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Roger Penrose and the author share the proposal that the spatial superposition |x1〉 + |x2〉 of a massive
object collapses into its localized components |x1〉 or |x2〉 with the characteristic time h̄/E∆ where E∆ is the
gravitational self-energy excess of the superposition versus the localized states. Underlying arguments of such
radical departure from standard quantum mechanics and different derivations of the rate equation are briefly
recapitulated and discussed.

I. THE COLLAPSE RATE

Microobjects, from elementary particles to giant
molecules, can exist in superpositions of different loca-
tions. As to more massive objects, however, the viola-
tion of standard quantum mechanics has been conjec-
tured from certain purely theoretical speculations. The
proposal concerned here has been surviving three and a
half decades in a status of pure speculation. The over-
lap between Penrose’s and my results is the claim that
the spatial superposition |x1〉+ |x2〉 becomes unstable for
large masses and a random collapse

|x1〉+ |x2〉 ⇒
{
|x1〉 with probability 0.5
|x2〉 with probability 0.5

(1)

happens at rate

1

τ
=
E∆

h̄
, (2)

where τ is the mean lifetime of the superposition and
E∆ is the difference between gravitational self-energies
before and after the collapse (1), respectively, times an
unspecified numeric constant.

After decades of missing experimental evidences pro
or contra, the advent of quantum controlled laboratory
technique opened the era of testability. It is worthwhile
to revisit the theoretical background, the diverse argu-
ments that seem to converge to the above collapse rate.

Secs. II,III attempt to outline the proposals of Penrose
and myself, respectively. Sec.IV discusses my occasional
selection of related issues, followed by closing remarks in
Sec.V.

II. COLLAPSE FROM CONJECTURED KILLING
VECTOR AMBIGUITY

Let me try biefly interpreting Penrose’s concept and
arguments1–3, leading him to the rate (2).
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Consider the center of mass stationary state |x1〉 of
a massive object located at x1 and the stationary state
|γ1〉 of the geometry corresponding to the state |x1〉. The
composite state |x1〉 ⊗ |γ1〉 is also stationary. Now take
the same stationary state just shifted from x1 to x2 and
consider the superposition:

|x1〉 ⊗ |γ1〉+ |x2〉 ⊗ |γ2〉 . (3)

One would expect that this superposition is also station-
ary. Penrose argues that it can not be. Independently of
the details of how γ1 and γ2 represent the two geometries,
they have their own Killing vectors to define stationarity
but they have no single common Killing vector to define
stationarity of the superposition. The equivalence prin-
ciple of general relativity (general covariance, in other
terms) “forbids a meaningful precise labelling of individ-
ual points in a space-time. [...] there is generally no
precise meaningful pointwise identification between dif-
ferent space-times” — says Penrose2 and adds: “all that
we can expect will be some kind of approximate pointwise
identification”.

The “measure of this degree of approximation” is ob-
tained by Penrose in the Newtonian non-relativistic limit
of general relativity. The time coordinate for the two
geometries γ1, γ2 can now be taken the common t, the
Killing vector becomes equivalent to “∂/∂t” while it re-
mains ambiguous because the point-wise identification of
the spatial coordinates x remains ambiguous. Penrose
argues that this ambiguity corresponds to the ambiguity
of free falls determined by the ambiguity of local accel-
erations g = −∇Φ where Φ is Newton’s potential. If
so, then the plausible measure of the ambiguity (uncer-
tainty) will be proportional to the volume integral of the
squared difference of local accelerations:

∆ ∝
∫
|g1(x)− g2(x)|2 d3x . (4)

One expresses g1 by the mass distribution ρ1 in state
|x1〉:

g1 = −∇Φ(x) = −G∇
∫

ρ1(x′)

|x− x′|
d3x′ , (5)

and similarly for g2. The ambiguity, or “uncertainty” ∆,
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divided by G, takes this form:

E∆ =const.×G
∫∫

(ρ1(x)−ρ2(x))(ρ1(x′)−ρ2(x′))

|x− x′|
d3xd3x′

=const.× (U(x1 − x2)− U(0)) , (6)

where U(x1 − x2) is the Newton interaction potential
between ρ1 and ρ2.

The bottom line of the derivation is that the energy E∆

should be considered the energy ambiguity of the super-
position (3) and, as for usual unstable quantum states,
E∆ leads to decay at mean lifetime τ defined in (2).

Later, Penrose supports the role of acceleration g in
the uncertainty measure (4) by an alternative reasoning4.
Consider a mass M in free fall and compare its wave-
functions in the Earth system and in the free-falling
system, respectively. The former has a phase factor
exp(−iMgt3/6h̄). A key part of the new arguments in-
vokes relativistic quantum field theory where the two
wavefunctions would belong to two different vacua, i.e.,
to non-equivalent Hilbert spaces. Although alternative
vacua are irrelevant in the given non-relativistic situa-
tion, as noticed by Penrose, his train of thought may still
hit the target, despite the overlooked triviality of the
phase factor. The strange-looking phase comes simply
from the nonzero time-dependent kinetic energy in the
Earth based frame: Mgt3/6 is the integral of Mgt2/2.

III. COLLAPSE FROM CONJECTURED GEOMETRIC
AMBIGUITY

My approach goes like this. Curvature of space-time
geometry is sourced by the energy-momentum of matter
which is quantized obviously. Hence quantum uncertain-
ties of matter’s behavior should impose uncertainties of
geometry as well. This unsharpness of geometry is thus
unavoidable and depends on h̄, but its details depend on
the model that couples quantized matter and quantized
(or perhaps classical) geometry. Independently of the
model, we might nonetheless estimate the scale of uncer-
tainties transferred from matter to gravity. The concept
is this. The uncertainty of the geometry coincides with
the optimum testability of geometry, using quantized ma-
terial instruments. In particular, considering a network
of quantized free falling test bodies to measure the ge-
ometry, one expects that there is a finite optimum of
measurement precision.

The measure of this precision and the rate (2) is ob-
tained in the Newtonian non-relativistic limit of general
relativity5,6. Let us analyse how precisely the free fall
of a single test mass M encodes the the local accelera-
tion g = −∇Φ. Let the standing initial wave packet of
M have a certain size ∼ r and volume V ∼ r3. Un-
der free fall, r is approximately retained over a period
T ∼ Mr2/h̄. Hence, the test mass encodes the average
acceleration field ḡ over the volume V and time T . The
acquired momentum MḡT , part of the total one, has an

uncertainty h̄/r. Hence ḡ is encoded at the precision

δḡ ∼ h̄

MrT
. (7)

To improve precision, one can not increaseM boundlessly
because M ’s Newton potential contributes to ḡ and im-
poses a further uncertainty

δḡ ∼ GM

r2
, (8)

because of M ’s position uncertainty r. The optimum
value of the test mass M is reached when the above two
uncertainties coincide. Then the optimum precision of
the measurement reads:

δḡ ∼
√
h̄G

V T
. (9)

The factor 1/
√
V T suggests that the uncertainties of g

at different locations and different times are independent.
One can determine the corresponding structure and scale
of uncertainties δΦ of the Newton potential. They remain
independent at different times but become correlated at
different locations. One can inspect that (9) is satisfied
if we choose the following correlation:

〈δΦ(x, t)δΦ(x′, t′)〉 = const.× h̄G

|x− x′|
δ(t− t′) . (10)

Thus we have estimated the due uncertainty of the
Newton potential (i.e.: of the space-time geometry in
the Newtonian limit). It means an uncertainty that is
present even in empty space. It yields the instability
and the decay of the massive superposition (3) because
it dephases the two components7. The time evolution of
|x1〉 contains a phase factor

exp

(
− i
h̄

∫ t

0

δΦ(x, t′)ρ1(x)d3xdt′
)
≡ e−iχ1(t) (11)

and |x2〉 contains e−iχ2 with ρ2 in place of ρ1. One forms
the expectation value of the squared difference of the two
phases. Using the correlation (10) yields

〈(χ1(t)− χ2(t))2〉 = const.× E∆

h̄
t , (12)

where E∆ happens to be the expression (6). Therefore
the decay (i.e.: dephasing) rate of the superposition (3)
coincides with (2).

IV. DISCUSSION

Starting point for both of us, as shown in the pre-
vious two sections, was the the inapplicability of stan-
dard quantization in general relativity. But each of
us could implement his concept in the Newtonian limit
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only. While Penrose kept, correctly, interpreting the non-
relativistic proposal in the context of general relativity, I
was happy to recognize that the Newtonian limit is rich
and self-contained, though one should not forget its roots
and embedding in general relativity.

Our original derivations, outlined in Secs.II and III, are
bearing conceptual and even technical similarities as well
as important disparities. The “uncertainties” responsible
for the decay of massive superpositions was thought com-
ing from the ambiguous Killing vectors (Sec.II) or from
the limited testability of the geometry (Sec.III). Are the
two concepts compatible, complementary, or hopelessly
contradictory? The answer needs further studies beyond
the scope of the present work. I deliberate on two related
things.

A. Exact derivation

The proposed collapse rate (2) is based on dimen-
sional considerations hence it contains a numeric con-
stant which is left undefined. Interestingly, a semiclassi-
cal concept and its mathematical realization8 by Tilloy
and myself confirms the heuristic proposal and makes the
constant unique.

The concept looks radically different from that in
Sec.III but it is related to it intrinsically. Assume that
the distribution of quantized masses is measured every-
where continuously, by hypothetic detectors which are
hidden from, i.e., not part of the physical word. They
are yielding the classical mass distribution ρ as the out-
comes. This ρ is random, like measurement outcomes in
quantum systems used to be. The postulated presence
of such universal and spontaneous measurements serves
the coupling of quantized matter to gravity. The classi-
cal valued ρ, used in ∇2Φ = −4πGρ, yields the classical
Newton potential Φ which is fed back to the Schrödinger
equation of the quantized masses.Now, both the contin-
uous measurement and the stochastic potential Φ cause
decoherence in the quantized material system. Weak (im-
precise) measurement causes low decoherence at the price
of high stochasticity of the outcome ρ yielding high de-
coherence by the feedback. At optimum measurement
precision the total decoherence is the lowest, irrelevant
for atomic systems but relevant for massive ones! Under
it, the superposition (3) will decay exactly at the rate
(2) where E∆ is defined by (6) with the unique prefactor
const. = 1/2.

B. Footprint of Planck scale uncertainty?

It would be reassuring to see that the proposed non-
relativistic “uncertainty”, whether the Killing vector’s
(Sec.II) or the geometry’s (Sec.III), is the non-relativistic
limit of the corresponding Planck scale uncertainty.
Penrose4 talks about “decay after Planck-scale difference
geometry measure” and even conjectures that the de-

cay, according to the formula (2), happens when “two
space-times in superposition differ from one another by
an amount of order unity [...] measured in Planck units”.
To estimate space-time differences, symplectic measure
in linearized gravity is mentioned cursorily. However,
the whole suggestion about connections to Planck scale
is missing any quantitative support, be it heuristic or
approximate.

Interestingly, a certain heuristic support existed even
before Refs.5,7 and was already noticed in them. Unruh9

proposed unusual (non-canonical) commutators between
components of the metric tensor g and the Einstein tensor
G:

[gνµ(x),Gρσ(x′)] = const.× `2Plδρνδσν δ(4)(x, x′) , (13)

with the Planck length `Pl =
√
h̄G/c3 (here x, x′ stand

for space-time coordinates). Unruh’s motivation was a
heuristic non-canonical uncertainty relation between the
00 components averaged over four-volume V (4):

δḡ00(x)δḠ00(x′) ≥ `2Pl
V (4)

, (14)

now a consequence of (13). The Newtonian limit of this
relativistic bound leads to the limit (9) of Sec.III. We
insert δḡ00 = 2c−2δΦ̄ and δḠ00 = (1/2)c−2δ∇2Φ̄, as well
as V (4) = cV T. Quite remarkably, the velocity of light c
cancels:

δΦ̄δ∇2Φ̄ ≥ h̄G

V T
. (15)

With a deliberate (though justifiable) symmetrization
δΦ̄δ∇2Φ̄ ⇒ δ∇Φ̄δ∇Φ̄ = (δḡ)2, the obtained uncertainty
of the acceleration field coincides with (9).

Much later, and only recently, Ref.10 proposed a spe-
cial relativistic construction of conform metric uncer-
tainty around the Minkowski metric, whose Newtonian
limit confirms the uncertainty (10) in Sec.III. Introduc-
ing a perturbative conformal factor 1 + h (at |h| � 1)
where the uncertainties h are proportional to `Pl, one
chooses the following relativistic invariant correlation:

〈h(x)h(y)〉 = const.× `2Pl
(2π)4

∫
e−ik(x−y) θ(−k2)

−k2
d4k ,

(16)
ignoring the issues of regularizing θ(−k2)/k2. One writes
h into the form h = 2Φ/c2, anticipating that Φ plays
the role of the (uncertain) Newton potential for non-
relativistic matter. The limit c→∞ does converge, and
does exactly to the expression (10).

V. CLOSING REMARKS

For the wider community, interested but not special-
ized in foundations of physics, the conjectured sponta-
neous collapse rate E∆/h̄ is an easy and only reference.
I focussed on the heuristic derivations of this aesthetic
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old result. Hypothesis of spontaneous wave function col-
lapse is a detailed paradigm in foundations, with vari-
ous models, typically unrelated to gravity and containing
fenomenological parameters11. We should add that the
apparent parameter-independence of our gravity related
rate may be illusory since the rate diverges for point-
like mass distributions. A fenomenological short-length
regulator might be needed. Penrose, though, avoids this
problem differently4.

“Ah, you are working with Penrose, aren’t you?” — I
was asked a few times. No, we used to work on our own.
There used to be definite parallelisms and divergences
between our struggles in the field of unknowns. Roger’s
interest was a gift. After many well-defined theoreti-
cal tasks that his talent famously solved, one earned his
Nobel Prize 2021, he challenged the not-so-well-defined
problem. How is Schrödinger’s cat bending the space-
time? We agree that the cat should collapse after a time
∼ h̄/E∆. We disagree on how this happens, smoothly,
suddenly, or some other way. The hard task is: gravity-
related collapse dynamics that conserves energy and mo-
mentum. Worth of research. If we are on the right track
at all ...
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