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A concise and self-contained derivation of hybrid quantum-classical dynamics is given in terms of Markovian
master equations. Many previously known results are rederived and revised and some of them are completed
or corrected. Using a method as simple as possible, our goal is a brief introduction to the state of the art of
hybrid dynamics, with a limited discussion of the implications for foundations and without discussion of further
relevance in the measurement problem, quantum gravity, chemistry, numeric methods, etc. Hybrid dynamics is
defined as a special case of composite quantum dynamics where the observables of one of the two subsystems
are restricted to the commuting set of diagonal operators in a fixed basis. With this restriction, the derivation
of hybrid dynamical equations is clear conceptually and simple technically. Jump and diffusive dynamics
follow in the form of hybrid master equations. Their stochastic interpretation (called unravelings) is derived.
We discuss gauge-type ambiguities, problems of uniqueness, and covariance of the diffusive master equation.
Also conditions of minimum noise and of monitoring the quantum trajectory are derived. We conclude that
the hybrid formalism is equivalent to the standard Markovian theory of time-continuous quantum measurement
(monitoring) on the one hand and is a motivating alternative formalism on the other.
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I. INTRODUCTION

In the real world, quantum and classical phenomena coex-
ist and evolve according to their own rules. They do interact,
of course, and we know very well the mathematical models of
some particular interactions. The action of a classical system
on the quantum one is modeled if we make the Hamiltonian
Ĥ depend on the classical system’s variables x. The backac-
tion, i.e., the quantum system’s impact on a classical one, is
also known well from the quantum measurement: The quan-
tum system rules the pointer position x of a classical meter.
This backaction is extremely specific. More general back-
action is the central problem to understand and to describe
mathematically when quantum and classical systems are
interacting.

The central object of composite quantum-classical systems
is the hybrid state, represented by the hybrid density [1]

ρ̂(x) = ρ̂xρ(x), (1)

where ρ(x) is the normalized probability density of the clas-
sical variables x and ρ̂x is the density operator of the quantum
system conditioned on the value x of the classical variable.

There has been much effort put forth and many results con-
cerning the possible evolution equations for d ρ̂(x)/dt . The
bottleneck is the backaction, although its elementary pattern is
known from all quantum theory textbooks. The von Neumann
measurement of the complete orthogonal set {P̂x} of Hermi-
tian projectors imposes the following change of the hybrid
state (1):{

ρ̂ → P̂xρ̂P̂x

tr(P̂xρ̂ )
with probability ρ(x) = tr(P̂xρ̂ )

}
⇐⇒ {ρ̂(x) −→ P̂xρ̂xP̂x}. (2)

As we see, the textbook stochastic jumps are equivalent to a
single deterministic map of the hybrid state. If we construct a
stochastic dynamics underlying the process on the left-hand
side, we have an equivalent deterministic hybrid dynamics
for ρ̂(x). von Neumann’s statistical interpretation of quantum
states (also called the Born rule) follows from the statistical
interpretation of the hybrid state.

For a long time, the dynamics of the von Neumann mea-
surement, the left-hand side of (2), was missing from the
textbooks, as it was considered irrelevant. Recently, for very
different motivations, it was constructed in the continuous
limit of discrete von Neumann measurements. The prevailing
formalism has been Markovian stochastic equations, not the
hybrid formalism. References [2–4] were milestones; reviews
are in [5–9].

Will the hybrid dynamics, developed on their own, yield
more than the time-continuous measurements in the hybrid
formalism, i.e., time-continuous extension of the right-hand
side of (2)? Before answering, we introduce the calculus of
hybrid dynamics.

Many investigations of quite different concepts, motiva-
tions, methods, level of mathematical rigor, etc., have emerged
in 40 years, from the earliest attempts to couple quantum and
canonical classical systems [1,10,11] to the present author’s
work [12–19] and other’s results [20–28] directly related to
the present work, as well as many other contributions, e.g.,
in Refs. [29–41]. Here we use a unique approach of ele-
mentary derivations and economic presentation, in order to
give a complete but concise account of Markovian hybrid
quantum-classical dynamics modeled by hybrid master equa-
tions (HMEs). In Sec. II the canonical jump HME and its
stochastic interpretation, called unraveling, are derived. From
this HME, the limit of a continuous, diffusive HME is derived
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(Sec. III), which, in Sec. IV, is put into the general covariant
form. Conditions of minimum irreversibility, covariant and
noncovariant unravelings, and monitoring are discussed as
well. Comparison with and comments about previous results
are made in Sec. V. Section VI summarizes lessons about hy-
brid dynamics. Appendix A provides an elementary example
and Appendix B contains an application to canonical classical
subsystems, with a simple example.

II. HYBRID MASTER EQUATION

Quantum theory is universal in our approach and classi-
cal systems are a special case of quantum ones: Operators
are restricted for a commutative subset, i.e., they are diago-
nal in a fixed basis. Accordingly, consider the Hilbert space
HQC = HQ ⊗ HC, where HC will host our classical system in
a fixed basis {|x〉}. The composite quantum state ρ̂ and com-
posite Hamiltonian Ĥ (as well as the composite observables)
are diagonal in the fixed basis:

ρ̂ =
∑

x

ρ̂(x) ⊗ |x〉〈x|, (3)

Ĥ =
∑

x

Ĥ (x) ⊗ |x〉〈x|. (4)

The block diagonality of the objects ρ̂(x) and Ĥ (x) ensures
classicality of the subsystem in HC, i.e., that its state is
and remains diagonal in the fixed basis. The block-diagonal
objects ρ̂(x) and Ĥ (x) will be called the hybrid state and hy-
brid Hamiltonian, respectively. Note the notational difference:
Operators on HQC have wider circumflexes than operators
on HQ. We are looking for a Markovian evolution equation
for ρ̂, which is completely positive (CP) and preserves the
block-diagonal form of ρ̂.

Since CP maps represent the most general quantum dy-
namics, we start from the CP map � of the composite state
ρ̂ and request that it preserve block diagonality, i.e., classical-
ity of the subsystem in HC. Conveniently, we can write the
general form of the map for the hybrid representation ρ̂(x) of
ρ̂. With the Einstein convention of summation, it reads

ρ̂�(x) =
∑

y

Dβα (x, y)L̂αρ̂(y)L̂†
β, (5)

where {L̂α} is an operator basis in HQ. The Hermitian matrix
D satisfies ∑

x

Dβα (x, y)L̂†
β L̂α = Î (6)

for all y. If we diagonalize D at each point (x, y), the form of
the map becomes

ρ̂�(x) =
∑
y,α

λα (x, y)L̂α (x, y)ρ̂(y)L̂†
α (x, y), (7)

where {L̂α (x, y)} is an operator basis depending on (x, y).
Hence all λα (x, y) � 0 for all α and (x, y); otherwise the map
� cannot be CP. Now we can absorb each factor λα into L̂α

and return to the full operator formalism. We can write the CP
map, preserving the block-diagonal form of ρ̂ in the standard
quantum-mechanical form

ρ̂� = L̂αρ̂L̂†
α, (8)

with the linearly independent Kraus operators defined by

L̂α =
∑

y

L̂α (x, y) ⊗ |x〉〈y|, (9)

where L̂1(x, y), L̂2(x, y), . . . are linearly independent. If � is
a semigroup and generates time evolution of ρ̂ then, accord-
ing to the Gorini-Kossakowski-Lindblad-Sudarshan (GKLS)
theorem [42,43], the evolution is governed by the quantum
master equation of the form

d ρ̂

dt
= −i[Ĥ , ρ̂] + L̂αρ̂L̂†

α − HL̂†
αL̂αρ̂, (10)

where the L̂α’s are called the Lindblad generators. They can
(and will) be chosen such that Î, L̂1, L̂2, . . . are linearly inde-
pendent. As expected, this quantum master equation preserves
block diagonality by construction; hence it obtains a closed
equation in the hybrid formalism [19–22,25,27,28]

d ρ̂(x)

dt
= − i[Ĥ (x), ρ̂(x)] +

∑
y

[L̂α (x, y)ρ̂(y)L̂†
α (x, y)

− HL̂†
α (y, x)L̂α (y, x)ρ̂(x)], (11)

where H means the Hermitian part of the subsequent expres-
sion. This is the canonical form of the CP Markovian HME
where the classical system is discrete. The hybrid generators
are only restricted by their linear independence and their linear
independence of Îδ(x, y) as well. Their dependence on (x, y)
can otherwise be arbitrary. Throughout our work δ(x, y) will
denote the usual discrete delta function. The backaction is
encapsulated by the generators L̂α (x, y). Note the basic lesson:
When the quantum-classical interaction is mutual influence
between the subsystems the hybrid system can never be re-
versible; the evolution is governed by hybrid master (kinetic)
equations. Quantitative lower bounds on their irreversibility
(noise) will be derived in Sec. III.

The choice of the hybrid Hamiltonian and the hybrid gen-
erators is unique up to arbitrary complex functions �α (x) since
the HME (11) is invariant for the following shifts:

L̂α (x, y) → L̂α (x, y) + �α (x)δ(x, y),

Ĥ (x) → Ĥ (x) − i

2
[�	

α (x)L̂α (x, x) − H.c.]. (12)

Special cases may allow much larger groups of such gauge
freedom when the dependence of the generators on (x, y) is
degenerate, like in the continuous HMEs of Secs. III and IV.

A. Stochastic unraveling

Master equations are deterministic. Like any quantum or
classical master equation, also our HME (11) possesses sta-
tistical interpretation. The solution ρ(x) of a classical master
(kinetic) equation can be decomposed into a unique stochastic
process xt of random trajectories. Quantum master equa-
tions can be decomposed into stochastic processes ψt of
random quantum trajectories; the decomposition is called un-
raveling. Quantum unravelings are not unique. Here we define
the hybrid of the classical and quantum stochastic decompo-
sitions (unravelings).

Let us formulate the mathematical condition of hybrid un-
raveling. If ρ̂(z, t ) is the solution of the HME (11) then it is the
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stochastic mean M over the contribution of hybrid trajectories
(xt , ψt ),

ρ̂(z, t ) = Mψtψ
†
t δ(z, xt ), (13)

where the xt and ψt are correlated jump stochastic processes,
one in the space of classical coordinates and the other in
the Hilbert space of state vectors. Consider first the unique
unraveling of the distribution ρ(x) = trρ̂(x) of the classical
subsystem. The trace of the HME (11) yields the classical
master (kinetic) equation

dρ(x)

dt
=

∑
α

∑
y

[Tα (x, y)ρ(y) − Tα (y, x)ρ(x)], (14)

with the ψ-dependent transition (jump) rate from x to y for
each α:

Tα (y, x) = tr[L̂α (y, x)ρ̂xL̂†
α (y, x)] = 〈L̂†

α (y, x)L̂α (y, x)〉x.

(15)

We introduce the total transition rate from x:

T (x) =
∑

α

∑
y

Tα (y, x). (16)

To unravel the quantum subsystem, we need the anti-
Hermitian (frictional) hybrid Hamiltonian defined by

−iĤfr (x) = −1

2

∑
y

L̂†
α (y, x)L̂α (y, x). (17)

The corresponding frictional Schrödinger equation is

dψ

dt
=

(
−iĤ (x) − iĤfr (x) + 1

2
T (x)

)
ψ, (18)

where 1
2 T (x) restores the norm ψ†ψ since 1

2 T (x) = −Im〈Ĥfr〉
[cf. Eqs. (15)–(17)], with Im denoting the imaginary part.

The hybrid unraveling consists of the following two corre-
lated jump stochastic (piecewise deterministic) processes, one
for xt and the other for ψt (cf. [28]),

x = const, (19)

dψ

dt
=

(
−iĤ (x) − iĤfr (x)ψ + 1

2
T (x)

)
ψ, (20)

and for jumps,

x → x′, ψ → L̂α (x, x′)ψ√
Tα (x′, x)

(21)

at rate Tα (x′, x). The proof that the unraveling satisfies the
condition (13) is the following. With the notation P̂ = ψψ†,
the condition reads

d ρ̂(z, t ) = dMP̂tδ(z, xt ), (22)

where d ρ̂(z, t ) is determined by the HME (11). The unravel-
ing yields two terms for the change of P̂δ(z, x) in time dt :

P̂δ(z, x) → [1 − T (x)dt )]{P̂ − i[Ĥ (x), P̂]dt

− i[Ĥfr (x), P̂]+dt + T (x)P̂dt}δ(z, x)

+
∑

α

Tα (x′, x)dt
L̂α (x, x′)P̂L̂†

α (x, x′)
Tα (x′, x)

δ(z, x′).

(23)

The first term comes from the deterministic equations (19) and
(20) and the second term represents the average of jumps (21).
The ψ-dependent transition rates Tα (x′, x) and T (x) cancel
and we are are left with an expression linear in P̂δ(z, x).
Taking its mean results in

d

dt
MP̂δ(z, x) =M{−i[Ĥ (x), P̂] − i[Ĥfr (x), P̂]+}δ(z, x)

+ ML̂α (x, x′)P̂L̂†
α (x, x′)δ(z, x′). (24)

If we recall the expression (17) of Ĥfr then we can recognize
that MP̂δ(z, x) satisfies the HME (11).

The unraveling (19)–(21) is ambiguous. The shifts (12)
leave the HME (11) invariant, but we get different unravelings.
Nevertheless, the unraveling becomes invariant and unique
with the replacement (cf. [44])

L̂α (x, y) → L̂α (x, y) − 〈L̂α (x, y)〉δ(x, y). (25)

One would think that in Eq. (21) the states ψt and xt are jump-
ing together. This is not true if L̂α (x, x) 
= 0 since L̂α (x, x)
generates a nontrivial jump of ψt and no jump for xt . So
to synchronize the jumps of ψ and x either we consider the
invariant modification (25) of the unraveling or we just request
that L̂α (x, x) vanishes for all α and x.

B. Monitoring the quantum trajectory

The quantum trajectory ψt is not observable in general
since its detection inevitably perturbs it. That is the problem of
monitoring the quantum system. Can we, just by monitoring
the classical subsystem’s xt , monitor the evolution of ψt ?
Generally we cannot. If the number of generators L̂α (x, y) is
more than one, detecting a jump of xt does not tell us which
generator made ψt jump. The jump of xt leaves the jump of
ψt in Eq. (21) undetermined. This ambiguity can be fixed in a
natural class of special hybrid systems.

Let us add a vectorial structure {xα} to the classical discrete
space and assume the specific form of the hybrid generators
L̂α (x, y),

L̂α (xα, yα )
∏
β 
=α

δ(xβ, yβ ), (26)

also with L̂α (xα, xα ) = 0. The jump rates Tα (xα, yβ ) vanish
if α 
= β [cf. Eq. (15)]. Now if we observe a jump of xα

t we
can uniquely determine the jump of ψt . With the vectorized
classical variables xα , the unraveling (19)–(21) of the HME
(11) becomes unique and the quantum trajectory can be mon-
itored.

III. FROM THE DISCRETE TO THE DIFFUSIVE HYBRID
MASTER EQUATION

Although discrete classical systems are important, most
classical systems of interest, like the Hamiltonian ones, are
continuous. Therefore, we are going to construct the contin-
uous limit of the obtained discrete HME (11). As is known,
the only continuous classical Markovian process is diffusion
with additional deterministic drift. We start with the generic
HME (11) on the discrete subset {xn} of the multidimensional
continuum and generate a diffusion process in the continuous
limit ε → 0.
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Note that some hybrid generators can be of the form
L̂α (y, x) = ÎLα (x, y) ≡ Lα (x, y), where Î is the unit operator
(which we have omitted in the notation). For some such clas-
sical generators we introduce a new label n and the classical
generators Ln(x, y). So we have hybrid generators L̂α (x, y) and
the classical ones Ln(x, y). The classical terms are intended
to generate diffusion terms for the classical subsystem in the
continuous limit. The two classes of generators will be chosen
as follows:

L̂α (x, y) = L̂α (y, y)
∏

n

δ(x − y, ε) + δ(y − x, ε)√
2

, (27)

Ln(x, y) = δ(xn − yn, ε) − δ(yn − xn, ε)√
2ε

×
∏
m 
=n

δ(xm − ym, ε) + δ(ym − xm, ε)√
2

. (28)

We introduce the positive-semidefinite complex decoherence
matrix Dαβ

Q , the positive-semidefinite real diffusion matrix
Dnm

C , and the arbitrary complex matrix Gnα
CQ of backaction.

Consider the following Hermitian block matrix and let it be
positive semidefinite:

D =
[

DQ G†
CQ

GCQ DC

]
� 0. (29)

We can see that nonzero backaction will require both
nonzero decoherence and diffusion. In addition to the
constraints DQ � 0 and DC = DC � 0 that we always
take for granted, there are further constraints on matri-
ces DQ, DC, and GCQ, equivalent to (29), to be shown in
Sec. IV A.

The following HME generates CP maps [since it reduces
to the HME (11) if we diagonalize D]:

d ρ̂(x)

dt
= −i[Ĥ (x), ρ̂(x)] + Dβα

Q

∑
y

[L̂α (x, y)ρ̂(y)L̂†
β (x, y) − HL̂†

β (x, y)L̂α (y, x)ρ̂(x)] + Dnm
C

∑
y

[Ln(x, y)Lm(x, y)ρ̂(y)

− Ln(y, x)Lm(y, x)ρ̂(x)] + G
nα

CQ

∑
y

[Ln(x, y)L̂α (x, y)ρ̂(y) − Ln(y, x)HL̂α (x, y)ρ̂(x)]. (30)

In the continuous limit ε → 0, the terms with L̂α and L̂β contribute to standard GKLS structures

L̂α (x)ρ̂(x)L̂†
β (x) − HL̂†

β (x)L̂α (x)ρ̂(x), (31)

with L̂α (x) ≡ L̂α (x, x). The terms with Ln and Lm yield diffusion of the classical variable x. With εn denoting a vector whose
only nonzero component is the nth one (which is ε), the yield at n 
= m reads

ρ̂(x + εn + εm) + ρ̂(x − εn − εm) − ρ̂(x − εn + εm) − ρ̂(x + εn − εm)

2ε2
−→
ε→0

1

2
∂n∂mρ̂(x), (32)

where ∂n ≡ ∂/∂xn. We get a similar yield for n = m:

1
2ε2 [ρ̂(x + εn) + ρ̂(x − εn) − 2ρ̂(x)] −→

ε→0

1
2∂n∂nρ̂(x). (33)

The cross terms with L̂α and Ln generate the nontrivial backaction of the quantum system on the classical part:
1
2ε

[L̂α (x + εn)ρ̂(x + εn) − L̂α (x − εn)ρ̂(x − εn)] + H.c. −→
ε→0

∂n[L̂α (x)ρ̂(x)] + H.c. (34)

Using these limits in Eq. (30) and adding a deliberate classical drift of velocity V (x), we obtain the continuous limit of the
discrete HME (11):

d ρ̂(x)

dt
= −i[Ĥ (x), ρ̂(x)] + Dβα

Q [L̂α (x)ρ̂(x)L̂†
β (x) − HL̂†

β (x)L̂α (x)ρ̂(x)]

+ 1

2
Dnm

C ∂n∂mρ̂(x) + {
G

nα

CQ∂n[L̂α (x)ρ̂(x)] + H.c.
} − ∂n[V n(x)ρ̂(x)]. (35)

The three constant parameter matrices DQ, DC, and GCQ are
constrained by the semidefiniteness D � 0 of the block matrix
(29) formed by them.

The above HME (35) is not yet the general diffusive one.
Obviously, we can add an extra x-dependent decoherence
DQ(x) as well as an extra diffusion DC(x) as long as
D � holds true after the replacements DQ → DQ + DQ(x)
and DC → DC + DC(x), that is, the validity of the diffusive
HME (35) extends for x-dependent parameters DQ(x) and

DC(x) provided D(x) � 0. In the next section we show that
also the backaction matrix GCQ can depend on x.

IV. COVARIANT HYBRID MASTER EQUATION

The form (35) of the HME is explicitly covariant under the
global linear transformations of the operator basis L̂α (x) and
the classical variables x. We are interested in the explicitly
covariant form under local, i.e., x-dependent complex linear
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transformation of the operator basis and under general coor-
dinate transformations of x. The form of such a HME (35)
should be (cf. [25])

d ρ̂

dt
= − i[Ĥ, ρ̂] + Dβα

Q (L̂αρ̂L̂†
β − HL̂†

β L̂αρ̂ ) + 1

2
∂n∂m

(
Dnm

C ρ̂
)

+ ∂n
(
G

nα

CQL̂αρ̂ + H.c.
) − ∂n(V nρ̂ ), (36)

where every object is a function of x, a fact that our above
notation hides for the sake of compactness. The coefficients
DQ(x), DC(x), and GCQ(x) satisfy the same constraint (29)
D(x) � 0 as before, now understood for all x:

D(x) =
[

Dαβ

Q (x) G
mβ

CQ(x)
Gnα

CQ(x) Dnm
C (x)

]
� 0. (37)

We prove the equivalence of the covariant HME (36)
to (35). By a suitable choice of the operator basis L̂α (x)
and the classical coordinates xn, one can always transform
GCQ(x) into a constant matrix. This results in the HME
(35), which, as we argued there, is valid for x-dependent DQ

and DC.
The covariant diffusive HME (36) is the most general con-

tinuous HME to generate CP dynamics. Every object in it is
x dependent. The condition (37) is necessary and sufficient
when the generators L̂α (x) are linearly independent and also
linearly independent of the unit operator Î . The hybrid Hamil-
tonian Ĥ and the classical drift V are arbitrary. The Hermitian
matrix DQ � 0 of decoherence and the real matrix DC � 0
of diffusion must form the positive-semidefinite block matrix
(37) in corners with the matrix GCQ (and G†

CQ) of backaction.
We list three useful alternatives that can always be achieved
by transformation of the reference frames: a fixed operator
basis {L̂α}, simultaneously diagonal DQ and DC with zeros
and ones, or GCQ with zeros and ones in the main diagonal
and zeros elsewhere. (These coordinate transformations may
request the embedding of x in higher dimensions than they
are of.) In addition to the explicit covariance, there is a further
gauge freedom, the descendant of the shifts (12) in the discrete
HME,

L̂α → L̂α + �α,

Ĥ → Ĥ − i

2
(�	

αL̂α − H.c.),

V n → V α − (
G

nα

CQ�α + H.c.
)
, (38)

where �α (x) is an arbitrary complex function.

A. Minimum-noise threshold

We are going to break down the condition D � 0 (37)
into constraints between D’s building blocks. The necessary
conditions are

rangeDQ � rangeG†
CQGCQ, (39)

rangeDC � rangeGCQG†
CQ. (40)

They express that the range of decoherence DQ cannot be nar-
rower than the range of L̂α that are coupled to the classical xn

by backaction GCQ. Similarly, the range of classical diffusion
DC cannot be smaller than the range of xn that are coupled

to the L̂α . Nonzero backaction means mandatory noise: both
decoherence and diffusion.

Suppose that we have a given nonzero matrix GCQ of
backaction and we are interested in a certain minimum of
the total irreversibility, i.e., a certain minimum of the block
matrix D, implying a certain minimum of the decoherence
DQ and diffusion DC, as we will see below. Obviously, the
strict positivity D > 0 means more noise than the minimum.
We are interested in the maximum degenerate D meaning the
lowest rankD which is limited by the rank rCQ = rankGCQ;
otherwise D � 0 cannot be true. Therefore, we define the
minimum-noise threshold by

rankD = rankGCQ. (41)

Then the inequalities (39) saturate, rangeDQ = rangeG†
CQGCQ

and rangeDC = rangeGCQG†
CQ, also meaning that rankDQ =

rankDC = rCQ. Both the number of coupled independent gen-
erators L̂α and coordinates xn coincide with rCQ.

For a given x, transform GCQ into the frame where its
elements are zero except for an rCQ × rCQ unit matrix in
the top left corner. Then, because of (39), both DQ and DC

must have an rCQ × rCQ strictly positive matrix in their top
left corners and zeros elsewhere. Recall the general condition
D � 0. If we drop rows and columns of zeros then the said
nonzero rCQ × rCQ submatrices, denoted invariably, must be
each other’s inverses [12]:

DC(x)DQ(x) = I. (42)

This is the condition of the minimum-noise threshold (41) in
the special frame fitted to the backaction matrix.

We can now identify quantitatively and directly the lower
bound of irreversibility that hybrid systems must undergo even
if the quantum and classical subsystems were reversible in
themselves. At a given backaction strength GCQ (scaled now
to be unity) and at the minimum-noise threshold, the quantum
decoherence strength DQ and classical diffusion strength DC

are inverses of each other; lower decoherence requests higher
diffusion and vice versa.

It is possible to decompose the constraint D � 0 as well as
the minimum-noise condition (41) into covariant relationships
(i.e., valid in any reference frame) for the three parameter
matrices. Two equivalent forms of D � 0 are [25]

GCQ
1

DQ
G†

CQ � DC, (43)

GCQ
1

DQ
DQG†

CQ = GCQG†
CQ (44)

and

G†
CQ

1

DC
GCQ � DQ, (45)

G†
CQ

1

DC
DCGCQ = G†

CQGCQ, (46)

where 1/DQ and 1/DC are generalized inverses. The thresh-
old condition rankD = rankGCQ of minimum noise cor-
responds to the saturation of inequalities into equalities.
Note that (1/DQ)DQ = rangeDQ and (1/DC)DC = rangeDC;
hence the second lines in Eqs. (43) and (45) correspond
to the mentioned identities rangeDQ = rangeG†

CQGCQ and
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rangeDC = rangeGCQG†
CQ, respectively. Under the above co-

variant parametric constraints, the covariant HME (36) and
its unravelings (49) and (50) include all possible dynamics
that contain noise on and above the threshold of consistency.
(Appendix A shows the sharpness of the above conditions on
a simplest HME.)

B. Stochastic unravelings

When we construct unravelings of the HME (36), we fol-
low the steps of Sec. II A and construct the two correlated
stochastic processes for xt and ψt satisfying the condition of
unraveling (13). The two processes will be diffusive this time.
First, take the trace of the diffusive HME (35) and obtain the
classical Fokker-Planck equation of the classical subsystem

dρ(x)

dt
= 1

2
Dnm

C ∂n∂mρ(x) − ∂n
[
V n(x)ρ(x)

− 2RG
nα

CQ(x)〈L̂α (x)〉ρ(x)
]
, (47)

where R denotes the real part of the subsequent expression.
The unraveling of this equation will be a unique Brownian
motion with a unique ψ-dependent drift. To unravel the quan-
tum subsystem, we need the anti-Hermitian (frictional) hybrid
Hamiltonian defined by

−iĤfr (x) = − 1
2 Dβα

Q {[L̂†
α (x) − 〈L̂†

α (x)〉][L̂β (x) − 〈L̂β (x)〉]
+ [〈L̂†

α (x)〉L̂β (x) − H.c.]}. (48)

The hybrid unraveling consists of two correlated diffusive
stochastic processes, one for xt and the other for ψt ,

dxn = V n(x)dt − 2RG
nα

CQ(x)〈L̂α (x)〉dt + dW n(x), (49)

dψ = −i[Ĥ (x) + Ĥfr (x)]ψdt + (L̂α (x) − 〈L̂α (x)〉)ψdξ
α

(x),

(50)

where dW n(x) is real and dξα (x) is complex zero-mean Itô
differential of auxiliary stochastic processes, correlated as
follows:

dW ndW m = Dnm
C dt,

dξαdξ
β = Dαβ

Q dt,

dW ndξα = Gnα
CQdt . (51)

Let us use the vector symbols dW and dξ , then we get the
equivalent compact form of correlations:[

dξdξ † dξdW T

dW dξ † dW dW T

]
= Ddt . (52)

We prove that the unraveling (49) and (50) satisfies the con-
dition (13). Like in Sec. II A, we use the denotation P̂ = ψψ†

and the same form (22) of the condition to be proved:

d ρ̂(z, t ) = dMP̂tδ(z − xt ). (53)

The Itô differential on the right-hand side contains three
terms which we are going to express by the equations of dψ

and dx of the unraveling (see also [27]). First, to calculate

dP̂ = dψψ† + ψdψ† + dψdψ† we use the stochastic equa-
tion (50) of dψ :

dP̂ = −i[Ĥ (z), P̂]dt

+ Dβα

Q [L̂α (x)P̂L̂†
β (x) − HL̂†

β (x)L̂α (x)P̂]dt

+{[L̂α (x) − 〈L̂α (x)〉]P̂dξ
α

(x) + H.c.}. (54)

Second, we calculate dδ(z − x) using the stochastic equa-
tion (49) of dx,

dδ(z − x) = 1
2 Dnm

C ∂n∂mδ(z − x)dt

+ [
V n(x) − 2RG

nα

CQ〈L̂α (x)〉]∂nδ(z − x)dt

+ [∂nδ(z − x)]dW n(x), (55)

where the partial derivations refer to x obviously. From here
we get the three terms of dMP̂δ(z − x) after using ∂δ(z −
x)/∂xn = −∂δ(z − x)/∂zn and then taking the stochastic
mean over dW , dξ , and x:

MdP̂δ(z − x) = −i[Ĥ (z), ρ̂(z)]dt + Dβα

Q [L̂α (z)ρ̂(z)L̂†
β (z)

−HL̂†
β (z)L̂α (z)ρ̂(z)]dt,

MP̂dδ(z − x) = 1
2 Dnm

C ∂n∂mρ̂(z)

− ∂n
[
V n(z) − 2RG

nα

CQ〈L̂α (z)〉ρ̂(z)
]
dt,

MdP̂dδ(z − x) = −G
nα

CQ∂n[(L̂α − 〈L̂α〉)ρ̂(z)]dt + H.c. (56)

By taking the sum of these three equations we recognize that
MP̂δ(z − x) satisfies the HME (35).

The hybrid unraveling corresponds to the time-continuous
measurement of the observables G

nα

CQL̂α (x) + H.c. The hybrid
unraveling contains an autonomous drift of the classi-
cal variables and general feedback: The Hamiltonian, the
decoherence matrix, the measured observable, and the mea-
surement noise can depend on the measured signal x. These
dependences could be part of the time-continuous measure-
ment, but usually they are not (except for typical feedback
Hamiltonians, linear in dx/dt).

As we can easily inspect, the unraveling (49) and (50) is
invariant for the shifts (38); however, in general, it is not co-
variant under the linear transformations of the operator basis
{L̂α (x)} of the HME. Therefore, the unraveling of the HME
is not unique; it inherits the ambiguity of unravelings [5] of
the quantum-mechanical GKLS dynamics. Observe that we
left the non-Hermitian correlation dξα (x)dξβ (x) unspecified,
whereas the stochastic processes (xt , ψt ) depend on it. For
deliberate choices of dξαdξβ we get different unravelings of
the same HME (36).

Covariance of the unraveling can be achieved if the com-
plex noise dξα is covariant. The simplest way is if we set

dξαdξβ = 0 (57)

(see [45,46], as well as [44]). Another option of covariant (and
real) dξα will be shown in Sec. IV C.

Just like unravelings of standard GKLS master equations,
the hybrid unravelings are not necessarily in terms of pure
states ψt . We will discuss generic mixed-state unravelings
later in this section. Before that, a specific case is considered
which is a closest generalization of the pure-state unravelings
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(49) and (50). Extension from pure states ψt for mixed states
σ̂t is straightforward since the formalism is very similar. The
pure-state density operator P̂ gives way to σ̂ and the equa-
tion of dψ is replaced by an equation of d σ̂ . Accordingly, the
definition of unraveling reads

ρ̂(z, t ) = Mσ̂tδ(z − xt ). (58)

Equation (49) for dxn is the same as before; Eq. (50) gives
way to the equation for d σ̂ :

d σ̂ = − i[Ĥ (x), σ̂ ]dt

+ Dβα

Q [L̂α (x)σ̂ L̂†
β (x)−HL̂†

β (x)L̂α (x)σ̂ ]dt

+ {[L̂α (x) − 〈L̂α (x)〉]σ̂dξ
α

(x) + H.c.}. (59)

With the replacement P̂ → σ̂ , Eqs. (47)–(56) of the previous
proof apply exactly in the same form and we conclude that the
process (xt , σ̂t ) unravels the HME (36). Notice the purification
feature of (59) known from standard unravelings of GKLS
master equations. If the state is not pure, i.e., trσ̂ 2 < 1, then

d

dt
Mtrσ̂ 2 = 2

dt
Mtr(σ̂d σ̂ ) + 1

dt
tr(d σ̂ )2

= 2Dβα

Q tr(σ̂ L̂ασ̂ L̂†
β − Hσ̂ L̂†

β L̂ασ̂ )

+ tr[(L̂α − 〈L̂α〉)σ̂ 2(L̂†
β − 〈L̂†

β〉)]

= 2Dβα

Q tr{[
√

σ̂ (L̂β − 〈L̂β〉)
√

σ̂ ]†

× [
√

σ̂ (L̂α − 〈L̂α〉)
√

σ̂ ]} > 0. (60)

An arbitrary initial mixed state σ̂t will be purified asymptot-
ically until trσ̂ 2 = 1 and then the mixed state (59) becomes
equivalent with the pure state (20).

Given a covariant HME (36), the family of unravelings is
larger than the above family of perfectly purifying ones. There
are partially purifying unravelings if the HME is above the
threshold of minimum noise [cf. (45)]

DQ = G†
CQ

1

DC
GCQ + DQ ≡ DQmin + DQ, (61)

where DQ � 0. Then Eq. (59) for the mixed-state unraveling
remains the same but the correlation dξdξ † = DQdt will be
reduced to the minimum-noise threshold

dξdξ † = DQ mindt = G†
CQ

1

DC
GCQdt . (62)

The other correlations dW dξ = GCQdt and dW dW T = DCdt
are unchanged. The price we pay for the reduced noise is
illustrated if we group the terms of (59) as follows:

d σ̂ = −i[Ĥ (x), σ̂ ]dt

+ 1
2 Dβα

Q min[L̂α (x)σ̂ L̂†
β (x) − HL̂†

β (x)L̂α (x)σ̂ ]dt

+{[L̂α (x) − 〈L̂α (x)〉]σ̂dξ
α

(x) + H.c.}
+ 1

2Dβα

Q [L̂α (x)σ̂ L̂†
β (x) − HL̂†

β (x)L̂α (x)σ̂ ]dt . (63)

The first line corresponds to the perfectly purifying unrav-
eling, at the minimum noise (62), whereas the decoherence
term in the second line counters the purification. A highly
mixed state becomes purer and a low level of mixture becomes
higher. Mixedness may have a stationary value for certain

HMEs and certain unravelings. We notice that the family of
mixed-state unravelings is even larger since we can always set

dξdξ † = ηDQ min (0 < η � 1). (64)

C. Monitoring the diffusive quantum trajectory

We are going to show that, similarly to the jump trajectories
in Sec. II B, also diffusive quantum trajectories ψt can be
monitored if the classical trajectories xt are observed. As we
will see, this option of monitoring constrains the parameters
of the HME (36) and singles out a unique unraveling among
the infinite many.

Monitoring the quantum trajectory ψt via monitoring the
classical xt is possible if and only if dψ (50) uniquely depends
on dx (49). Hence, the vector dξ must be a linear function of
the vector dW :

dξ = FQCdW. (65)

This deterministic relationship removes the ambiguity of the
unraveling because it also specifies dξdξ that was free cor-
relation [see Eq. (52)] in general unravelings. The above
relationship should be consistent with the correlations (52).
They imply two equations DQ = FQCDCF †

QC and G†
CQ = FQC

DC. These equations possesses the solution

FQC = G†
CQ

1

DC
(66)

and a constraint on the HME’s parameters:

DQ = G†
CQ

1

DC
GCQ. (67)

This constraint is the condition that monitoring ψt be possible,
namely, we insert the solution (66) into (65) to obtain the
desired map of dW into dξ :

dξ = G†
CQ

1

DC
dW. (68)

It is remarkable that this equation defines covariant dξ and
removes the ambiguity of dξdξ .

The condition (67) of monitoring coincides with the satu-
rated condition (45) but, importantly, the other condition (46)
of minimum noise is not necessary for monitoring. Accord-
ingly, the option of monitoring is still guaranteed above the
noise threshold: rangeDC can be larger than rangeGCQG†

CQ.
At some x, there can be some components of x that are
not coupled to the quantum subsystem, that represent above-
threshold noise, and that are redundant for and do not prevent
the monitoring of ψt .

Using (68), we can eliminate dξ from the equations of
unraveling. Then both dx and dψ (or d σ̂ ) are driven by the
same real noise dW . Accordingly, Eq. (50) becomes [27]

dψ = − i[Ĥ (x) + Ĥfr (x)]ψdt + dW n(x)
[
D−1

C (x)
]

nm

× Gmα
CQ(x)[L̂α (x) − 〈L̂α (x)〉]ψ. (69)

In the special reference frame where Gnα
CQ = δnα and we con-

sider the minimum-noise threshold where the nondegenerate
DQ and DC are real and inverses of each other, we have
dξ = D−1

C dW = DQdW and Eqs. (49) and (50) of unraveling
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reduce to

dxα = V α (x)dt − 2R〈L̂α (x)〉dt + dWα (x),

dψ = −i[Ĥ (x) − iĤfr (x)]ψdt

+ [L̂α (x) − 〈L̂α (x)〉]ψDαβ

Q dWβ (x). (70)

Notice the new denotation dWα ≡ dW n|n=α . We recognize
the equations of correlated time-continuous measurements
(monitoring) of the observables L̂α + H.c. where xt is the
measured signal. Here the model is a bit more general because
the signal can have an autonomous drift, the Hamiltonian,
and the monitored observables can depend on the measured
signal.

V. DISCUSSION

In this work we revisited, clarified, and completed earlier
results on the Markovian master and stochastic equations of
hybrid quantum-classical dynamics, paying attention to sim-
plicity and brevity.

The starting concept and the derivation of the HME in
Sec. II are most similar to the rigorous formulations of Blan-
chard and Jadczyk [20,21]. Here we notice the shift invariance
(12) of the HME and the related nonuniqueness of the unravel-
ing. Using vectorized classical variables is a useful alternative
to the sophisticated conditions of monitoring the jump quan-
tum trajectory in [28].

Derivation in Sec. III of the diffusive HME (35) from the
discrete (11) is an attempt to replace the complicated though
perhaps more rigorous procedure of Oppenheim et al. [25].
Our derivation is based on the discrete forerunners of δ(x − y)
and ∂/∂xn. These are nontrivial while allowing for an elemen-
tary derivation. Importantly, the naive choice of L̂α (x, y) = L̂α

(x)δ(x − y) and Ln(x, y) = |x〉∂n〈x| instead of (27) and (28)
turns out to be incorrect because off-block-diagonal terms
play a role [47]. The naive choice gave the correct structure of
the HME but below the correct threshold of minimum noise
by a factor of 1

2 .
In Sec. IV we rederived the HME (36), which was derived

already by Oppenheim et al. [25] and Layton et al. [27].
These works did not mention the covariance of their result,
nor did they put it in the usual form of co- and contravariant
indices. Our work emphasizes and exploits that the HME
is explicitly covariant for local linear (i.e., not necessarily
unitary) transformations of the Lindblad generators and for
general transformations of the classical coordinates.

Section IV A presented a fairly compact condition (41)
of the threshold for minimum noise. The phenomenon and
equation (42) of trade-off between decoherence and diffusion
were recognized in [12] and were extended recently for the
general diffusive HME in [25] [see Eqs. (43)–(46)] using
general matrix inverses to cover degenerate matrices of de-
coherence, diffusion, and backaction; their degeneracies are
not exceptions but typical.

Our important contribution in Sec. IV B is that the pure-
state diffusive unravelings of a diffusive HME are always
possible and are exactly as ambiguous as the standard un-
ravelings of the GKLS master equations. Since the ambiguity
coincides with that of the unravelings of pure quantum GKLS
master equations, we can fix them in the same way. The choice

dξdξ = 0 is well known in theory of quantum state diffusion
and has been used for covariance in [44] and developed by
Gisin and Percival [45,46] in the GKLS and Itô formalisms.
The full multitude of unravelings, applicable to the hybrid
dynamics as well, was discussed by Wiseman and the present
author in [5].

Section IV C postulates the covariant condition (65) of
quantum trajectory monitoring. The resulting equations of
monitoring coincide with those in [27]. The claim therein
that these equations are in one-to-one correspondence with
the HME is confirmed by covariance when the HME is at
the threshold of minimum noise. The option of monitoring is
not restricted for the HME of minimum noise; diffusion (not
decoherence) can be higher than the threshold.

VI. CONCLUSION

Although rarely stated explicitly, the interaction between
quantum and classical systems has no other consistent math-
ematical model than time-continuous quantum measurement
and feedback, where measurement outcomes form the vari-
ables of the classical system. This echoes von Neumann’s
visionary postulate. To obtain a classical variable correlated
with an unknown quantum state, the only consistent mathe-
matical model is the von Neumann quantum measurement.
Not too surprising, the equations of hybrid stochastic un-
ravelings, both discrete and continuous, coincide with the
respective equations of time-continuous measurement, pro-
vided the classical system is identified with the measurement
outcomes, as in the elementary case (2).

The unravelings (statistical interpretation) of hybrid master
equations are mathematical equivalents of time-continuous
quantum measurements as mentioned, e.g., in [19]. The ad-
vantage of hybrid master equations and unravelings over
time-continuous quantum measurement is not yet concep-
tual. The hybrid formalism may be fairly convenient in
many applications, e.g., foundations or improved semiclassi-
cal gravity. No doubt, it may develop its own metaphysics as
well.
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APPENDIX A: DIFFUSIVE HME OF TWO-LEVEL
QUANTUM SYSTEM

Consider a two-level quantum system coupled to a classical
system of a single variable x. In Pauli’s formalism, we can
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write the hybrid density (1) in the general form

ρ̂(x) = 1
2 [1 + ŝ(x)]ρ(x), (A1)

where ŝ(x) = s1(x)σ̂1 + s2σ̂2 + s3σ̂3 and the length s = |s| of
the Bloch vector s = (s1, s2, s3) must satisfy s � 1. Let the
diffusive HME be the simple one

d ρ̂(x)

dt
= σ̂3ρ̂(x)σ̂3 − ρ̂(x) + G[σ̂3, ρ̂

′(x)]+ + 1

2
ρ̂ ′′(x).

(A2)

This corresponds to DQ = DC = 1 and G is real. We prove
that |G| cannot be larger than 1.

Substitute Eq. (A1) and multiply both sides by 2, yielding

d

dt
[(1 + ŝ)ρ] = [σ̂3(1 + ŝ)σ̂3 − (1 + ŝ)]ρ

+ G[σ̂3, [(1 + ŝ)ρ]′]+ + 1

2
[(1 + ŝ)ρ]′′.

(A3)

An equivalent form reads

dŝ

dt
ρ + ŝ

dρ

dt
= −2ŝ⊥ρ + 2Gσ̂3ρ

′ + 1

2
ŝρ ′′ + ŝ′ρ ′ + 1

2
ŝ′′ρ.

(A4)

We take the trace of both sides, yielding the equation
dρ/dt = +2G(s3ρ)′ + 1

2ρ ′′. If we substitute it back, we get

dŝ

dt
ρ = −2ŝ⊥ρ + 2Gσ̂3ρ

′ + ŝ′ρ ′ + 1

2
ŝ′′ρ − 2Gŝ(s3ρ)′,

(A5)

where ŝ⊥ = s1σ̂1 + s2σ̂2. We multiply both sides by ŝ and take
1
2 times their trace again:

1

2

ds2

dt
ρ = − 2s2

⊥ρ + 2Gs3(1 − s2)ρ ′ + (s2)′ρ ′

+ 1

2
ss′′ρ − 2Gs2s′

3ρ. (A6)

If we suppose s2 = 1, then ds2/dt cannot be positive and (s2)′
must vanish. Thus we have the following inequality:

0 � −2s2
⊥ + 1

2 ss′′ − 2Gs2s′
3. (A7)

Now we insert the ansatz s(x) = ( cos(x), 0, sin(x)) into the
inequality, leading to

0 � 1

2

ds2

dt
= −2 cos2(x) − 2G cos(x) − 1

2
, (A8)

which must be satisfied for all x. This is equivalent to the
upper bound on the backaction coupling:

G2 � 1. (A9)

APPENDIX B: HAMILTONIAN HME

Let Ĥ (x) be a hybrid Hamiltonian where the classical
subsystem is canonical. The first N canonical variables {xn |
n = 1, . . . , N} are the coordinates and the second N ones
{xn | n = N + 1, . . . , 2N} are the momenta. The HME takes

the form
d ρ̂

dt
= −i[Ĥ , ρ̂] + H{Ĥ , ρ̂} + · · · , (B1)

where the ellipsis stands for mandatory decoherence and dif-
fusion terms. The bracket {Ĥ , ρ̂} is the Poisson bracket of
classical canonical theory

{Ĥ, ρ̂} = εnm(∂nĤ )(∂mρ̂ ), (B2)

where εnm is the 2N × 2N symplectic matrix. To determine
the decoherence and diffusion terms, we note that the hybrid
Hamiltonian can always have the form

Ĥ (x) = ĤQ + HC(x) + ĤCQ(x), (B3)

with

ĤCQ(x) = hα (x)L̂α, (B4)

where hα (x) is a real function and the L̂α are linearly inde-
pendent Hermitian operators, also linearly independent of Î .
Accordingly, the HME contains a purely Hamiltonian term
−i[ĤQ + ĤCQ, ρ̂], a purely classical term {HC, ρ̂}, a back-
action term H{ĤCQ, ρ̂}, and the mandatory decoherence and
diffusive terms. It is easy to see that {HC, ρ̂} corresponds
to classical drift velocity V n = εnm∂mHC. By identifying the
backaction term

H{ĤCQ, ρ̂} = H{hαL̂α, ρ̂} = εnmH(∂nhα )L̂α (∂mρ̂ ) (B5)

in Eq. (B1) with the covariant HME’s backaction term
2H∂n(G

nα

CQL̂αρ̂ ), we read out the matrix of backaction:

Gnα
CQ = G

nα

CQ = − 1
2εnm∂mhα. (B6)

Hence, the Hamiltonian HME takes the general form

d ρ̂

dt
= − i[ĤQ + ĤCQ, ρ̂] + {HC, ρ̂} + H{ĤCQ, ρ̂}

+ Dβα

Q (L̂αρ̂L̂†
β − HL̂†

β L̂αρ̂) + 1

2
∂n∂m

(
Dnm

C ρ̂
)

(B7)

and the matrices DQ, DC, and GCQ should satisfy the non-
negativity constraints discussed in Secs. III and IV. Note that
the decoherence and diffusion terms do not retain the covari-
ance for canonical transformations of the classical coordinates
{xn}.

Let us apply this Hamiltonian HME to the simple hybrid
system of two identical harmonic oscillators, one quantized
and the other classical. The classical canonical variables are
(x1, x2) ≡ (q, p) and the quantized ones are (Q̂, P̂). Let the
hybrid Hamiltonian (B3) consist of

ĤQ = 1
2 (Q̂2 + P̂2), (B8)

HC(q, p) = 1
2 (q2 + p2), (B9)

ĤCQ(q, p) = g(qQ̂ + pP̂). (B10)

In the expansion (B4) of ĤCQ we choose L̂1 = Q̂ and
L̂2 = P̂ and then h1 = gq = gx1 and h2 = gp = gx2; hence
G12 = −G21 = g/2 while G11 = G22 = 0. The minimum-
noise condition reads, e.g., GD−1

Q GT = DC, which means that
both DQ and DC are 2 × 2 diagonal matrices and satisfy

D11
Q D22

C = D22
Q D11

C = g2

4
. (B11)
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The resulting HME of ρ̂(q, p) takes the form

d ρ̂

dt
= −i

[
1

2
(Q̂2 + P̂2) + g(qQ̂ + pP̂), ρ̂

]
+ [q∂pρ̂ − p∂qρ̂ + gH(Q̂∂pρ̂ − P̂∂qρ̂ )]

+ 1

2
D11

Q [Q̂, [Q̂, ρ̂]] + 1

2
D22

Q [P̂, [P̂, ρ̂]] + 1

2
D11

C ∂2
q ρ̂ + 1

2
D22

C ∂2
q ρ̂. (B12)

We see that both Q̂ and P̂ contribute to nonvanishing decoherence terms and both q and p must diffuse. As we noticed, the
mandatory decoherence and diffusion terms violate the canonical invariance of the classical subsystem. Of course, they remain
nonunique even after taking the constraints (B11) into the account.
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