〈Ψ̃ |x̂|Ψ̃ 〉 = 0 and 〈Ψ̃ |p̂|Ψ̃ 〉
= 0 by construction. Now we can define the centre-of-mass den-
sity matrix as follows:

MΨ̃tΨ̃
†

t = ˆ̃ρt . (5)

This matrix is non-negative and of unit trace, like common density 
matrices. Its evolution, however, is non-linear, completely different 
from the master equation (1) of the common density matrix ρ̂t . 
Since ˆ̃ρt is unravelling specific, we can use it to characterize the 
unravelling specific average localization of quantum trajectories 
Ψt around their individual centre-of-mass 

〈
x̂
〉
t , 

〈
p̂
〉
t . We can de-

fine centre-of-mass (squared) spreads by (�̃x)2 = Tr(x̂2 ˆ̃ρ) and by 
(�p̃)2 = Tr(p̂2 ˆ̃ρ).

2. Diffusive unravelling

Following [13,17], consider the stochastic Schrödinger equation 
[17]:

dΨ = − i

h̄
ĤΨ dt − D

h̄2
(x̂ − 〈

x̂
〉
)2Ψ +

√
2D

h̄
(x̂ − 〈

x̂
〉
)Ψ dW , (6)

where dW is the Ito-differential of the Wiener stochastic process, 
satisfying MdW = 0, (dW )2 = dt . The solutions satisfy the condi-
tion (3) of unravelling. For long time, the centre-of-mass solutions 
converge to the following complex Gaussian wave packet:

Ψ̃∞(x) = 1

(2πσ 2∞)1/4
exp

(
−(1 − i)

x2

4σ 2∞

)
(7)

of squared width

σ 2∞ =
√

h̄3

2Dm
. (8)

According to (7), the centre-of-mass density matrix (5) turns out 
to converge to a pure state:

ˆ̃ρ∞ = Ψ̃∞Ψ̃
†∞. (9)

The coordinate and momentum spreads are given by

(�̃x)2 = σ 2∞, (�p̃)2 = h̄2

2
. (10)
2σ∞
Asymptotic localization is thus the analytically calculable feature 
of the diffusive quantum trajectories of the simple spatial decoher-
ence master equation (1). The centre-of-mass of ˆ̃ρ∞ is performing 
the following diffusive motion:

d
〈
x̂
〉 = 1

m

〈
p̂
〉
dt +

√
2h̄

m
dW , d

〈
p̂
〉 = √

2DdW . (11)

Observe that the diffusion of the momentum is the classical one. 
On the contrary, the diffusion of the coordinate cannot happen 
classically, it is purely quantum.

It may be interesting to see how simple is to recover the com-
mon density matrix ρ̂t in the specific case when we have Ψ0 = Ψ̃∞
initially. Only we have to solve the stochastic equations (11) with 
the initial laboratory values 

〈
x̂
〉
0 = 〈

p̂
〉
0 = 0, and apply (12) to con-

struct Ψt is the laboratory:

Ψt = exp
(−i

〈
x̂
〉
t p̂ + i

〈
p̂
〉
t x̂

)
Ψ̃∞. (12)

Then we recover the common density matrix via (3).

3. Orthojump unravelling

For the sake of comparison with the diffusive unravelling, let 
us cast the jump unravelling of [5] into the form of a stochastic 
Schrödinger equation:

dΨ = − i

h̄
ĤΨ dt − D

h̄2
[(x̂ − 〈

x̂
〉
)2 −σ 2]Ψ dt +

(
x − 〈

x̂
〉

σ
− 1

)
Ψ dN,

(13)

where σ 2 = 〈(x̂ − 〈
x̂
〉
)2〉. dN stands for the Ito-differential of a 

Poisson process, satisfying MdN = 2Dσ 2dt , (dN)2 = dN . This equa-
tion corresponds to a piece-wise deterministic evolution of Ψt , 
interrupted by jumps at random times. In elementary terms, the 
mechanism is the following. Consider the deterministic non-linear 
Schrödinger equation

dΦ

dt
= − i

h̄
ĤΦ − D

h̄2
[(x̂ − 〈

x̂
〉
)2]Φ. (14)

[Note that this equation coincides with the deterministic part of 
the diffusive stochastic Schrödinger equation (6) and they share 
Ψ̃∞ (7) as (normalized) steady-shape centre-of-mass solution.] 
Solve this non-linear Schrödinger equation for the initial condition 
Φ0 = Ψ0 and define the physical quantum state by Ψt = Φt/‖Ψt‖. 
Note that the norm of Φ is strictly decreasing:

d‖Φ‖2

dt
= −2D

h̄2
σ 2. (15)

The probability of jump-free deterministic evolution is decreasing 
exactly with the norm ‖Φ‖2, i.e., the probability rate of jump is 
(2D/h̄2)σ 2. When a jump occurs, the smooth deterministic evolu-
tion of Ψ/‖Ψ ‖ is interrupted by the sudden change

Φ −→ (x̂ − 〈
x̂
〉
)Φ, (16)

rendering the new state orthogonal to what it was before the jump 
(cf. also [11]). After the jump, the deterministic evolution (14) re-
starts and continues until the next jump, etc.

4. Numeric tests of orthojumps

We have performed MC simulations of 15000 orthojump quan-
tum trajectories. With suitable choice of physical units, we can 
always take trivial parameters h̄ = m = D = 1 and that is what we 
did. Discretized position coordinate x ∈ (−5, +5) into 256 bins, the 
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time increment was 0.00075. We chose the pure state (7) deliber-
ately as the initial pure state for (1). The centre-of-mass orthojump 
trajectories Ψ̃t , similarly to the diffusive ones, are going to forget 
the initial state after t 
 1. Furthermore, the asymptotic state of 
the centre-of-mass diffusive trajectory (7) can be a good reference 
state numerically since orthojump wave packets are supposed to 
fluctuate (to “breath”) not very far from it.

While analytic solutions for individual trajectories are not (yet) 
known, the analytic solution of the master equation (1) is easy [22,
23], especially for Gaussian initial states [24]. To check the robust-
ness of our MC simulation, we shall compare the MC-simulated 
density matrix ρ̂MC to the analytic solution ρ̂ of the master equa-
tion (1).

The analytic solution in coordinate representation reads:

〈x| ρ̂t |y〉 = 1√
2πΣ(t)

exp

{
− 1

8Σ2(t)
(x + y)2

− 1 + 2
√

2t + 2t2 + 2
√

2
3 t3 + 1

3 t4

8Σ2(t)
(x − y)2

− i
1 + √

2t + t2

4Σ2(t)
(x2 − y2)

}
(17)

where the squared spatial spread is

Σ2(t) = 1√
2

+ t + t2

√
2

+ t3

3
. (18)

With the same initial pure state, we MC-generated 3 × 5000 quan-
tum trajectories {Ψ (n)

t ; n = 1, 2, . . . , 15000} and determined ρ̂MC,t
numerically:

〈x| ρ̂MC,t |y〉 = 1

N

N∑
n

Ψ
(n)

t (x)Ψ (n)∗
t (y), (19)

where N stands for the number of trajectories (not to be confused 
with the Poisson process N in Sec. 3): Displaying its normalised 
distance(

Tr(ρ̂ − ρ̂MC )2
)1/2

(Trρ̂2)1/2
(20)

from the analytic ρ̂t (17) in the range t ∈ (0, 5). Data taken on 
three independent statistics of 5000 trajectories verify that statisti-
cal errors stay about the order of 0.001. This suggests a decent 
stability and precision of simulation on the unified statistics of 
15000 trajectories (Fig. 1). For qualitative comparison, Fig. 2 shows 
the MC-simulated Wigner function and the exact one at t = 5. 
These checks confirm that 15000 trajectories will suffice to test 
the basic feature of interest: localization by orthojump unravelling.

We determined the centre-of-mass density matrix

〈x| ˆ̃ρC M,t |y〉 = 1

N

N∑
n

Ψ̃
(n)

t (x)Ψ̃ (n)∗
t (y) (21)

on three increasing statistics. Our main results are shown in 
Fig. 3, where the time-evolution of spatial and momentum spreads 
�̃x, �p̃ are displayed for t ∈ (0, 5). Initial values are known an-
alytically: �̃x0 = �p̃0 = 1/21/4 ≈ 0.84. For times longer than the 
characteristic time scale 1 (when h̄ = m = D = 1) of the master 
equation (1), localization takes place asymptotically, both in coor-
dinate and momentum. Both �̃x and �p̃ converge to constants, 
their conservative estimates are

�̃x∞ = 1.62 ± 0.01, �p̃∞ = 1.63 ± 0.01. (22)

The errors ±0.01 mark a loose upper-bound on fluctuations of the 
flat parts of the simulated curves in Fig. 3.
Fig. 1. Normalized distance 
√

Tr(ρ̂MC − ρ̂)2/
√

T r(ρ̂2) between MC-simulated den-
sity matrix ρ̂MC and the exact ρ̂ in the time interval t ∈ (0, 5), taken on three-
times 5000 trajectories (solid, dot, dash, resp.), and on the overall 15000 trajectories 
(lower solid).

This is the first numeric evidence, in lack of analytic ones, for 
localization of orthojump trajectories in frictionless spatial deco-
herence.

5. Summary

We have studied the localization of wave function in orthojump 
unravelling of the simplest and paradigmatic spatial decoherence 
master equation of a free particle. Localization in diffusive unrav-
ellings became proven analytically long ago. This time we were 
able to prove and calculate localization of the orthojump unravel-
ling — using MC simulations. We used 15000 MC-simulated quan-
tum trajectories to confirm localization both in coordinate (�̃x) 
and momentum (�p̃), which we demonstrated on the centre-of-
mass density matrix ˆ̃ρ . The obtained numeric values (22) are about 
twice as large as those (10) in diffusive unravelling. Such slightly 
looser localization may be explained heuristically. The asymptotic 
centre-of-mass density matrix ˆ̃ρ∞ contains randomness because 
the centre-of-mass wave function Ψ̃t never ceases to undergo 
jumps, i.e., it is “breathing” at random times, whereas in diffu-
sive unravelling Ψt acquires a constant shape for large t hence ˆ̃ρ∞
does not contain randomness, diffusive features contribute to the 
centre-of-mass motion (11) only.

Our work was restricted for the demonstration of stability and 
localization of the orthojump trajectories for the frictionless deco-
herent dynamics of a Schrödinger particle. Further studies should 
explore more details of orthojump trajectories’ rich structure. Nu-
meric methods seem instrumental. However, similar to the diffu-
sive case (6), a possible power of the Ito formalism (13) remains 
to be explored for analytic calculations.
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Fig. 2. Wigner function solving the master equation (1) in units h̄ = m = D = 1 at t = 5 with initial state (7): analytic solution (left), MC solution on 15000 trajectories (right). 
(For interpretation of the references to colour in this figure, the reader is referred to the web version of this article.)

Fig. 3. Centre-of-mass spreads �̃x (a) and �p̃ (b) in MC-simulated density matrix ˆ̃ρMC in time interval (0, 5), taken on 5000, 10000, and 15000 trajectories. Values are 
overlapping within 0.01.
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