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Sequential unsharp measurement of photon polarization
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We propose a general experimental scheme based on binary trees of partially polarizing beam splitters (PPBSs)
for realizing sequential unsharp measurements of photon polarization. The sharpnesses and the bases of the
particular photon polarization measurements can be chosen arbitrarily by using corresponding PPBSs and phase
plates in the setup. In the limit of low sharpnesses the scheme can realize sequential weak measurements,
too. We develop a general formalism for describing sequential unsharp measurements of photon polarization
in which the particular unsharp measurements are characterized by appropriate measurement operators. We
show that a straightforward experimental realization of this model is the proposed scheme. In this formalism
the output polarization states after the sequential measurement and any correlation functions characterizing
the measurement results can be easily calculated. Our model can be used for analyzing the consequences
of applying postselection and reselection in the measurement. We derive the anomalous mean value for an
unsharp polarization measurement with postselection and the anomalous second-order correlation function for
the sequential unsharp measurement of photon polarization with reselection. We show that these anomalies can
be easily measured using the proposed scheme.
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I. INTRODUCTION

In modern quantum theory, the notion of measurements
has been extended beyond that of the traditional ideal (sharp)
ones, in order to encapsulate coherent unsharpnesses [1,2].
An unexpected major motivation for unsharp quantum mea-
surements came with the theoretical discovery of the weak
value anomaly. Such paradoxical measurement outcomes oc-
cur in the so-called weak measurements (WMs), meaning
asymptotically unsharp measurements, i.e., approaching no
measurement at all [3,4]. In a WM, the meter of the measuring
device is entangled weakly with the system and only a small
amount of information is available by detecting the pointer
position of the meter while the disturbance to the system’s
initial state |i〉 remains limited. The state |i〉 does not col-
lapse to an eigenstate of the measured observable Â. When
one postselects a particular quantum state | f 〉 after the WM
the statistical mean MA of the measured value A will be the
so-called weak value:

MA = AWV = Re
〈 f |Â|i〉
〈 f |i〉 . (1)

The weak value anomaly means that AWV may fall outside the
spectrum of Â. The increased range of possible measurement
outcomes inspired the proposal of the idea of using WMs
for enhancing the precision in metrology and for amplifying
ultrasmall physical effects. The advantage of weak-value am-
plification was demonstrated in several experiments [5–12],
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though the comprehensive theoretical explanation of all the
experimental observations is still under exploration [13–21].
We note that beyond the statistical interpretation, weak values
can represent definite properties of single pre- and postse-
lected quantum systems in specific cases [22,23].

For both theoretical investigations and experimental tests
of quantum measurements, photon polarization serves as an
ideal system. Given a laboratory photon along a definite path,
a polarization beam splitter (PBS) will maximally entangle
the polarization with the path degrees of freedom; the latter
can subsequently be measured using a detector. Thus, the path
plays the role of pointer, taking two well-defined positions
after the PBS, indicating horizontal and vertical polarizations,
respectively. The polarization measurement becomes unsharp
if we use a partial polarization beam splitter (PPBS).

The earliest implementation of the measurement of pho-
ton polarization weak value required the precise control of
the photon’s Gaussian wave function in the transverse plane,
whose finite width introduced some unsharpness of the path,
i.e., of the meter [24]. In this experiment the weak measure-
ment was realized via measuring the polarization-dependent
spatial walk-off of the Poynting vector of the single photon
induced by its propagation through a birefringent medium. It
turned out later that the meter does not have to be continuous:
it could be a second photon, weakly entangled with the first
one, like in the experiments in Refs. [25,26].

Sequential WMs of photon polarization on the same pho-
ton, however, remained hard to implement experimentally.
Sequential WMs are important for the following reason. As
WMs hardly disturb the quantum system, therefore it is pos-
sible to measure noncommuting observables in succession.
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From the resulting sequential weak values joint properties
of the observables can be extracted [27–29]. Experimental
sequential measurements of incompatible, that is, different,
polarizations of a photon have been reported recently. The
first successful experiment for consecutive weak measurement
of two different polarizations was performed by Piacentini
et al. [30] based on the method of Ref. [24]. Rebufello et al.
[23] arranged a sequence of seven unsharp measurements
of the same polarization on the same photon, but they de-
tected the sum of the seven outcomes, not the seven outcomes
themselves. For general sequential unsharp polarization mea-
surements, however, discrete paths (and/or ancilla photon’s
polarizations) can be more promising meters. Kim et al. [31]
realized the measurement of the sequential weak value of
two incompatible polarization observables by making use of
two-photon quantum interference. Chen et al. reported three
consecutive WMs of noncommuting polarization observables
using the discrete paths of the single photon as meters [32].
The experiment of Foletto et al. [33], with a specific purpose
related to WMs, contained two consecutive WMs. In the latter
two experiments, WMs along the path of the photon were
performed by interferometric units, each being the same in
structure and different by parameters. The function of the
units is simple: they realize PPBSs [34]. A properly chosen
PPBS entangles weakly the polarization and the path, allow-
ing for a weak polarization measurement when the photon
along one of the two paths is detected. These experiments
took the full statistics of their two [33] (three in Ref. [32])
consecutive WMs in four (eight) separate runs using just two
(three) interferometric units each time adjusted differently.
Full statistics in one run would require a tree-like structure
of interferometric units (just mentioned in Ref. [33]).

Unsharp measurements can be considered as the general-
ization of WMs. They include measurements of intermediate
sharpness between sharp and weak ones. Unsharp measure-
ments of spin observables were considered in Refs. [35,36]
assuming a Gaussian meter. In these papers the unitary evo-
lution of the total system consisting of the system to be
measured and the Gaussian meter system was treated exactly,
that is, all-order coupling was taken into account instead of
using the usual linear coupling approximation made in the
original formalism of weak measurements [3,4]. Joint unsharp
measurements of commuting Pauli observables were analyzed
in Ref. [37] applying all-order coupling description. Special
types of sequential weak measurements and the sequence of
two strong measurements of observables that do not corre-
spond to Hermitian operators were considered in Ref. [38].
However, sequential unsharp measurements of arbitrary spin
observables (that is, generally noncommuting ones) have not
yet been considered for all-order coupling.

In this paper, we develop a general formalism based on
appropriate measurement operators for describing sequential
unsharp measurements of photon polarization for the case
of the binary-outcome meter. This model also describes se-
quential WMs in the limit of low sharpnesses and it can
be used to calculate any correlation functions characteriz-
ing the measurement results. We show that a straightforward
experimental realization of sequential unsharp polarization
measurements is a binary tree structure of PPBSs. In this
scheme, the sharpnesses and the bases of the particular photon

polarization measurements can be adjusted arbitrarily. The
scheme is scalable; it is straightforward to increase the number
of consecutive measurements. It can also be used for realizing
unsharp measurements with postselection or reselection. Re-
selection is the special case of postselection when the final
state is equal to the initial state [28]. We analyze examples
for these cases and derive the outcome statistics in sequential
unsharp measurements, the anomalous mean value in postse-
lection, and the anomalous second-order correlation function
in reselection.

The paper is organized as follows. In Secs. II and III the
general formalisms for describing an unsharp measurement
and the sequential unsharp measurements of photon polariza-
tion are presented, respectively. In Sec. IV we propose the
experimental scheme for realizing sequential unsharp mea-
surements of photon polarization. In Sec. V we analyze the
consequences of using postselection and reselection in our
theory and in the proposed scheme. Finally, conclusions are
drawn in Sec. VI.

II. UNSHARP MEASUREMENT
OF PHOTON POLARIZATION

The polarization of a single photon can be described in a
two-dimensional Hilbert space. The general polarization state
of the photon is

|ψ〉 = α|H〉 + β|V 〉, (2)

where |H〉 and |V 〉 are the horizontal and vertical polarization
states, respectively. For measuring the polarization one can
generally use two other distinguished bases determined by the
basis states

|L/R〉 = 1√
2

(|H〉 ± i|V 〉) (3)

corresponding to the left and right circular polarization, and
by the basis states

|D/A〉 = 1√
2

(|H〉 ± |V 〉) (4)

corresponding to the diagonal and antidiagonal polarization.
Note that the basis states |D/A〉, |L/R〉, and |H/V 〉 are the
eigenstates of the Pauli operators σ̂x, σ̂y, and σ̂z, respectively.
In the case of projective measurement the corresponding pro-
jectors can be expressed by the Pauli operators as

|D/A〉〈D/A| = 1 ± σ̂x

2
, (5)

|L/R〉〈L/R| = 1 ± σ̂y

2
, (6)

|H/V 〉〈H/V | = 1 ± σ̂z

2
. (7)

Next, we consider the unsharp polarization measurement in
the H/V basis, that is, the unsharp measurement of the observ-
able σ̂z. As a most general description of this measurement,
we introduce the following positive operator-valued measure
(POVM) consisting of two positive operators known as effects
Êν :

Ê± = 1 ± cos(2χ )σ̂z

2
= 1 ± sin(2η)σ̂z

2
, (8)
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satisfying
∑

ν Êν = 1, where χ ∈ [0, π/4] is the parame-
ter of unsharpness, while η = π/4 − χ is the parameter of
sharpness. Note that, for simplicity, we apply here and also
in the following the notation ν = ± denoting the outcomes
ν = ±1 of the measurement whenever ν is used as an in-
dex, and for convenience, we use the parameters η and χ

alternatively. Projective measurement corresponds to χ = 0,
weak measurement [3] corresponds to η → 0, and unsharp
measurements are in between.

The measurement operators M̂ν describing an unsharp
measurement read as

M̂± =
√

Ê± = cos(η) ± sin(η)σ̂z√
2

. (9)

For a photon initially in the state (2) the outcomes ν = ±1
of the measurement M̂± update the normalized polarization
state to

|ψ ′
±〉 = 1√

p±
|ψ±〉 = 1√

p±
M̂±|ψ〉, (10)

where |ψ±〉 is the unnormalized state after the measurement
and

p± = 〈ψ±|ψ±〉 = 〈ψ |Ê±|ψ〉 (11)

are the probabilities of the given outcomes.
The outcomes ν = ±1 are not yet the measured values σz

of the observable σ̂z since

Mν = p+ − p− = sin(2η)〈ψ |σ̂z|ψ〉, (12)

where M stands for the statistical mean. The correct definition
of the measured value σz is calibrated as

σz = 1

sin(2η)
ν, (13)

to satisfy

Mσz = 〈ψ |σ̂z|ψ〉. (14)

Unsharp measurement in any other basis is straight-
forward: replace σ̂z by σ̂�n = nxσ̂x + nyσ̂y + nzσ̂z along the
direction of the Bloch vector �n = [nx, ny, nz] in question. The
observable σ̂�n can be derived from σ̂z as

σ̂�n = Û (�n)σ̂zÛ
†(�n) (15)

by the unitary rotation

Û (�n) = cos(θ/2) − i sin(θ/2)
nxσ̂y − nyσ̂x√

1 − n2
z

, (16)

where cos(θ ) = nz.

III. SEQUENTIAL UNSHARP MEASUREMENTS
OF PHOTON POLARIZATION

Let us consider the sequential unsharp measurements of
the observables σ̂k = σ̂�nk in a sequence k = 1, . . . , N . Note
that the Bloch vectors �nk determining the observables σ̂k can
be generally different for each measurement.

Applying the formalism developed in the previous section,
these sequential measurements can be described by the fol-
lowing effects Êν1...νN (η1, . . . , ηN ) and measurement operators

M̂ν1...νN (η1, . . . , ηN ):

Êν1...νN (η1, . . . , ηN ) = M̂†
ν1...νN

(η1, . . . , ηN )

× M̂ν1...νN (η1, . . . , ηN ), (17)

where

M̂ν1...νN (η1, . . . , ηN ) = M̂ (N )
νN

(ηN ) · · · M̂ (1)
ν1

(η1) (18)

and

M̂ (k)
νk

(ηk ) = cos(ηk ) + νk sin(ηk )σ̂k√
2

. (19)

The quantities νk = ±1 for k = 1, . . . , N are the possible
outcomes of the unsharp measurements.

The effects Êν1...νN (η1, . . . , ηN ) satisfy the following clo-
sure relation: ∑

{ν}
Êν1...νN (η1, . . . , ηN ) = 1, (20)

with the notation
∑

{ν} ≡ ∑
νN =±1 · · · ∑ν1=±1. For simplicity,

in the following we use the notation M̂ (k)
νk

instead of M̂ (k)
νk

(ηk )
for any values of k = 1, . . . , N . We also omit the arguments
of M̂ν1...νN (η1, . . . , ηN ) and Êν1...νN (η1, . . . , ηN ).

For a photon initially in the state (2), the outcomes
ν1, . . . , νN of the sequential unsharp measurement M̂ν1...νN

update the normalized polarization states to

|ψ ′
ν1...νN

〉 = 1√
pν1...νN

|ψν1...νN 〉 = 1√
pν1...νN

M̂ν1...νN |ψ〉, (21)

where |ψν1...νN 〉 is the unnormalized state after N sequential
unsharp measurements and

pν1...νN = 〈ψν1...νN |ψν1...νN 〉 = 〈ψ |Êν1...νN |ψ〉 (22)

are the joint probabilities of the given outcomes.
Note that the sequence of the outcomes ν1, . . . , νN is not

yet the collection of measured values σ1, . . . , σN of the ob-
servables σ̂1, . . . , σ̂N . The correct measured values are the
calibrated ones

σk = 1

sin(2ηk )
νk, (23)

as it was in the case of the single measurement (13).
Knowing the probabilities pν1...νN of particular measure-

ment results defined in Eq. (22) and using Eq. (23), one can
easily calculate any mth order correlation function:

Mσk1 . . . σkm =
∑
{ν}

pν1...νN

νk1

sin(2ηk1 )
· · · νkm

sin(2ηkm )
, (24)

where {k1, . . . , km} ⊆ {1, . . . , N}. Let us discuss first the full
N th order correlation function. By substituting Eqs. (17) and
(18) into (24) for {k1, . . . , km} = {1, . . . , N} we obtain

Mσ1σ2 . . . σN =
∑
{ν}

〈ψ |M̂ (1)
ν1

M̂ (2)
ν2

. . . M̂ (N )
νN

M̂ (N )
νN

. . . M̂ (1)
ν1

|ψ〉

× ν1

sin(2η1)

ν2

sin(2η2)
· · · νN

sin(2ηN )
. (25)

First, we evaluate the sum over ν1 of the factors containing
ν1. If [. . . ] stands for the operator product depending on
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ν2, . . . , νN , we have∑
ν1=±1

M̂ (1)
ν1

[. . . ]M̂ (1)
ν1

ν1

sin(2η1)
= 1

2
(σ̂1[. . . ] + [. . . ]σ̂1)

≡ 1

2
{σ̂1, [. . . ]}, (26)

where we used M̂ (1)
ν1

= [cos(η1) + ν1 sin(η1)σ̂1]/
√

2 accord-
ing to Eq. (19). The symbols { , } denote the anticommutator.
Observe that the sharpness parameter η1 is canceled. Repeat-
ing the above summation over ν2, . . . , νN step by step, we
arrive at the final result:

Mσ1σ2 . . . σN = 2−N 〈ψ |{σ̂1, {σ̂2, . . . {σ̂N−1, σ̂N }} . . . }}|ψ〉.
(27)

The result, independent of the sharpness parameters ηk , takes
the ultimate simple form in terms of the Bloch vectors of the
measured polarizations:

Mσ1σ2 . . . σN =
{

(�n1�n2)(�n3�n4) . . . (�nN−1�nN ) even N

〈ψ |σ̂1|ψ〉(�n2�n3) . . . (�nN−1�nN ) odd N.

(28)

The above method of derivation can be readily applied to
any mth order correlation functions Mσk1 . . . σkm defined in
Eq. (24). In this case, the sharpness parameters ηk of the
sequential measurement will also be canceled. Accordingly,
measured correlations are independent of whether we mea-
sure the polarizations in projective, unsharp, or even weak
measurements. At the same time, one should know that the
smaller the sharpnesses ηk the larger the needed statistics are
to get the left-hand side of (27) reliably. Expressions simi-
lar to Eqs. (27) and (28) were derived for weak and strong
measurements in Ref. [27] using Gaussian meters. Now we
have proved that these expressions on correlation functions
are also valid for general sequential unsharp measurements
where binary-outcome meters are used. Moreover, it is shown
that the concrete choice of the unsharpness parameter does not
matter.

IV. REALIZATION OF SEQUENTIAL
UNSHARP MEASUREMENT

A convenient way of realizing an unsharp measurement of
the photon polarization is encoding some part of the polariza-
tion information of the photon into a path degree of freedom
and detecting the photon in the given path. The proposed idea
can be realized most straightforwardly by a PPBS. This is a
two-mode optical device that preserves the polarizations H,V
of the incident modes and transforms their paths a, b into
the outgoing modes differently for the horizontal and vertical
polarization components for the input beams. For a single
photon, the four basis states transform like this:(|a〉

|b〉
)

out

|H/V 〉 = ÛH/V

(|a〉
|b〉

)
in

|H/V 〉, (29)

where the 2 × 2 unitary matrix is

ÛH/V =
( √

TH/V eiφH/V
√

RH/V eiψH/V

−√
RH/V e−iψH/V

√
TH/V e−iφH/V

)
. (30)

FIG. 1. Schematic diagram of a setup realizing unsharp measure-
ment of the photon polarization. A single photon in the polarization
state |ψ〉 arrives at the PPBS in input mode a. Input mode b is unused.
The photon after the PPBS is detected either by the detector Da or by
the detector Db.

In Eq. (30) TH/V and RH/V are the transmission and reflec-
tion coefficients, respectively, satisfying the equation TH/V +
RH/V = 1. The values of these coefficients can be chosen
independently for the horizontal and vertical components.
Throughout our calculations the phases φH/V and ψH/V are
chosen to be 0. We note that the transformations in Eq. (30)
can describe PPBSs realized as bulk optical devices using
multilayer dielectric coating and also those built using various
interferometric setups [34].

Let us consider first a scheme presented in Fig. 1 contain-
ing a PPBS and two detectors. A single photon in a general
polarization state |ψ〉 defined in Eq. (2) enters the setup in
mode a, while port b is unused. Assume a PPBS for which
the transmission coefficient TH of the horizontal polarization
coincides with the reflection coefficient RV of the vertical
polarization and vice versa, that is, TH = RV = cos2(χ ) and
RH = TV = sin2(χ ). Introducing the basis {|a〉, |b〉} for the
possible paths of the photon and using Eq. (30) the PPBS
realizes the following transformation:

|a〉|H〉 �⇒ (
cos(χ )|a〉 + sin(χ )|b〉)|H〉,

|a〉|V 〉 �⇒ (
sin(χ )|a〉 + cos(χ )|b〉)|V 〉.

(31)

Hence, by applying Eq. (7), the transformation for a gen-
eral polarization state |ψ〉 of Eq. (2) arriving at the PPBS on
the path |a〉 reads

|a〉|ψ〉 �⇒
{

[cos(χ )|a〉 + sin(χ )|b〉]1 + σ̂z

2

+ [sin(χ )|a〉 + cos(χ )|b〉]1 − σ̂z

2

}
|ψ〉

= {|a〉M̂+ + |b〉M̂−}|ψ〉, (32)

where M̂± are defined in Eq. (9). From this expression one
can conclude that detecting the single photon in mode a or b
corresponding to the projective measurements |a〉〈a| or |b〉〈b|,
respectively, an unsharp measurement of the polarization of
the photon can be realized by the scheme of Fig. 1. Indeed,
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the collapse on |a〉 corresponds to the outcome ν = +1 of
the polarization measurement while the collapse on |b〉 means
ν = −1. Introducing the pertinent notations |a〉 = |+〉 and
|b〉 = |−〉, the full output state |�〉 of the photon after the
PPBS in Eq. (32) can be written as

|�〉 =
⎛
⎝ ∑

ν=±1

|ν〉M̂ν

⎞
⎠|ψ〉. (33)

The resulting normalized polarization states |ψ ′
±〉 of the pho-

ton corresponding to the outcomes ν = ±1 are really the ones
defined in Eqs. (10) and (11).

The unsharp measurement of the polarization of the photon
in a basis determined by the Bloch vector �n = [nx, ny, nz]
corresponding to the measurement of the observable σ̂�n can
be realized in practice by placing the suitable wave plates
before and after the PPBS in Fig. 1 realizing the corresponding
rotations of the Bloch vector described in Eqs. (15) and (16).

We note that the POVM formalism was also used for
treating weak measurements in Refs. [28,39]. It can be easily
seen that in the considered case this formalism corresponds
to the original formalism of weak measurement: the unitary
transformation realized by a PPBS entangles (weakly in the
appropriate limit) the pointer (the path) and the photon polar-
ization.

Inspired by these considerations concerning the setup of
Fig. 1 containing a single PPBS, we propose using an N-level
binary tree of PPBSs for the realization of sequential unsharp
measurements of photon polarization, that is, the observables
σ̂k in a sequence k = 1, . . . , N . Recall that these sequential
measurements can be described by the measurement operators
M̂ν1...νN (η1, . . . , ηN ) defined in Eqs. (18) and (19). An example
of such a setup is presented in Fig. 2 for N = 3. The kth level
of the binary tree corresponds to the kth unsharp measurement
described by the measurement operator M̂ (k)

νk
. PPBSs on level

k denoted by PPBSk are identical but they can be different on
different levels. Pre- and post-PPBS wave plates necessary for
measuring the observable σ̂k are merged into PPBS symbols.
Possible paths of the photon are labeled by strings of the
measurement outcomes ν1 . . . νk . A + sign in these strings
means transmission of the photon at a PPBS of the given level
while the − sign means reflection.

Applying Eq. (33) repeatedly to all levels of the binary tree
setup, the full output state |� (k)〉 at the kth level of an N-level
binary tree setup realizing a sequential unsharp measurement
of the photon polarization can be written as

|� (k)〉 =
∑

ν1,...,νk=±1

(|ν1 . . . νk〉M̂ (k)
νk

. . . M̂ (1)
ν1

)|ψ〉

=
∑

ν1,...,νk=±1

|ν1 . . . νk〉|ψν1...νk 〉, (34)

where k = 1, . . . , N . The state |ψ〉 is the initial polarization
state (2) and

|ψν1...νk 〉 = M̂ (k)
νk

. . . M̂ (1)
ν1

|ψ〉 = M̂ν1...νk |ψ〉 (35)

is the unnormalized polarization state of the photon traveling
on the path labeled by the string ν1 . . . νk . If the photon is de-
tected after the N th level of PPBSs, then the joint probability

FIG. 2. Binary tree of PPBSs realizing sequential unsharp mea-
surements of photon polarization for N = 3 measurements. The kth
level of the binary tree corresponds to the kth unsharp measurement
M̂ (k)

νk
. PPBSs on level k denoted by PPBSk are identical but they

can be different on different levels. Pre- and post-PPBS wave plates
necessary for measuring the observable σ̂k are merged into PPBS
symbols. Possible paths of the photon are labeled by strings of the
outcomes ν1 . . . νk corresponding to the particular sequences of the
measurement. Transmission and reflection at a PPBS yields + and −
in the string, respectively. The input photon polarization state |ψ〉 of
the setup is defined in Eq. (2). Single-photon detectors are denoted
by D.

of counts can be calculated as

pν1...νN = 〈ψν1...νN |ψν1...νN 〉. (36)

The unsharpness parameters χk of the measurements M̂ (k)
νk

re-
alized by the kth level of the binary tree setup are determined
by the horizontal and vertical transmission and reflection co-
efficients characterizing the PPBSs of the given level as

T (k)
H = R(k)

V = cos2(χk ), (37)

R(k)
H = T (k)

V = sin2(χk ). (38)

Comparing Eqs. (35) and (36) with Eqs. (21) and (22),
one can conclude that the proposed scheme indeed realizes
a sequential unsharp measurement described in Sec. III. We
note that the probabilities (36) can also be considered as
classical, that is, they describe the detected intensities when
the initial state is a classical polarized light instead of a sin-
gle photon. The setup becomes essentially quantum only for
single-photon input with postselection. We shall discuss this
property in detail later.

Using Eqs. (19), (31), (37), and (38), the unnormalized
polarization state |ψν1...νN 〉 for the case of N unsharp measure-
ments of the observable σ̂z can be expressed as

|ψν1...νN 〉 = α

N∏
k=1

costk (χk ) sin1−tk (χk )|H〉

+ β

N∏
k=1

cos1−tk (χk ) sintk (χk )|V 〉 (39)
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and the probabilities corresponding to a particular measure-
ment result determined by the string ν1 . . . νN read

pν1...νN = |α|2
N∏

k=1

cos2tk (χk ) sin2(1−tk )(χk )

+ |β|2
N∏

k=1

cos2(1−tk )(χk ) sin2tk (χk ), (40)

where

tk =
{

1 if νk = +1
0 if νk = −1 , (41)

that is, tk = 1 accounts for the photon’s transmission (tk = 0
does for reflection) in a PPBS in the kth level of the setup
along the path determined by the string ν1 . . . νN .

Using Eqs. (24) and (40) one can easily derive that the mth
order correlation functions are

Mσk1 · · · σkm =
{|α|2 − |β|2, for odd m,

1, for even m.
(42)

In accordance with the considerations after Eq. (24) in Sec. III,
the unsharpness parameters do not appear in these formulas.
As we will show in the next section, these simple relation-
ships become nontrivial if postselection is introduced into the
scheme.

Finally, we note that the proposed experimental scheme
can yield the full statistics of N sequential unsharp measure-
ments of photon polarization in a single run consisting of
single-photon experiments repeated as many times as needed
to achieve a given precision of the statistics. In the case of
N sequential measurements, the number of necessary optical
elements (PPBSs and detectors) is proportional to 2N . This
number corresponds to the number of possible outcomes of
the sequential measurements. The number of necessary opti-
cal elements can be reduced by performing the full experiment
step by step realizing only some part of the complete tree or
even a single arm (path) of it. In this case a corresponding
number of runs (2N when one measures the output of a single
arm in a step) is needed for obtaining the full statistics and
the experimental setup has to be rebuilt or adjusted for each
run. Such a solution was used in Refs. [32,33], where interfer-
ometric setups realizing PPBSs were adjusted in each run of
the given experiments.

V. UNSHARP MEASUREMENTS WITH POST-
AND RESELECTION

Our general theoretical description of sequential unsharp
measurement of photon polarization presented in Sec. III can
be applied for arbitrary sharpness parameters. Hence, it can
also be applied for WMs that correspond to the limit ηk → 0
of the sharpness parameters. In this limit backreaction of
the unsharp measurement on the polarization vanishes, the
measurement becomes noninvasive, and the measured polar-
ization state remains undisturbed. In the experimental scheme
of Fig. 2 realizing a sequential unsharp measurement, the WM
limit assumes the use of PPBSs corresponding to very small
values of ηk .

In the theory of WM the concepts of postselection and res-
election have a crucial role. They predict anomalous measured
values [3] and correlation functions [28]. In this section we an-
alyze the consequences of using postselection and reselection
in our theory.

A. Anomalous mean value at postselection

Consider the measurement of a given observable σ̂ cor-
responding to a direction �n of the polarization for an initial
polarization state |i〉 = |ψ〉. Repeating the measurement for
the same initial state many times, one can obtain the statistics
of the measured values σ . Then the average of the measured
values Mσ satisfies

Mσ = 〈i|σ̂ |i〉. (43)

This expression is valid for any unsharp measurement with
arbitrary sharpness parameter [cf. Eqs. (14) and (28)], and
obviously for a weak measurement, too.

However, the original concepts of WM implemented post-
selection [3]. This idea assumes the addition of a projective
measurement after the WM and discarding those outcomes
for which the projective measurement does not yield a certain
final state | f 〉. In this case the theoretical prediction for the
average measured values becomes radically different:

Mσ |psel = Re
〈 f |σ̂ |i〉
〈 f |i〉 ≡ Reσ WV, (44)

where the ratio is called the complex weak value and is de-
noted by σ WV. Since the denominator can be arbitrary small,
the measured value Mσ |psel may fall far away from the spec-
trum ±1 of σ̂ [3].

Inspired by this result, let us consider a general un-
sharp measurement with postselection. In our theory this
corresponds to two consecutive measurements. The first mea-
surement is the unsharp one on σ̂1 = σ̂ , of sharpness η1 = η,
described by measurement operators M̂ (1)

ν1
= 2−1/2[cos(η) +

ν1 sin(η)σ̂ ]. The second measurement on σ̂2 = | f 〉〈 f | −
| f⊥〉〈 f⊥| is projective (sharp, η2 = π/4), described by mea-
surement operators M̂ (2)

ν2
(π/4). At successful postselection we

only need one of them: M̂ (2)
+ = | f 〉〈 f |. Using Eq. (35), the

unnormalized polarization state |ψν1+〉 after the two measure-
ments reads as

|ψν1+〉 = 2−1/2| f 〉〈 f |[cos(η) + ν1 sin(η)σ̂ ]|i〉. (45)

Applying Eq. (36), the probability of the given outcomes of
the measurements can be calculated as

pν1+ = 〈ψν1+|ψν1+〉 = 1
2 |〈 f |i〉|2

× [cos2(η) + |σ WV|2 sin2(η) + ν1σ
WV sin(2η)].

(46)

The average of the measured values σ = ν1/ sin(2η) of the
polarization is

Mσ |psel = 1

sin(2η)

∑
ν1=± ν1 pν1+∑
ν1=± pν1+

, (47)

yielding

Mσ |psel = Reσ WV

cos2(η) + |σ WV|2 sin2(η)
. (48)
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FIG. 3. Schematic diagram of a setup realizing weak measure-
ment of the photon polarization with postselection. The transmission
RH/V (and reflection TH/V ) coefficients of the PPBS should be chosen
to yield small sharpness parameter η � π/4 corresponding to the
weak measurement. PBSs and detectors realize projective measure-
ments in the chosen basis | f 〉, | f⊥〉 of postselection.

This expression is valid for any value of the sharpness parame-
ter η. In WM limit η → 0, it converges to the theoretical value
Reσ WV in Eq. (44) indeed.

The anomalous mean value in Eq. (48) can be measured by
using our general experimental scheme in the following way.
To realize an unsharp measurement with postselection, one
needs a two-level version of the binary-tree system presented
in Fig. 2. Using Eqs. (37) and (38), the transmission RH/V

(and reflection TH/V ) coefficients of the PPBS on the first level
should be chosen to yield small sharpness parameter η �
π/4, while the two PPBSs on the second level should realize a
projective measurement, so they must have η = π/4. Accord-
ingly, the latter two PPBSs are eventually PBSs. We present
this scheme in Fig. 3. The measurement of σ̂ corresponding
to a particular direction �n may require wave plates before and
after the PPBS. Similarly, the two PBSs will be sandwiched
by wave plates, ensuring that the projective measurement be
in the basis | f 〉, | f⊥〉. We note that it is enough using only
those two detectors in this scheme that are placed in the
paths corresponding to the chosen postselected polarization
state | f 〉.

B. Anomalous correlation at reselection

Reselection [28] is the special case of postselection when
the final state | f 〉 is equal to the initial state |i〉, that is, | f 〉 =
|i〉. Comparing Eqs. (43) and (44) shows that in this case the
average of the measured value σ is the same without or with
reselection. This is what we expect since the ideal WM does
not alter the initial state |i〉. Indeed, reselection does not matter
for a single WM. For multiple WMs, however, an unexpected
new anomaly pops up even for the simplest correlation. Sup-
pose one performs the WM of the same polarization σ̂ twice,
yielding the measured values σ1, σ2, respectively. In Ref. [28]
it was shown that in the case of reselection, the second-order
correlation function Mσ1σ2|resel for this sequential WM of
photon polarization is

Mσ1σ2|resel = 1
2 (1 + 〈σ̂ 〉2). (49)

Without any postselection this correlation function would take
the trivial value

Mσ1σ2 = 〈i|σ̂ 2|i〉 = 1. (50)

Let us first consider the second-order correlation function
Mσ1σ2|resel for the case when two consecutive unsharp mea-
surements are used instead of two WMs, the latter of which
we shall consider afterwards. In our formalism, σ̂1 = σ̂2 = σ̂ ,
σ̂3 = |i〉〈i| − |i⊥〉〈i⊥|, while η1 = η2 = η, η3 = π/4. Simi-
larly to the derivation of Eqs. (45) and (46), after the two
identical unsharp measurements of σ̂ and the projective mea-
surement corresponding to reselection of |i〉, the unnormalized
polarization state reads

|ψν1ν2+〉 = 1
2 |i〉〈i|[cos(η) + ν2 sin(η)σ̂ ]

× [cos(η) + ν1 sin(η)σ̂ ]|i〉. (51)

The corresponding probability of the given outcomes of the
measurements can be calculated as

pν1ν2+ = 〈ψν1ν2+|ψν1ν2+〉 = 1

4
+ ν1 + ν2

4
sin(2η)〈σ̂ 〉

+ sin2(2η)

8
[〈σ̂ 〉2 − 1 + ν1ν2(〈σ̂ 〉2 + 1)]. (52)

The second-order correlation function of the measured val-
ues σ1 = ν1/ sin(2η) and σ2 = ν2/ sin(2η) of the polarization,
that is, the average of their product, is

Mσ1σ2|resel = 1

sin2(2η)

∑
ν1,ν2=± ν1ν2 pν1ν2+∑

ν1,ν2=± pν1ν2+
, (53)

yielding

Mσ1σ2|resel = 1 + 〈σ̂ 〉2

2 − sin2(2η)(1 − 〈σ̂ 〉2)
. (54)

This expression is the generalization of Eq. (49) for the case
of two consecutive unsharp measurements. In the WM limit
η → 0 it converges to the expression in Eq. (49).

For measuring the anomalous correlation function in
Eq. (54), one needs a three-level experimental scheme, like
in Fig. 2. The first two levels are built by appropriate PPBSs,
realizing the consecutive unsharp measurements of the ob-
servable σ̂ , while the third level is built by four PBSs, each
realizing projective measurement in the polarization basis
{|i〉, |i⊥〉} corresponding to the initial state. Four single-photon
detectors in the four reselected paths are sufficient.

A simple demonstration of this measurement in the WM
limit can be the following. We opt for the diagonal input
(and the reselected) state as |i〉 = | f 〉 = (|H〉 + |V 〉)

√
2. We

measure σ̂ = σ̂z = |H〉〈H | − |V 〉〈V | twice at the same low
sharpness η � π/4. Finally, we reselect on the diagonal state.
Since 〈σ̂ 〉 = 〈i|σ̂z|i〉 = 0, the measured correlation function in
Eq. (54) reduces to

Mσ1σ2|resel = 1

2 − sin2(2η)
, (55)

which tends to the anomalous value 1/2 for η → 0, half of the
naively expected value 1.
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VI. CONCLUSION

We have proposed a general experimental scheme for real-
izing sequential unsharp measurements of photon polarization
in which the sharpnesses and the bases of the particular pho-
ton polarization measurements can be chosen arbitrarily by
using corresponding PPBSs and phase plates in the setup.
The scheme can also realize sequential WMs in the limit of
low sharpnesses determined by the constituent PPBSs. We
have developed a general formalism describing this scheme in
which the particular unsharp measurements are characterized
by the appropriate measurement operators. Our framework
can be used to calculate the output polarization states after the
sequential measurement and any correlation functions char-
acterizing the measurement results, and also for analyzing
the consequences of applying postselection and reselection in

the measurement. By using the proposed scheme, the anoma-
lous mean value for an unsharp polarization measurement
with postselection and the anomalous second-order correla-
tion function for two consecutive measurements of photon
polarization with reselection could be measured with ease.
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