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The covariant form of the multivariable diffusion-drift process is described by the covariant
Fokker–Planck equation using the standard toolbox of Riemann geometry. The covariant form
of the adapted Langevin stochastic differential equation is long sought after in both physics and
mathematics. We show that the simplest covariant Stratonovich stochastic differential equation
depending on the local orthogonal frame (cf. vielbein) becomes the desired covariant Langevin
equation provided we impose an additional covariant constraint: the vectors of the frame must
be divergence-free.
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1. Introduction
Differential geometric studies of stochastic differential equations (SDEs) of diffu-

sion go back to Dynkin [1] and Ito [2]. Diffusion on Riemannian manifolds described
by the Fokker–Planck equation (FPE) and the celebrated Eells–Elworthy–Malliavin
construction [3–5] yields the adapted diffeomorphism invariant stochastic process.
But its ‘canonical’ SDE ( i.e. covariant in local coordinates) is notoriously missing.
In physics, Graham studied diffeomorphism invariant diffusion on the thermodynamic
state space in seminal papers [6–9], searching in vain for the covariant Langevin
SDE. The need for a solution has recently re-emerged in the theory of hybrid
classical-quantum dynamics [10, 11]. Our work finds a simple construction of the
covariant Langevin SDE adapted to the covariant FPE and we conjecture that it is
the missing ‘canonical’ SDE.

Differently from the typical mathematical literature which defines the Riemannian
manifold first and introduces the natural diffusion equation on it, here we define the
diffusion equation on a manifold first and impose the natural Riemannian structure
afterwards. Accordingly, Section 2 recapitulates the usual FPEs and Langevin SDEs
first, then Section 3 adds the Riemannian structure and transforms the FPE and SDE
into their equivalent covariant forms, utilizing our finding: a mandatory covariant
constraint on the Langevin SDE’s covariant parameters. Comparisons with previous
mathematical works are postponed to Section 4, also containing our conclusions.
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2. Fokker–Planck vs Langevin equation

The most common irreversible phenomena in physics are diffusive ones, modelled
mathematically by the FPE. If 𝑃(𝑥) is the normalized probability distribution of an
abstract particle of coordinates 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) then the FPE reads [12]

𝜕𝑃

𝜕𝑡
= 1

2
(
𝑔𝑎𝑏𝑃

)
,𝑎𝑏

−
(
𝑉𝑎𝑃

)
,𝑎
. (1)

Here 𝑔𝑎𝑏 (𝑥) is the positive diffusion matrix and 𝑉𝑎 (𝑥) is the drift, defined respectively
by the expectation value of diffusion and velocity if the particle is at the position 𝑥,

𝑔𝑎𝑏 (𝑥) = 𝑑

𝑑𝑡
⟨𝑥𝑎𝑥𝑏⟩𝑃 (𝑧)=𝛿 (𝑧−𝑥 ) , (2)

𝑉𝑎 (𝑥) = 𝑑

𝑑𝑡
⟨𝑥𝑎⟩𝑃 (𝑧)=𝛿 (𝑧−𝑥 ) . (3)

With one eye on forthcoming considerations of covariance, we use the formalism
of general relativity: summation of identical labels is understood, partial derivatives
𝜕/𝜕𝑥𝑎 are denoted by lower label 𝑎 with the comma.

The same diffusive phenomena can alternatively be represented by the adapted
stochastic processes 𝑥𝑡 satisfying Langevin SDEs. The equivalence between the FPE
and the SDE means the following relationship,

𝑃𝑡 (𝑥) =
〈
𝛿(𝑥 − 𝑥𝑡 )

〉
, (4)

where ⟨. . . ⟩ stands for averaging over the stochastic 𝑥𝑡 . With 𝑛 independent Wiener
processes 𝑊 𝐴, the Ito form of the Langevin SDE of 𝑥𝑡 is the following [12],

𝑑𝑥𝑎 = 𝑒𝑎𝐴𝑑𝑊
𝐴 +𝑉𝑎𝑑𝑡. (5)

Summation from 1 to 𝑛 over repeated labels 𝐴 is understood and the matrices
𝑒𝑎
𝐴
(𝑥) satisfy

𝛿𝐴𝐵𝑒𝑎𝐴𝑒
𝑏
𝐵 = 𝑔𝑎𝑏 . (6)

This condition allows for a local orthogonal gauge-freedom,

𝑒𝑎𝐴 ⇒ 𝑂𝐵
𝐴𝑒

𝑎
𝐵 (7)

with orthogonal matrices 𝑂𝐵
𝐴
(𝑥). The form of the SDE (5) is gauge-dependent but

the stochastic process 𝑥𝑡 is unique.
Using the method e.g. in [10], we verify the relationship (4). Suppose it holds

at time 𝑡, then we have to show that 𝑑𝑃𝑡 (𝑥) = ⟨𝑑𝛿(𝑥 − 𝑥𝑡 )⟩ is satisfied if the l.h.s.
is given by the FPE (1) and the r.h.s. is given by the SDE (5).
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Let us workout the r.h.s.,
1
𝑑𝑡

⟨𝑑𝛿(𝑥 − 𝑥𝑡 )⟩ =
1
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2𝛿,𝑎𝑏 (𝑥 − 𝑥𝑡 )𝑑𝑥𝑎𝑡 𝑑𝑥𝑏𝑡 ⟩
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2𝛿,𝑎𝑏 (𝑥 − 𝑥𝑡 )𝑔𝑎𝑏 (𝑥𝑡 )⟩

= −
(
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)
,𝑎
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(
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)
,𝑎𝑏

= −
(
𝑃(𝑥)𝑉𝑎 (𝑥)

)
,𝑎
+ 1

2
(
𝑃(𝑥)𝑔𝑎𝑏 (𝑥)

)
,𝑎𝑏

. (8)

First we calculated 𝑑𝛿(𝑥 − 𝑥𝑡 ) with the Ito correction, then inserted 𝑑𝑥𝑎 from the
SDE (5). Next, we moved derivations in front of the expressions so that we could
replace the argument 𝑥𝑡 of both 𝑉𝑎 and of 𝑔𝑎𝑏 by 𝑥, thanks to the 𝛿-function.
Finally, we inserted our initial assumption that (4) holds at 𝑡. The result coincides
with 𝑑𝑃𝑡 (𝑥)/𝑑𝑡 calculated from the FPE (1).

3. Covariance
Neither the FPE (1) nor the Ito–Langevin SDE (5) are covariant under general

transformations of the coordinates 𝑥𝑎. The common reason of their non-covariance is
the non-covariance of the drift vector (3). For example, if the velocity 𝑉𝑎 vanishes
in Euclidean coordinates it becomes nonzero in curvilinear ones.

The desired covariant FPE is easily achieved. We borrow the toolbox of Riemann
geometry well known from general relativity [13]. Accordingly, we impose a Riemann
geometry structure on the manifold of coordinates 𝑥 by identifying the diffusion
matrix 𝑔𝑎𝑏 with the contravariant metric tensor and we introduce the scalar probability
density 𝜌 = 𝑃/√𝑔 of covariant normalization∫

𝜌(𝑥)√𝑔𝑑𝑥 = 1. (9)

The covariant form of the FPE (1) follows,
𝑑𝜌

𝑑𝑡
= 1

2𝑔
𝑎𝑏𝜌;𝑎𝑏 − (𝑉𝑎𝜌);𝑎, (10)

where semicolons denote covariant derivatives and 𝑉𝑎 is the co(ntra)variant drift

𝑉𝑎 = 𝑉𝑎 − 1
2√𝑔 (

√
𝑔𝑔𝑎𝑏),𝑏 . (11)

As a price of its covariance, this velocity parameter is different from the true but
noncovariant drift velocity 𝑉𝑎 defined by (3).

Now we propose the covariant Langevin equation. The matrix 𝑒𝑎
𝐴
, introduced

for the noncovariant Ito–Langevin SDE (5), is standard in Riemann geometry. It
is called frame (or vielbein, also tetrad in the four-dimensional pseudo-Riemann
space of general relativity). The condition (6) is called the frame’s orthogonality
condition. And now we impose our new covariant constraint on the frame. Namely,
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the covariant divergence of the frame’s 𝑛 orthogonal vectors should vanish,

(𝑒𝑎𝐴);𝑎 = 0. (12)

We mention that the choice of the frame still has a gauge-freedom which is
a restriction of (7), not detailed here.

The covariant form of the noncovariant Ito–Langevin SDE (5) is, as we prove
below, simple enough,

𝑑𝑥𝑎 = 𝑒𝑎𝐴 ◦ 𝑑𝑊 𝐴 +𝑉𝑎𝑑𝑡, (13)

where ◦ means Stratonovich product instead of Ito’s. The r.h.s. is explicit covariant.
This is compatible with the covariance of the l.h.s. since the Stratonovich differentials
satisfy the chain rule exactly like common differentials. In our case, if we change
the coordinates for 𝑦𝑎 then the Stratonovich differentials transform covariantly,

𝑑𝑦𝑎 =
𝜕𝑦𝑎

𝜕𝑥𝑏
𝑑𝑥𝑏 . (14)

Now we prove that the covariant Stratonovich–Langevin SDE (13) is equivalent
indeed with the noncovariant SDE (5). The Ito form of a Stratonovich SDE, like
our (13), reads [12] as

𝑑𝑥𝑎 = 𝑒𝑎𝐴𝑑𝑊
𝐴 + 1

2
𝛿𝐴𝐵 (𝑒𝑎𝐴),𝑏𝑒𝑏𝐵𝑑𝑡 +𝑉𝑎𝑑𝑡

= 𝑒𝑎𝐴𝑑𝑊
𝐴 + 1

2
𝛿𝐴𝐵 (𝑒𝑎𝐴),𝑏𝑒𝑏𝐵𝑑𝑡 +

(
𝑉𝑎 −

(√𝑔𝑔𝑎𝑏),𝑏
2√𝑔

)
𝑑𝑡.

Observe that the new drift term contains the standard partial derivatives of the
frame, not the covariant ones. We are going to work it out,

𝛿𝐴𝐵 (𝑒𝑎𝐴),𝑏𝑒𝑏𝐵 = 𝑔𝑎𝑏,𝑏 − 𝑒𝑎𝐴(𝑒𝑏𝐴),𝑏
= 𝑔𝑎𝑏,𝑏 + 𝑒𝑎𝐴Γ

𝑏
𝑏𝑐𝑒

𝑐
𝐴

= 𝑔𝑎𝑏,𝑏 + 𝑔𝑎𝑐Γ𝑏
𝑏𝑐

=
1
√
𝑔
(√𝑔𝑔𝑎𝑏),𝑏 . (15)

In the four steps we used the orthogonality (6) of the frame, the constraint (12)
on its covariant divergence, then (6) again, and the identity Γ𝑏

𝑎𝑏
= (log√𝑔),𝑎. If we

insert the result in the SDE (15) we recognize the coincidence with the noncovariant
SDE (5).

We have not yet asked if divergence-free frames 𝑒𝑎
𝐴

exist at all. The answer is
reassuring [14]. They exist — at least locally — for 𝑛 > 2. Interestingly enough, they
do not exist for 𝑛 = 2 unless the geometry is flat. Construction of the divergence-free
frames is trivial on flat Riemannian manifolds. Then the coordinates 𝑥𝑎 can be
functions of Euclidean coordinates 𝑦𝐴. Accordingly, 𝑥𝑎 = 𝑓 𝑎 (𝑦) and the map from
Euclidean to curvilinear coordinates satisfies the relationship between the Euclidean
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𝛿𝐴𝐵 and the curvilinear metric tensors,

𝛿𝐴𝐵 𝑓 𝑎,𝐴 𝑓
𝑏
,𝐵 = 𝑔𝑎𝑏 . (16)

The frame’s orthogonality condition (6) is then satisfied if we choose the frame as

𝑒𝑎𝐴 = 𝑓 𝑎,𝐴. (17)

This frame is divergence-free. Indeed, the covariant divergence (𝑒𝑎
𝐴
);𝑎 vanishes in any

curvilinear coordinates because it vanishes in the particular Euclidean coordinates
where 𝑒𝑎

𝐴
= 𝛿𝑎

𝐴
.

4. Discussion
The covariant Langevin equation (13), known in itself by both Ito [2] and Graham

[7], is describing a frame dependent stochastic process generically different from
the adapted process to the given covariant FPE (10). Obviously, the choice of the
orthogonal frames must not be left completely free. Originally, Ito [2] proposed that
the frame follows stochastic parallel transport along the stochastic trajectory 𝑥𝑡 , the
covariant derivative of the frame along the trajectory be vanishing. In other words,

𝑑𝑒𝑎𝐴 = −Γ𝑎
𝑏𝑐𝑒

𝑏
𝐴 ◦ 𝑑𝑥𝑐, (18)

which is a second SDE coupled to the Langevin equation (13) of 𝑑𝑥𝑎, see also
Eq. (3.3.9) in [5]. With Ito’s stochastic parallel transport, the covariant SDE (13)
becomes a bit more involved than with our deterministic constraint 𝑒𝑎

𝐴;𝑎 = 0 but
obtains the same stochastic process 𝑥𝑡 . The frame is defined on the stochastic
trajectory only, differently from our proposal where the frame 𝑒𝑎

𝐴
is a given smooth

function on the whole Riemannian manifold.
In the mathematical literature of diffusion on Riemannian manifolds, the lack of

‘canonical’ SDE is explained by the fact that the Laplace-Beltrami operator Δ𝐿𝐵

is not a sum of operator squares, cf. p. 75 in [5] or in [15] most recently. That
seems to contradict to the existence of the covariant Langevin SDE. Fortunately,
there is no contradiction. We can always write Δ𝐿𝐵 as sum of operator squares (at
least locally and unless 𝑛 = 2),

Δ𝐿𝐵 ≡ ∇𝑎𝑔
𝑎𝑏∇𝑏 = 𝛿𝐴𝐵 (𝑒𝑎𝐴∇𝑎) (𝑒𝑏𝐵∇𝑏), (19)

where ∇𝑎 means the covariant derivative. The proof is easy if we substitute
𝑔𝑎𝑏 = 𝛿𝐴𝐵𝑒𝑎

𝐴
𝑒𝑏
𝐵

and use the constraint ∇𝑎𝑒
𝑎
𝐴
= 0.

In summary, we have proved that once the covariant Fokker–Planck equation is
given, the long-sought stochastic differential equation of the adapted process, i.e. the
covariant Langevin equation is the Stratonovich stochastic differential equation (13)
containing covariant objects only, as it should, while our main result is that the
covariant divergence of the orthogonal frame 𝑒𝑎

𝐴
must be set vanishing (12). Our

result can and should be refined by more rigorous methods of probability theory
and differential geometry.
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