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Linear-friction many-body equation for dissipative spontaneous wave-function collapse
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We construct and study the simplest universal dissipative Lindblad master equation for many-body systems
with the purpose of a new dissipative extension of existing nonrelativistic theories of fundamental spontaneous
decoherence and spontaneous wave function collapse in nature. It is universal as it is written in terms of second-
quantized mass density �̂ and current Ĵ, thus making it independent of the material structure and its parameters.
Assuming linear friction in the current, we find that the dissipative structure is strictly constrained. Following the
general structure of our dissipative Lindblad equation, we derive and analyze the dissipative extensions of the
two most known spontaneous wave function collapse models, the Diósi-Penrose and the continuous spontaneous
localization models.
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I. INTRODUCTION

Testable predictions of quantum theory assume the pres-
ence of measuring devices providing data on the quantum
system in question. This process, called quantum measure-
ment, yields the collapse of superpositions in accordance with
random measurement outcomes. The concept of spontaneous
collapse can be interpreted as the hypothesis that measure-
ments are occurring spontaneously at each point of space and
time according to some universal protocol, but without the
presence of actual measuring devices [1]. For a comprehen-
sive overview of the theory of spontaneous collapse models
and their experimental testing, see reviews in Refs. [2–5].
Through a suitable choice of its structure and parameters,
the protocol ensures that such spontaneous collapses of the
wave functions φ become significant for macroscopic (e.g.,
massive) systems but remains negligible for microscopic ones.
Currently, two nonrelativistic models, the Diósi-Penrose (DP)
and the continuous spontaneous localization (CSL), have been
crystallized [6–9], and they correspond to the spontaneous
measurement of the mass spatial density operator �̂(r, t ) at
all r and t . Correspondingly, the persistence of (macroscopic)
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superpositions is lost and the unitary dynamics is modified.
Once the statistical average is considered, the corresponding
dynamical equation for the statistical operator ρ̂ describing
such models is a Lindblad master equation borrowed from
open quantum systems theory. The noise generated by such a
dynamics leads to a low-rate spontaneous heating. Nonethe-
less, the accumulation of such a heat is problematic, even
for a phenomenological model. The basic form of the DP
and the CSL models’ master equations lead to decoherence
without dissipation. To dissipate the spontaneously generated
heat, a dissipative mechanism needs to be included to the
basic master equations. Attempts in such a direction were
made [10–12] and some experiments were used to test the
theory [13–16].

Here, we consider the simplest many-body dissipative
Lindblad master equation where the friction term is linear in
the second-quantized current Ĵ(r, t ). We show that our choice
of the Lindblad collapse operator, which is independent from
the details of the considered system, leads to the dissipation of
the current and of the mean energy. We construct and analyze
the corresponding dissipative extensions of the DP and CSL
models.

II. SPONTANEOUS DECOHERENCE MODELS

We start from a modified von Neumann–Schrödinger (mas-
ter) equation

˙̂ρ = − i

h̄
[Ĥ , ρ̂] + Dρ̂, (1)
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where Ĥ is the many-body Hamiltonian describing the
Schrödinger dynamics and D is a term introducing the ac-
tion of spontaneous decoherence. For the latter, we consider
a simple Lindblad form corresponding to the spontaneous
measurement of the second-quantized mass density �̂(r) =
mψ̂†(r)ψ̂ (r) with ψ̂ (r) being the (fermionic) annihilation
field operator. Explicitly, it reads

Dρ̂ = − 1

2h̄2

∫∫
drdsD(r − s)[�̂(r), [�̂(s), ρ̂]],

= 1

h̄2

∫
dk

(2π )3
Dk

(
�̂kρ̂�̂

†
k − 1

2
{�̂†

k�̂k, ρ̂}
)

, (2)

where we introduced the Fourier transform of the mass density
�̂k and the kernel D. Depending on the explicit space (or
momentum) dependence of the kernel, one might want to
introduce a short-length regularization, typically in the form
of a Gaussian smearing of the field �̂(r). In the Fourier repre-
sentation, a Gaussian smearing of scale σ takes a simple form
for both the models (DP and CSL) we will consider:

Dk = exp(−σ 2k2) ×
{

4π h̄G/k2 (DP)
h̄2γ (CSL)

. (3)

In the DP model, the decoherence rate is set by the New-
ton constant G and the kernel contains a 1/k2 factor in
addition to the smearing prefactor. Using an alternative no-
tation, R0 = σ is the spatial cutoff in the DP model and
it is the only free parameter of the model. Current ex-
perimental bounds set the typical smearing at subatomic
length scales σ � 5 × 10−11 m [17], although larger values
can be also considered [18,19]. On the other hand, the CSL
model can be described in terms of two free parameters
being λ = γ m2

0/(
√

4πrC)3 and rC = σ , which are respec-
tively the collapse rate and localization length of the model
(m0 is a reference mass chosen as that of a nucleon). Con-
versely to the DP model, the typically considered values
of the spatial smearing are around σ � 10−7 m, well in the
mesoscopic regime. A mapping between the two models
can be introduced, and it is based on the simple relation-
ship DCSL = −const × ∂DDP/∂ (σ 2) between the two kernels.
Consequently, the decoherence term of the CSL model can be
obtained from the DP one through

DCSL = − h̄γ

4πG

∂DDP

∂ (σ 2)
. (4)

The inverse integral relation can be also simply derived. We
anticipate that these relations will survive in the forthcoming
dissipative generalization of the dissipator D.

III. SPONTANEOUS HEATING

The smaller the cutoff σ , the larger the strength of the
collapse effect and spontaneous heating [20]. The latter im-
plies a continuous increase of the kinetic energy for each
particle. We elucidate this mechanism on a single point-like,
free particle of mass m and canonical variables x̂ and p̂. The
corresponding heating power P, i.e., the time derivative of
the kinetic energy Ĥ = (p̂2/2m), is obtained from the master

equation (1)

P = d 〈Ĥ〉
dt

= 〈D†Ĥ〉 = 1

2m
〈D†p̂2〉 , (5)

where D† is given by

D†Ô = 1

h̄2

∫
dk

(2π )3
Dk

(
�̂

†
kÔ�̂k − 1

2
{�̂†

k�̂k, Ô}
)

. (6)

For the case under study, the mass density and its Fourier
transform read

�̂(r) = mδ(r − x̂), �̂k = meikx̂. (7)

We insert �̂k in Eq. (6) and obtain the expression of the heating
power

P = m

2

∫
d k

(2π )3
Dkk2, (8)

where we used the identity

e−ikx̂ f (p̂)eikx̂ = f (p̂ + h̄k) (9)

and the spherical symmetry of Dk. The integral is characteris-
tic for the regularized behavior of the kernel and we calculate
it from the Eq. (3) for both models:

P = − m

2
D′′(r)

∣∣∣
r=0

= 1√
(2π )3

{
4π h̄G/σ 3 (DP)
3h̄2γ /σ 5 (CSL)

. (10)

Hence, we get the following heating powers:

PDP = h̄Gm

4
√

πσ 3
, (11a)

PCSL = 3mh̄2γ

32π3/2σ 5
, (11b)

which are related to each other in conformity with the map-
ping of Eq. (4).

To get insight into the underlying effective mechanism, we
consider the dynamics of the momentum p̂ in details, i.e.,
the dynamics of arbitrary functions f (p̂) of momentum. It
could be shown that the Heisenberg equation of motion of
f (p̂) is closed, and this important feature has its parallel in
the equivalent von Neumann–Schrödinger dynamics (1) of the
state ρ̂. Since we are not interested in the dynamics of the
coordinate x̂ but of p̂, we can start with the specific form
ρ̂ = ρ(p̂) of the state, then consider its evolution under the
Fourier representation of the dissipator in Eq. (2). The specific
form ρ(p̂), diagonal in momentum basis, is preserved:

dρ(p̂)

dt
= m2

h̄2

∫
dk

(2π )3
Dk(ρ(p̂ − h̄k) − ρ(p̂)). (12)

The result is a semiclassical single-particle kinetic equation.
The effect of dissipator D is equivalent to the random jumps
p → p + h̄k in momentum at the isotropic probability rate

m2

h̄2

dk
(2π )3

Dk. (13)

Since the kernel Dk contains the regularizing factor
exp(−σ 2k2), the elementary momentum and energy transfers
are in a bounded range. We introduce the characteristic bound
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of the elementary energy transfer, which reads

Eσ = h̄2

4mσ 2
. (14)

The quantity Eσ is important when, in the rest of our work,
we balance the spontaneous heating by a different dissipative
mechanism to reach a balance equation:

d 〈Ĥ〉
dt

= P − � 〈Ĥ〉 , (15)

with a dissipation rate � > 0. In such a way, a finite
asymptotic (equilibrium) energy 〈Ĥ〉∞ = P/� is reached for
d 〈Ĥ〉/d t = 0, and the corresponding effective temperature T
is defined by the equipartition theorem 〈Ĥ〉∞ = 3

2 kBT . We
underline that the single free-particle case is sufficient to show
if the spontaneous heating effects lead to a divergence of the
energy, or if they can be counterbalanced with a damping
effect thus leading to a finite asymptotic energy. This is the
same approach that was considered in Ref. [10] for the CSL
model and in Ref. [11] for the DP model.

IV. DISSIPATIVE EXTENSION: AN EXERCISE

Before introducing our dissipative extension of the DP and
the CSL models, it is instructive to understand the elementary
Lindblad form of friction. We start by considering the master
equation for a single free particle of Hamiltonian Ĥ = p̂2/2m
with a decoherence term of the form

Dρ̂ = − D

h̄2 [x̂, [x̂, ρ̂]]. (16)

This can be considered as a minimal model for the sponta-
neous measurement of x̂(t ). It yields a spatial decoherence
at rate D/h̄2. Equivalently, it implies a momentum diffusion
with diffusion constant D/2, yielding a constant heating at
power P = 3D/m. A way to include dissipation is to replace
the Hermitian Lindblad generator x̂ with the non-Hermitian
operator [21,22]:

L̂ = x̂ + i
h̄β

4m
p̂, (17)

where β will turn out to be the inverse equilibrium temper-
ature. Correspondingly, the Lindbladian term of the master
equation takes the form

Dρ̂ = 2D

h̄2

(
L̂ρ̂L̂† − 1

2
{L̂†L̂, ρ̂}

)
. (18)

By expanding L̂, we find

Dρ̂ = i

h̄

[
D

β

4m
{x̂, p̂}, ρ̂

]
− D

h̄2

(
[x̂, [x̂, ρ̂]] + i

h̄β

2m
[x̂, {p̂, ρ̂}]

+ h̄2β2

16m2
[p̂, [p̂, ρ̂]]

)
, (19)

where we can cancel the first Hamiltonian term with a coun-
terterm in Ĥ . The first term of the second line generates
the heating power P as before. The second term yields to
the standard mechanical friction: via the Heisenberg equa-
tion D†p̂ = −ηp̂ with friction coefficient η = 2βD/m. The
second term imposes a relaxation mechanism also for p̂2. For
the mean kinetic energy we get

d 〈Ĥ〉
dt

= 3D

m
− 2βD

m
〈Ĥ〉 . (20)

This is the balance expressed in Eq. (15) with power P =
3D/m and positive dissipation rate � = 2βD/m. We get a
finite equilibrium energy 〈Ĥ〉∞ = 3

2β−1. We conclude that
the effective temperature is T = 1/(kBβ ). Fortunately, it is
known that the equilibrium state of the master equation with
the dissipator in Eq. (19) is the exact Gibbs state [21,22]:

ρ̂β = N e−βp̂2/2m, (21)

and hence 1/(kBβ ) is not only an effective temperature but the
true one.

V. THE MANY-BODY MASTER EQUATION
OF LINEAR FRICTION

Now we introduce our model. In analogy with the single-
particle linear friction in the previous section, we replace the
Hermitian Lindblad generators �̂(r) in the dissipator of Eq. (2)
with a non-Hermitian operator of the form

L̂(r) = �̂(r) − i
h̄β

4
∇rĴ(r), (22)

whose Fourier representation is

L̂k = �̂k + h̄β

4
kĴk, (23)

and where we introduced the current

Ĵ(r) = −i
h̄

2
(ψ̂†(r)∇rψ̂ (r) − ∇rψ̂

†(r)ψ̂ (r)). (24)

We note that the anti-Hermitian part of L̂(r) needs to be a
scalar, like the Hermitian part �̂(r). Indeed, one cannot just
take the current Ĵ(r), but needs to take its divergence. With
this choice for the Lindblad generator, the master equation
becomes

Dρ̂ = 1

h̄2

∫ ∫
drds D(r − s)

(
L̂(r)ρ̂L̂†(s) − 1

2
{L̂†(s)L̂(r), ρ̂}

)
,

= 1

h̄2

∫
dk

(2π )3
Dk

(
L̂kρ̂L̂†

k − 1

2
{L̂†

kL̂k, ρ̂}
)

. (25)

A possible unravelling of Eq. (25), which provides the stochastic and nonlinear dynamical equation for the wave function and
describes its collapse, can be derived by following the prescription highlighted in Eq. (5) of Ref. [14]. Alternatively, one can
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construct such an unravelling starting from the structure in Eq. (4) of Ref. [10]. Merging the expression in Eq. (25) with the
definition of L̂(r), we get a Hamiltonian term, which is suitably reabsorbed, and the following equivalent structures are obtained:

D�̂ = − 1

2h̄2

∫∫
drds D(r − s)

(
[�̂(r), [�̂(s), ρ̂]] − ih̄β

2
[�̂(r), {∇sĴ(s), ρ̂}] + h̄2β2

16
[∇rĴ(r), [∇sĴ(s), ρ̂]]

)
,

= − 1

2h̄2

∫
dk

(2π )3
Dk

(
[�̂−k, [�̂k, ρ̂]] − h̄β

2
[�̂−k, {kĴk, ρ̂}] + h̄2β2

16
[kĴ−k, [kĴk, ρ̂]]

)
, (26)

where the three terms of D are respectively responsible for the decoherence in mass density �̂, the damping of the current Ĵ
(dissipation), and the decoherence in the (divergence) of the current Ĵ, respectively. The corresponding Heisenberg equation of
motion for an arbitrary observable Ô can be obtained from the adjoint of the master equation ˙̂O = i

h̄ [Ĥ, Ô] + D†Ô, where

D†Ô = − 1

2h̄2

∫∫
drdsD(r − s)

(
[�̂(r), [�̂(s), Ô]] + ih̄β

2
{∇sĴ(s), [�̂(r), Ô]} + h̄2β2

16
[∇rĴ(r), [∇sĴ(s), Ô]]

)
,

= − 1

2h̄2

∫
dk

(2π )3
Dk

(
[�̂−k, [�̂k, Ô]] + h̄β

2
{kĴk, [�̂−k, Ô]} + h̄2β2

16
[kĴ−k, [kĴk, Ô]]

)
, (27)

It is central to this work to confirm that the second term in
Eq. (27) is indeed a damping of the current. The correspond-
ing contribution to the evolution of Ĵ(r) is given by

˙̂J(r)|2 = − iβ

4h̄

∫ ∫
dsds′ D(s − s′){∇sĴ(s), [�̂(s′), Ĵ(r)]}.

(28)
We can calculate the commutator of the second quantized
(fermionic) density and current:

[�̂(s′), Ĵ(r)] = −ih̄∇s′[δ(s′ − r)�̂(r)]. (29)

By inserting it in Eq. (28) and integrating the latter by parts,
we get

˙̂J(r)|2 = −β

4

∫
d s∇r ◦ ∇sD(s − r){Ĵ(s), �̂(r)}, (30)

where ◦ indicates the tensor product. We expand the anticom-
mutator of the fermionic density and current:

1

2
{�̂(r), Ĵ(s)}

= mδ(r− s)Ĵ(r)− ih̄

2
m(ψ̂†(r)∇sψ̂

†(s)ψ̂ (r)ψ̂ (s) − H.c.).

(31)

Using this, we find that

˙̂J(r)|2 = −ηĴ(r) + i(Ŷ(r) − H.c.), (32)

where

Ŷ(r) = β h̄m

4

∫
ds∇r ◦ ∇sD(s − r)ψ̂†(r)∇sψ̂

†(s)ψ̂ (r)ψ̂ (s).

(33)
The latter contributes only when multiple fermions are
present, while it vanishes when applied to a single fermion
state. As a first-order approximation, we neglect Ŷ(r) contri-
butions. Then, the current effectively decays with a friction
rate

η = −βm

2
D′′(r)|r=0, (34)

which depends crucially on the parameter σ that regularizes
D(r) at r = 0; see expressions in Eq. (10). In the Appendix,
we show that, in the case of a single particle, Eq. (32) holds
with no approximations.

Since the methods to infer exact analytic features of the
dissipative master equation are limited, we turn to the spe-
cial single-particle case. In such a case the mechanism of
dissipation is transparent, and exact analytic calculations are
possible. Moreover, in the case of both the standard CSL and
DP models, i.e., with no dissipation included, the heating rate
is independent from the presence of interactions or external
potentials. This has been well addressed in Ref. [23]. The
inclusion of dissipative effects, however, breaks this sim-
ple feature in dense interactive fermionic matter. To include
interaction and fermionic exchange, one should employ per-
turbative methods such those used in Ref. [24], which can be
applied independently of the Hamiltonian structure. However,
this goes beyond the scope of this paper. Nonetheless, as long
as our single-fermion approximation is valid, the thermody-
namics remains trivial as in the nondissipative case, while the
rates and the equilibrium temperature are calculable exactly
as for single fermions.

VI. SINGLE-PARTICLE DISSIPATIVE MECHANISM

In case of the single particle, it is most convenient to
work in the Fourier representation of the mass density and the
current:

�̂k = meikx̂, Ĵk = 1
2 {p̂, eikx̂}. (35)

Then, the Lindblad generator, leading to the many-body dis-
sipator D shown in Eq. (26), reduces to simple alternative
forms:

L̂k =
(

m − h̄2k2β

8
+ h̄kβ

4
p̂

)
eikx̂,

= eikx̂

(
m + h̄2k2β

8
+ h̄kβ

4
p̂

)
. (36)

012202-4



LINEAR-FRICTION MANY-BODY EQUATION FOR … PHYSICAL REVIEW A 108, 012202 (2023)

Let us see how the kinetic equation of the momenta differs
from that of the standard DP and CSL in Sec. III. We use both

forms in Eq. (36) of the Lindblad generator in the dissipator
in Eq. (25), to yield

dρ(p̂)

dt
= 1

h̄2

∫
dk

(2π )3
Dk

⎛
⎝(

m − β h̄2k2

8
+ β h̄k

4
p̂

)2

ρ(p̂ − h̄k) −
(

m + β h̄2k2

8
+ β h̄k

4
p̂

)2

ρ(p̂)

⎞
⎠. (37)

This is equivalent with a classical kinetic equation, and there-
fore p instead of p̂ can be written. According to this kinetic
equation, the momentum jumps like p → p + h̄k at probabil-
ity rate

m2

h̄2

dk
(2π )3

Dk

(
1 + β

8m
[p2 − (p − h̄k)2]

)2

. (38)

This jump rate, unlike in standard DP and CSL, is not
isotropic, and the anisotropy can generate the desired friction.
Nevertheless, the above rate is subtle. Consider for simplicity
a momentum transfer of h̄k = ∓κp where 0 � κ � 1, where
upper and lower signs correspond to damping and heating
respectively. The difference between damping and heating
rates is proportional to the following expression:(

1 − β h̄2k2

8m
+ κ

βp2

4m

)2

−
(

1 − β h̄2k2

8m
− κ

βp2

4m

)2

= κ
βp2

m

(
1 − β h̄2k2

8m

)
. (39)

Damping dominates as long as β(h̄2k2/8m) < 1 and heating
takes over otherwise. Earlier, when we defined Eσ in Eq. (14),
we noticed that the range of k is 1/σ , and hence (h̄2k2/4m) ∼
Eσ . Accordingly for damping, the largest value of 1/β is about
2Eσ . The forthcoming analytic calculation shows that, indeed,
there is an exact critical value of 1/β above which dissipation
gives way to heating.

In order to prove that the model exhibits the expected dis-
sipative mechanism described in Eq. (15) for 〈Ĥ〉 = 〈p̂2/2m〉,
we derive the time derivative of 〈p̂2〉. Since the dynamics of
p̂ is semiclassical, we can derive the time derivative of the
equivalent semiclassical mean 〈p2〉. According to the above
discussion, the expression in Eq. (38) is the rate of random
jumps p → p + h̄k, each of which leads to a change of
h̄2k2 + 2h̄kp for p2. Hence, we can write

d

dt
〈p2〉 = m2

h̄2

∫
dk

(2π )3

∫
dpDkρ(p)

× (h̄2k2 + 2h̄pk)

(
1 + β

8m
[p2 − (p − h̄k)2]

)2

.

(40)

We temporarily set h̄ = 1 and introduce a2 = (β/4m). We
then rewrite the following expression

(k2 + 2pk)
(
1 − 1

2 a2k2 − a2kp
)2

(41)

= k2(1 − a2k2 + 1
4 a4k4) + a2(3a2k2 − 4)(kp)2 + · · ·

⇒ k2
(
1 − a2k2 + 1

4 a4k4
) + a2k2

(
a2k2 − 4

3

)
p2, (42)

where the ellipsis stands for odd powers of k to be can-
celed when intergrating, and we replaced (kp)2 by 1

3 k2 p2 also
because of the isotropy of Dk in the integral. We insert in
Eq. (40) the bottom line of the above expansion and perform
the integral in p. We get the balance equation (15), where the
power P and the dissipation � rates are respectively

P = m

2

∫
dk

(2π )3
Dkk2

(
1 − β h̄2

4m
k2 + β2 h̄4

64m2
k4

)
,

� = βm

3

∫
dk

(2π )3
Dkk2

(
1 − 3β h̄2

16m
k2

)
, (43)

where we have restored h̄ and a2 = β/4m. The obtained result
shows that the energy of the system is dissipated, as ex-
pected, through the anisotropic process described by Eq. (38).
Moreover, we show in the Appendix that such a result is
independent of the specific form of the state ρ̂ and is valid
beyond the assumption of having ρ̂ = ρ(p̂).

The integrals in Eq. (43) can be calculated analytically for
the two models. They respectively read

PDP = h̄mG

4
√

πσ 3

(
1 − 3

4
x2
β + 15

64
x4
β

)
,

�DP = β
h̄mG

6
√

πσ 3

(
1 − 9

16
x2
β

)
. (44)

and

PCSL = 3mγ h̄2

32π3/2σ 5

(
1 − 5

4
x2
β + 35

64
x4
β

)
,

�CSL = β
mγ h̄2

16π3/2σ 5

(
1 − 15

16
x2
β

)
, (45)

where we defined the dimensionless parameter

x2
β = 2βEσ = h̄2β

2mσ 2
, (46)

which is the ratio of the elementary energy transfer Eσ

defined in Eq. (14) to 1/(2β ), the latter being the equilib-
rium thermal kinetic energy at high temperatures. Note that,
according to the mapping in Eq. (4), the relation PCSL =
−(h̄γ /4πG)∂PDP/∂ (σ 2) holds, and similarly between �CSL

and �DP. The dissipative rates � become negative if x2
β , which

is proportional to the parameter β, is larger than a critical
value, which is different for the two models.

It is in order now to interpret our results, shown in
Eqs. (43)–(45), that exhibit the dissipation mechanism pos-
tulated by the balance Eq. (15). The equilibrium energy is
obtained as 〈Ĥ〉∞ = P/�. Following the equipartition theo-
rem, we define the effective temperature as T = 2

3 〈Ĥ〉∞ /kB
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and we introduce the parameter Tβ = 1/β in place of β. Then,
we have x2

β = 2Eσ /Tβ , and we can express the effective tem-
peratures of the two models as

T DP = Tβ

1 − 3
2 (Eσ /kBTβ ) + 15

16 (Eσ /kBTβ )2

1 − 9
8 (Eσ /kBTβ )

(47)

and

T CSL = Tβ

1 − 5
2 (Eσ /kBTβ ) + 35

16 (Eσ /kBTβ )2

1 − 15
8 Eσ /Tβ

. (48)

In the regime kBTβ � Eσ , the effective temperature T asymp-
totically coincides with the parameter Tβ , which justifies our
choice of parametrizing the dissipator in Eq. (26) by β =
1/Tβ . When lowering the parameter temperature Tβ , the ef-
fective temperature T is also lowering. But the dissipation
rate � is also decreasing and at a point the effective T is no
longer lowering together with Tβ , but it is growing again and
becomes infinite when the dissipation rate reduces to zero, i.e.,
at kBTβ = (9/8)Eσ in the DP model and at kBTβ = (15/8)Eσ

in the CSL model. Below these critical temperatures, the nega-
tive dissipative rate � is contributing to a higher heating power
P rather than balancing it. This effect follows from what we
noticed about the subtlety of momentum jump rate in Eq. (38).

The standard DP and CSL models correspond to T = Tβ =
∞, where dissipative rates � vanish, and the powers P reduce
to the expressions in Eqs. (11a) and (11b), respectively. The
kinetic energy 〈Ĥ〉t goes to infinity and, from a theoretical
viewpoint, this looks unphysical. In practice, however, we
face a different situation. The predicted powers in Eqs. (11a)
and (11b) are extremely small and are typically masked by
the environmental effects (see experimental investigations
summarized in Ref. [5]). Clearly, studying experimentally a
system under the action of a collapse mechanism, but oth-
erwise isolated, is impossible. Indeed, there will be always
a coupling of the system with its surrounding environment.
This might be the residual gas in the vacuum chamber, the
blackbody radiation, or the noises (e.g., seismic or electronic)
that shake, and thus heat, the experiment (see, for instance,
Refs. [25,26]). As a matter of fact, current laboratory efforts
of isolation are not yet able to exclude the values T = Tβ = ∞
either for the DP or the CSL model, however unphysical they
would theoretically be.

For this reason, we now consider the case of a system
undergoing simultaneously to the dissipative collapse mech-
anism and the interaction of an external thermal environment.
Let TE be the temperature of the environment, and let us
define the power PE and the dissipative rate �E to model the
environmental effect on our particle, where 3

2 kBTE = PE/�E

is satisfied. One can straightforwardly derive the evolution of
the mean energy of the system, which reads

d

dt
〈H〉t = P + PE − (� + �E ) 〈H〉t , (49)

where P and � are those defined in Eq. (43). Consequently,
the asymptotic mean energy is

〈Ĥ〉∞ = P + PE

� + �E
. (50)

According to the equipartition theorem, the asymptotic (equi-
librium) temperature of our particle is Teff = 2

3 k−1
B 〈Ĥ〉∞, i.e.,

Teff = �T + �ETE

� + �E
, (51)

where T = 2
3 k−1

B P/� is the effective temperature obtained in
Eqs. (47) and (48) of the collapse noise and TE = 2

3 k−1
B PE/�E

is that of the thermal environment. The relation in Eq. (51)
is fundamental when it comes to experiments. Indeed, it pro-
vides the experimental requirement to be reached in terms of
�E and TE to be able to measure the temperature T of the
collapse noise.

VII. CONCLUSION

We introduced a simple and universal dissipative exten-
sion of the DP and the CSL models. Contrary to previous
attempts [10,11], our model modifies the collapse operator
by adding (instead of a multiplying) a new term leading to
dissipative effects. A similar method has been considered
for a different gravity-related model in Ref. [27]. Such a
term is proportional to the divergence of the current and is
parametrized by the constant β [cf. Eq. (22)]. We demonstrate
that the model dissipates the current and leads to the ther-
malization of the system’s energy to the asymptotic value of
〈Ĥ〉∞ = 3

2 kBT , where the expression for T is given in Eq. (47)
for the DP model and in Eq. (48) for the CSL model.

We find a threshold temperature T0, which is defined as

T0 = h̄2

mkBσ 2
, (52)

and is determined by the cutoff length σ of the DP and the
CSL models. For kB/β much higher than T0, the system’s
mean energy asymptotically converges to 1/(2β ), which sug-
gests that β can be interpreted as the inverse temperature of
the collapse noise. Nevertheless, for generic values of β, the
latter enters nontrivially in 〈Ĥ〉∞. The noise temperature T
becomes different from kB/β when the latter approaches T0

from above. At a certain point, the noise temperature T inverts
its trend with respect to kB/β and increases to infinity at T0.
It is thus impossible to draw a clear one to one connection
between the temperature T of the collapse noise and the
parameter β. In general, the temperature of the collapse noise
does not coincide with β−1/kB, and the latter plays the role of
a parameter in the master equation that is detached from its
familiar statistical mechanical interpretation.
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APPENDIX: SINGLE-PARTICLE DISSIPATIVE
MECHANISM IN THE HEISENBERG PICTURE

We rederive here the results appearing in Secs. V and VI
in the Heisenberg picture for a generic state ρ̂. In particular,
we show that the second term of D in Eq. (26) leads to the
dissipation of the current, and that the energy follows the bal-
ance equation displayed in Eq. (15). For the sake of simplicity,
we focus on the case of a single particle. In such a case, the
explicit forms of the Fourier transform of the mass density �̂k
and the current Ĵk are

�̂k = meikx̂, Ĵk = 1
2 {p̂, eikx̂}. (A1)

From these and from Eq. (9), one can compute their commu-
tator and anticommutator, which respectively read

[�̂q, Ĵk] = −mh̄qei(k+q)x̂ = −h̄q�̂k+q and

{�̂q, Ĵk} = mei(k+q)x̂(2p̂ + h̄(k + q)) = 2mĴk+q. (A2)

The dynamics of the current due to the second term in
Eq. (26) is given, equivalently, by the following two expres-
sions:

˙̂J(r)|2 = − iβ

4h̄

∫ ∫
dsds′ D(s − s′){∇sĴ(s), [�̂(s′), Ĵ(r)]},

(A3a)

= − β

4h̄

∫
dk′

(2π )3
e−ik′r

∫
dk

(2π )3
Dk{kĴk, [�̂−k, Ĵk′ ]}.

(A3b)

By employing the second of these expressions and merging
it with Eq. (A2), one straightforwardly finds

˙̂J(r)|2 = −ηĴ(r), (A4)

where

η = βm

2

∫
dk

(2π )3
Dkk2, (A5)

which shows explicitly that the contributions due Ŷ(r) in
Eq. (32) vanishes exactly in the single-fermion case. Simi-
larly, one computes the following commutators of �̂k and Ĵk

with Ĥ = p̂2

2m :

[�̂k, Ĥ ] = −eikx̂

2
(h̄2k2 + 2h̄kp̂) and

[kĴk, Ĥ ] = − h̄eikx̂

4m
(h̄k2 + 2kp̂)2, (A6)

from which one obtains

[�̂−k, [�̂k, Ĥ ]] = −mh̄2k2, (A7)

{kĴk, [�̂−k, Ĥ ]} = 2h̄(kp̂)2 + h̄3k4

2
, (A8)

[kĴ−k, [kĴk, Ĥ ]] = −3h̄2k2(kp̂)2

m
− h̄4k6

4m
. (A9)

Owning that, for any spherically symmetric kernel Dk = Dk ,
the following holds,∫

dkDk (kp̂)2 =
∫

dkDk (k p̂ cos θ )2

= p̂2 4π

3

∫
dkDkk4

=
∫

dkDk

(
k2 p̂2

3

)
, (A10)

we can substitute (kp̂)2 with (k2 p̂2)/3 [this has been used also
in Eq. (42)]. Then, from Eq. (27) we obtain the dynamics for
the Hamiltonian:

D†Ĥ = P − �Ĥ , (A11)

where the explicit form of P and � is given in Eq. (43). We
underline that such an equation is state independent, and thus
it can be straightforwardly used to evaluate the expectation
value of the energy for any state, also beyond the assumption
of ρ̂ = ρ(p̂), which has been considered in the main text.
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