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The celebrated GKLS master equation, widely called just the Lindblad equation, is the universal
dynamical equation of nonrelativistic open quantum systems in their Markovian approximation. It is not
necessary and perhaps impossible that GKLS equations possess sensible relativistic forms. In 2017, in a
lucid talk on black hole information loss paradox, David Poulin argued for a Lorentz invariant GKLS
master equation proposed by Alicki, Fannes, and Verbeure in 1986. The equation is really puzzling.
A closer look uncovers a smartly hidden defect that leaves us without Lorentz invariant Markovian master
equations. They, in view of the present author, should not exist.

DOI: 10.1103/PhysRevD.106.L051901

I. INTRODUCTION

Dissipative relativistic phenomena are real. The simplest
example is pions. The pionic quantum state ρ decays
toward the pionic vacuum state. The exact dynamics is
the reduced dynamics of a unitary quantum field theory
(QFT, Standard Model), and as such, it is non-Markovian.
The time derivative dρðtÞ=dt depends on the history of ρ
before t; the master equation governing the state ρðtÞ is
called non-Markovian. Its exact form would be cumber-
some for pions. (A tractable Lorentz invariant non-
Markovian master equation is available for the fermionic
subsystem in quantum electrodynamics [1].) Apart from
extreme short time scales, the pions decay exponentially,
and hence, their effective (not the exact) dynamics is
Markovian; i.e., dρðtÞ=dt depends on ρðtÞ only. The
Lorentz invariant field-theoretic formulation of this effec-
tive Markovian dissipative dynamics is missing, and it is
not known if it exists at all. Consistency of Lorentz
invariant field theory with Markovian dissipation is a
general mathematical issue, and a decaying massive scalar
field is the simplest case to study [2].
Long ago and far from the context of QFT, a very

powerful mathematical theorem [3,4] proved (see also
[5,6]) that nonrelativistic Markovian evolution of quantum
states can always be expressed by a very specific structure
of a number of operators An:

dρ
dt

¼ −i½H; ρ� þ
X

n

�
AnρA

†
n −

1

2
fA†

nAn; ρg
�
: ð1Þ

Popularity of this GKLS master equation, many times
referred just as Lindblad master equation after one of the
inventors, has been and is remarkably extending to many
fields in nonrelativistic quantum physics. It is understood as
a Markovian effective equation, not valid at too short of
timescales, of open quantum systems [7] whose exact
dynamics is non-Markovian.
Still, one may ask if the GKLS dynamics could be

extended for relativistic systems or it could not. The old
work [2], in terms of rigorous mathematics, seemed to give
an affirmative answer, proposing a field-theoretic GKLS
equation of decaying scalar particles. An unexpected push
came from David Poulin arguing for this relativistic GKLS
equation intuitively in his 2017 talk [8]. His reasoning was
impressive and has been shaking my firm judgement that
relativistic GKLS equations are nonexistent.

II. POULIN’S OBSERVATION

Consider a quantized free scalar field φ of massm and its
canonical momentum π. The Hamiltonian H reads

H ¼ 1

2

Z
ðπ2 þ ð∇φÞ2 þm2φ2Þdx

¼
Z

ωka
†
kakdk: ð2Þ

The state ρ evolves by the Schrödinger (–von-Neumann)
equation of motion

dρ
dt

¼ −i½H; ρ�: ð3Þ

Lorentz invariance relies simply on the fact that H ¼ P0,
where
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Pμ ¼
Z

kμa
†
kakdk ð4Þ

is a four-vector (of total energy momentum).
One can modify the free unitary dynamics by a nonuni-

tary (e.g., dissipative) mechanism represented by a super-
operator D:

dρ
dt

¼ −i½H; ρ� þDρ; ð5Þ

where the dissipatorD has the GKLS structure (1). Poulin’s
proposal, coinciding with Alicki, Fannes and Verbeure’s in
[2], is this:

Dρ ¼ γ

Z
ð2π−ρπþ − fπþπ−; ρgÞdx

¼ γ

Z
ωk

�
akρa

†
k −

1

2
fa†kak; ρg

�
dk; ð6Þ

where π� are the positive and negative frequency parts of π.
The argument of Lorentz invariance is the same as above.
One can write D in the form

D ¼ γ

Z
ωk

�
ak ⊗ a†k −

1

2
ða†kak ⊗ I þ I ⊗ a†kakÞ

�
dk;

ð7Þ

and argue that D ¼ P0, where

Pμ ¼ g
Z

kμ

�
ak ⊗ a†k −

1

2
ða†kak ⊗ I þ I ⊗ a†kakÞ

�
dk;

ð8Þ

is a four-vector.
With the new dissipative mechanism, the bosons are

decaying, and for a long time, the system’s state becomes the
vacuum. The stable equilibrium vacuum state is supposed to
be approached along a relativistic invariant Markovian
evolution by construction. Poulin notes that the dynamics,
unlike in standard QFT, is nonlocal on range 1=m. The
resulting acausality is of short range, provided that m is
large. This can, in certain theories, be a bearable anomaly.
However, the forthcoming analysis uncovers that the

Eq. (5) is not Lorentz invariant. The next section formulates
the condition of boost invariance in Markovian dissipative
quantum fields, like the proposed one. A lapse of Poulin’s
argument is detected.

III. CONDITION OF BOOST INVARIANCE

Let us recapitulate the condition of invariance under
Lorentz boosts in standard QFT, with interaction V. Let us
evolve the system dynamically for a short time δt and
perform a boost with small velocity δv. Or, apply the boost

first and let the system evolve after it. If the dynamics is
Lorentz invariant, then the resulting two states must
coincide apart from the spatial shift δvδt in the second
state. The mathematical condition of this invariance (i.e.,
interchangeability of dynamical evolution and boost) is the
following:

½K; H þ V� ¼ iP; ð9Þ

whereK is the generator of boosts, and P is the spatial part
of Pμ in (4). The closed expression of K exists [9], but in
practice, we use the boost action on the operator basis
ak; a

†
k. The small boost acts like this:

ak þ iδv½K;
ffiffiffiffiffiffi
ωk

p
ak� ¼

ffiffiffiffiffiffiffi
ωk0

p
ak0 ; ð10Þ

and similarly for a†k, where k
0 ¼ k − δvωk is the boosted

k. Hence, the boost of any operator is equivalent with the
boost of the (covariant) creation or annihilation operators.
We have ½K; H� ¼ iP and ½K; V� ¼ 0 for nonderivative
interaction; the condition (9) is satisfied.
In the proposed Eq. (5), the Hamiltonian interaction term

−i½V; ρ� is replaced by the dissipative term Dρ. The second
term ½K; V� of the condition (9) becomes nonvanishing:

ðK ⊗ IÞD −DðI ⊗ KÞ ¼ iP; ð11Þ

whereP is the spatial part of Pμ in (8). The condition (9) of
boost invariance becomes violated.
Now we put the argument of Sec. II under scrutiny. The

proposal assumes that the boost generator is the standard
Hermitian generator K, acting as in Eq. (10). This cannot
be true. Since the time evolution is not unitary, the boosts
cannot be unitary either (Fig. 1).
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B

A
’

t t’
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ρ

FIG. 1. In frame ðt; xÞ, a single-boson nonrelativistic localized
state is prepared at location A ðt ¼ 0; x > 0Þ at rest. For t > 0, the
boson is starting to decay. The initial local system at A reaches B
in an irreversible process. If the initial state ρ defined at t ¼ 0
were unitary equivalent with ρ0 defined at t0 ¼ 0—where ðt0; x0Þ is
a different Lorentz frame—then the evolution of our local boson
should be reversible, which is not the case.
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The boost generator might become a superoperator K to
satisfy the condition of invariance, i.e., the interchange-
ability between dynamical evolution and boost. The super-
operator counterpart of the mathematical condition (9) of
boost invariance is straightforward. However, in the next
section, we show that it is useless to search for the covariant
boost. The Eq. (5) cannot be Lorentz invariant.

IV. DISPROOF OF LORENTZ INVARIANCE

The dissipative term does not prevent us from using an
interaction picture. We use an unconventional interaction
picture where H evolves the state and D† evolves the field:

dρ
dt

¼ −i½H; ρ�; ð12Þ

∂tφðt;xÞ ¼ D†φðt;xÞ: ð13Þ

The generator H of the unitary evolution and the generator
D of the dissipative evolution are commuting; hence, the
constant H governs the state evolution. Now, the evolution
of the state is standard Lorentz invariant. What about the
evolution of the field? The initial condition reads:

φð0;xÞ ¼ 1

ð2πÞ3=2
Z

1ffiffiffiffiffiffiffiffiffi
2ωk

p akeikxdkþ H:c: ð14Þ

From the relationships D†a ¼ −γa and D†a† ¼ −γa†, the
solution follows easily:

φðt;xÞ ¼ 1

ð2πÞ3=2
Z

1ffiffiffiffiffiffiffiffiffi
2ωk

p akeikx−γωktdkþ H:c: ð15Þ

One would prove or disprove the boost invariance of the
solutions, but we have a simpler tool, the field equation:

∂
2
tφðt;xÞ ¼ γ2ðm2 −∇2Þφðt;xÞ; ð16Þ

which is manifest noninvariant. This is not surprising since
Sec. III already found a flaw in the argument supporting the
Lorentz invariance of the proposal in Sec. II.

V. DIGRESSION: CLASSICAL
AND QUANTUM WHITE NOISE

A naive Lorentz invariant field theory appeared in [10]
first, where

Dρ ¼ g2
Z �

φρφ −
1

2
fφ2; ρg

�
dx: ð17Þ

This is a Lindblad form (1), and the corresponding
dynamics is Lorentz invariant indeed. It can be derived
from the coupling gϕξ to an external Lorentz invariant
classical white noise field of ultralocal correlation

hξðxÞξðyÞi ¼ gδðx − yÞ; ð18Þ

after taking the average over this random field. The features
of D are unphysical; it is creating bosons at an infinite
rate, which is a trivial consequence of the white noise.
Unfortunately, ξðxÞ is the only possible Lorentz invariant
white noise, or, in other words, the only Lorentz invariant
classical Markovian process on the continuum.
We can construct a Lorentz invariant quantum white

noise bðxÞ as well. It is a trivial relativistic generalization of
quantum white noise bðtÞ introduced for damped quantum
systems [11] and extensively used, e.g., in quantum optics
[12]. The canonical commutator is ultralocal bosonic:

½bðxÞ; b†ðyÞ� ¼ δðx − yÞ: ð19Þ

We use bðxÞ as an auxiliary field to construct a unitary QFT.
Poulin’s impressive proposal corresponds to the coupling

ffiffiffiffiffi
2γ

p
ðπþbþ π−b†Þ: ð20Þ

Assuming that the initial state of the b-field is the vacuum
state, we evolve the composite state ρ ⊗ jvacihvacj uni-
tarily and trace out the auxiliary field. We mentioned in
Sec. I that in standard QFTs, the reduced dynamics are non-
Markovian, but the auxiliary b field is exceptional, it is
ultralocal, nonpropagating, etc., so we get a Markovian
evolution for ρ of the φ field. This is exactly the dissipative
dynamics (5) in interaction picture:

dρ
dt

¼ γ

Z
ð2π−ρπþ − fπþπ−; ρgÞdx; ð21Þ

which is not Lorentz invariant according to Secs. III and IV.
How is it possible? The coupling was Lorentz invariant

and the reduction is Lorentz invariant, so then where has
Lorentz invariance been lost? Sure, Lorentz invariance of
the reduced dynamics is undermined by the nonlocality of
π� in the otherwise Lorentz invariant coupling (20).
Weinberg [9] warns us about the importance of locality
condition. It is this condition that makes the combination of
Lorentz invariance and quantum mechanics so restrictive.

VI. CLOSING REMARKS

For a long time, there has been one only context with the
interest and unfulfilled desire for relativistic GKLS equa-
tions. The assumption of a tiny fundamental and sponta-
neous decoherence in massive degrees of freedom was
realized by the nonrelativistic GKLS equations [13–15],
but the relativistic extensions are missing up till now.
Efforts [16–21], mostly related to the structure (17), are
always leading to unphysical features, like, e.g., the
mentioned vacuum instability or just presence of tachyons.
Poulin’s motivation was not different in that he assumed

a tiny fundamental dissipative mechanism. He did it directly
in the relativistic realm. The proposed GKLS equation is
smartly hiding its defect. To point it out took quite a time for
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the present author initially unaware of the work [2]. Alicki,
Fannes, and Verbeure require explicitly that the generator of
the GKLS dynamics be covariant under the unitary repre-
sentation of the Lorentz(-Poincaré) group; this is certainly
consistent mathematically, but dissipative physical systems
do not transform unitarily under boosts.
Finally, my general arguments and conjecture are the

following. Any Markovian irreversible field process—
whether quantized or classical—is underlain by instanta-
neous jumps and they do not exist relativistically. Hence,
Lorentz invariant master (kinetik) equations do not exist for
such processes.
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