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We consider N clones of the quantized world, interacting with each other via quantum gravity, coupled
by the downscaled Newton constant G=N. In the limit N → ∞, we obtain the semiclassical Einstein
equation for every single cloneworld. In the nonrelativistic limit, De Filippo had already obtained the
semiclassical Schrödinger-Newton equation; we present an alternative elementary proof. In the general-
relativistic case, we complete the semifinished derivation of Hartle and Horowitz. We compare our simple
correlated cloneworlds with Stamp’s more complicated proposal of correlated worldlines and show why the
two constructions differ despite the conceptual similarity.
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I. INTRODUCTION

Although quantum theory was initially conceived for the
atomic world, it has come to be thought of as the universal
theory of the whole Universe. We often use the semi-
classical theory where gravity remains classical (unquan-
tized) and it interacts with the quantized matter. The
simplest semiclassical theory goes back to the 1960s [1,2].
Consider a given foliation of the spacetime in spacelike

hypersurfaces Σ. The state vector of the quantized matter
evolves with the Tomonaga-Schwinger equation (1) where
the Hamiltonian density depends on the classical metric
gab, which is the solution of the semiclassical Einstein
equation (2) with the Einstein tensor on the left and the
expectation value of the energy-momentum operator on the
right:

δjΨΣi
δΣðxÞ ¼ −iĤðxÞjΨΣi; ð1Þ

GabðxÞ ¼ 8πGhΨΣjT̂abðxÞjΨΣi; ðx∈ΣÞ: ð2Þ

In the Newtonian limit, the semiclassical theory becomes
much simpler. The state vector of the quantized non-
relativistic matter evolves with the Schrödinger equa-
tion (3), where Ĥ is the self-Hamiltonian and the
nonrelativistic mass distribution operator μ̂ couples to
the classical Newton potential Φ, which is the solution
of the Poisson-Newton equation (4):

djΨti
dt

¼ −i
�
Ĥ þ

Z
Φðr; tÞμ̂ðrÞdr

�
jΨti; ð3Þ

ΔΦðr; tÞ ¼ −4πGhΨtjμ̂ðr; tÞjΨti: ð4Þ

This equation, unlike its general-relativistic form (2), is
easy to solve. Let us insert the solution into Eq. (3):

djΨi
dt

¼−iĤjΨiþ iG
Z Z

μ̂ðrÞhΨjμ̂ðsÞjΨi drdsjr− sj jΨi: ð5Þ

Although this equation had already been used for quantized
stellar masses [3], its possible relevance in foundations and
its features in the quantized motion of nanomasses were
revealed by the present author in 1984 and by Penrose, who
called it the Schrödinger-Newton equation [4,5].
In 1981, Hartle and Horowitz considered N identical

bosonic fields coupled by quantized gravity at downscaled
coupling G=N [6]. The leading order in 1=N yielded an
approximation closely related to semiclassical gravity:

GabðxÞ ¼ 8πG
h0þjT̂H

abðxÞj0−i
h0þj0−i

; ð6Þ

where j0�i are the asymptotic initial/final bosonic vacuum
states, respectively, and T̂H

abðxÞ is in the Heisenberg picture.
This differs from the correct semiclassical equation
GabðxÞ ¼ 8πGh0−jT̂H

abðxÞj0−i, as noticed by the authors.
Twenty years later, and being apparently unaware of the

construction [6], De Filippo discussed its nonrelativistic
special case [7]. Let our system of interest exist in N
identical copies. Let them interact via the Newton pair
potential with the downscaled Newton constant G=N.
Consider the Schrödinger equation and take an uncorre-
lated initial state jΨi⊗N :

djΨi⊗N

dt
¼ −i

�X
n

Ĥn þ
1

N

X
n<m

V̂G
nm

�
jΨi⊗N; ð7Þ
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V̂G
nm ¼ −G

Z Z
μ̂nðrÞμ̂mðsÞ
jr − sj drds: ð8Þ

Ĥn stands for the same Hamiltonian Ĥ acting on the nth
subsystem and, similarly, μ̂nðrÞ is the mass distribution
operator of the nth subsystem. The reduced dynamics of
any one of the N components is the same; let us take the
first one:

d
dt

ðjΨihΨjÞ ¼
�Y

n≠1
trn

�
d
dt

ðjΨihΨjÞ⊗N: ð9Þ

In a lengthy path-integral proof, De Filippo showed that in
the N → ∞ limit this reduced state remains a pure state and
its evolution is governed by the Schrödinger-Newton
equation (5).
Here we present a much simpler proof. It starts with the

reduced dynamics of a fixed number k < N of copies:

d
dt

ðjΨihΨjÞ⊗k ¼
�Y

n>k

trn

�
d
dt

ðjΨihΨjÞ⊗N: ð10Þ

Using Eqs. (7) and (8) together with (4), the r.h.s reads

− i
Xk
n¼1

�
Ĥn þ

N − k
N

Z
Φðr; tÞμ̂nðrÞdr; ðjΨihΨjÞ⊗k

�

−
i
N

Xk
n;m¼1

½V̂G
nm; ðjΨihΨjÞ⊗k�: ð11Þ

In the limit N → ∞, Eq. (10) reduces to

d
dt
ðjΨihΨjÞ⊗k

¼ −i
Xk
n¼1

�
Ĥn þ

Z
Φðr; tÞμ̂nðrÞdr; ðjΨihΨjÞ⊗k

�
: ð12Þ

We have thus proved that a constant number of copies will
evolve separately by the Schrödinger-Newton equation (3)
each. Note that the whole composite of N copies becomes
entangled by the Schrödinger equation (7); only the
constant-size subsystems remain disentangled in the limit
N → ∞. This explains the general asymptotic mechanism
of semiclassicality’s emergence from unitary dynamics.
Section II contains our main result. We complete the

semifinished proof of Hartle and Horowitz [6] and suggest
the narrative of correlated cloneworlds (CCWs) following
the perspective of Refs. [6,7]. More recently, Stamp also
proposed infinitely many clones of physical fields coupled
by Einstein gravity [8]. Our work enjoys strong motivations
by his correlated worldlines (CWLs) theory. Section III
compares it briefly with our CCW theory.

II. CORRELATED CLONEWORLDS

The following narrative can be imagined behind the
model. Suppose that in the same quantized spacetime there
exist infinitely many identical quantized worlds (clone-
worlds) and we live in one of them. Which one does not
matter; they are all identical. Of course, we must replace
Newton’s coupling G between matter and spacetime
curvature by G=N, while the number N of cloneworlds
is going to infinity.
Exact methods are hopeless because the quantization of

gravity is not yet solved. We restrict ourselves to the naive
form of Feynman’s path integrals and disregard the
unsolved problems like nonrenormalizability, and we dis-
regard even solved ones like the diffeomorphism ambiguity
of the metric g.
For simplicity, we consider bosonic matter fields ϕðxÞ

only. We begin with N cloneworlds. Let a spacelike
foliation of the spacetime be given and let the (bosonic)
matter in each cloneworld have the same initial wave
function(al) ψΣ0

½ϕΣ0
� on a hypersurface Σ0. Then, the joint

initial state of the N cloneworlds and their common
spacetime reads

ΨΣ0
½ϕ1

Σ0
;…;ϕN

Σ0
; gΣ0

� ¼
�YN

n¼1

ΨΣ0
½ϕn

Σ0
�
�
ΨG

Σ0
½gΣ0

�; ð13Þ

where ΨG
Σ0
½gΣ0

� is the initial wave function of the spacetime
metric g. The following naive Feynman integral expresses
the state on a later hypersurface Σ:

ΨΣ½ϕ1
Σ;…;ϕN

Σ ; gΣ� ¼
Z

exp

�
iNSG½g� þ i

X
n

SM½ϕn; g�
�

×

�Y
n

ΨΣ0
½ϕn

Σ0
�Dϕn

�
ΨG

Σ0
½gΣ0

�Dg:

ð14Þ

Here SG is the Einstein-Hilbert action and SM is the action
of the matter in each cloneworld. Consider the following
standard Feynman integral:

ΨΣ½ϕΣ; g� ¼
Z

exp ðiSM½ϕ; g�ÞΨΣ0
½ϕΣ0

�Dϕ: ð15Þ

This expresses the unitary evolution of the matter’s wave
function in one world in the background metric g. It is
known that ΨΣ satisfies the Tomonaga-Schwinger equa-
tion (1), where Ĥ depends on g. We are going to show in the
limit N → ∞ that the state of quantized matter in each
cloneworld keeps to be in the pure state ΨΣ½ϕΣ; g�, where
the metric g depends on these pure states via the semi-
classical Einstein equation (2). Just to be clear: the
evolution (15) is unitary as long as g is an independently
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fixed geometry. The evolution is not unitary and not even
linear in the semiclassical model.
Recognizing the structures (15) in the expression (14) of

the total state ΨΣ, we can rewrite the r.h.s of (14):

ΨΣ½ϕ1
Σ;…;ΦN

Σ ; gΣ�

¼
Z

exp ðiNSG½g�Þ
�Y

n

ΨΣ½ϕn
Σ; g�

�
ΨG

Σ0
½gΣ0

�Dg: ð16Þ

At this very stage, we modify the method of effective action
used by Hartle and Horowitz [6]. We do it in such a way
that we can easily calculate the reduced dynamics of a
single cloneworld; let it be the first one. Its reduced density
matrix is defined by

ρΣ½ϕ1
Σ;ϕ

01
Σ� ¼

Z
ΨΣ½ϕ1

Σ;…;ϕN
Σ ; gΣ�Ψ̄Σ½ϕ01

Σ;…;ϕN
Σ ; gΣ�

×

�Y
n≠1

Dϕn
Σ

�
DgΣ: ð17Þ

We insert ΨΣ and Ψ̄Σ from Eq. (16):

ρΣ½ϕΣ;ϕ0
Σ� ¼

Z
exp ðiNSG½g� − iNSG½g0�Þ

× ΨΣ½ϕΣ; g�Ψ̄Σ½ϕ0
Σ; g

0�hΨΣ; g0jΨΣ; giN−1

× ΨG
Σ0
½gΣ0

�Ψ̄G
Σ0
½g0Σ0

�DgDg0; ð18Þ

where jΨΣ; gi stands for the state vector of the wave
functional ΨΣ½ϕΣ; g� [Eq. (15)]. Because of the trace over
the gravity subspace, it is understood that this time g and g0
have the same final boundary values gΣ ¼ g0Σ, and the path
integrals over g, g0 will extend for the final boundary Σ.
Now we turn on the limit N → ∞. The factor

hΨΣ; g0jΨΣ; giN−1 vanishes if g =≡ g0. To avoid such degen-
eracy, we assume that g0 − g ¼ δg is a finite small function,
and then we take the limitsN → ∞ and δg → 0 in this order.
Using the leading-order Taylor expansion SM½Φ; gþ δg� ¼
− 1

2

R
Tabδgab

ffiffiffiffiffijgjp
dx, we can derive the following relation-

ship:

hΨΣ; gþ dgjΨΣ; gi

¼ 1þ i
2

Z
Σ

Σ0

hΨΣ0
jT̂ab

H ðxÞjΨΣ0
iδgabðxÞ

ffiffiffiffiffi
jgj

p
dx: ð19Þ

The ðN − 1Þth power in Eq. (18) yields a phase factor
diverging with N:

hΨΣ; gþ δgjΨΣ; giN−1

¼ exp

�
i
N − 1

2

Z
hΨΣ0

jT̂ab
H ðxÞjΨΣ0

iδgabðxÞ
ffiffiffiffiffi
jgj

p
dx

�
:

ð20Þ

Fortunately, there is another diverging phase on the r.h.s. of
Eq. (18):

exp ðiNSG½g� − iNSG½gþ δg�Þ

¼ exp

�
−i

N
16πG

Z
GabðxÞδgabðxÞ

ffiffiffiffiffi
jgj

p
dx

�
: ð21Þ

For the two divergent phases to cancel each other out, we
must require that

GabðxÞ ¼ 8πGhΨΣ0
jT̂H

abðxÞjΨΣ0
i; ð22Þ

which is the semiclassical Einstein equation (2) in the
Heisenberg picture.
Now we set δg≡ 0. The double path integral (18)

reduces to a single one,
R
Dg. It reduces further to the

integral
R
DgΣ over the initial conditions since the rest of g

is determined by the semiclassical Einstein equation (2).
Equation (18) becomes as simple as

ρΣ½ϕΣ;ϕ0
Σ� ¼

Z
ΨΣ½ϕΣ; g�Ψ̄Σ½ϕ0

Σ; g�jΨG
Σ0
½gΣ0

�j2DgΣ0
;

ρ̂Σ ¼
Z

jΨΣ; gihΨΣ; gjjΨG
Σ0
½gΣ0

�j2DgΣ0
; ð23Þ

where the lower equation rewrites the upper one into the
Dirac formalism.
According to this, the quantum state of the matter on

hypersurface Σ is the statistical mixture of pure states
weighted by the probability distribution of the initial values
gΣ0

of the spacetime structure. If a single configuration gΣ0

is chosen, then the quantum state remains the pure state
ΨΣ½ϕΣ; g� [Eq. (15)], which, as said there, satisfies the
Tomonaga-Schwinger equation (1). We already showed
that the metric is determined by the semiclassical Einstein
equation (2). This completes the proof that in the limit N →
∞ the emergent dynamics of any single cloneworld is
semiclassical.

III. CORRELATED WORLDLINES

The original realization [8] of Stamp’s concept that
infinitely many (clone)fields are correlated by gravity
has changed over the years [9]; the updated theory was
reviewed in Ref. [10]. There, the generator functional for N
clones in the same quantized spacetime was defined by the
following ring path integral:

ZN ½J� ¼
I

eiNSG½g�ðZ1½g; J�ÞNDg; ð24Þ

where

Z1½g; J� ¼
I

eiSM ½ϕ;g�þi
R

JϕdxDϕ ð25Þ

is the standard generator functional of a single field in fixed
metric g. The functional ZN ½J� does not generate all
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correlations of the N clones ϕ1;ϕ2;…;ϕN on the same
quantized metric g, but rather the correlations of the
collective variables

P
N
n¼1 ϕ

n. The functional ZN ½J� gener-
ates what we call the reduced dynamics of the summed field.
[We think that a plausible choicemight beZN ½J=N�, yielding
the reduced dynamics of the average ð1=NÞPN

n¼1 ϕ
n of the

N fields, avoiding divergences in the limit N → ∞.] But the
CWL theory keeps on building. It constructs the above
reduced dynamics of N clones for N ¼ 1; 2;…;∞ and
considers the uncorrelated composition of all of them:

Z½J� ¼
Y∞
N¼1

ZN ½J�: ð26Þ

This generator functional means a further reduction: it only
generates the subdynamics of the “particular collective
variables,” i.e., the sum of all fields, as observed in Ref. [9].
If we cut the product at finite N, it contains νN ¼

NðN − 1Þ=2 fields. (We think again that a plausible choice
might be a straightforward rescaling of the current in ZN ½J�
in the above product yielding the reduced dynamics of the
averages of the νN fields to avoid divergencies in the limit
N → ∞.) CWL proposes the following rescaling of the
generator functional itself:

ZCWL½J� ¼
Y∞
N¼1

ðZN ½J�Þ1=νN : ð27Þ

In the ultimate form of CWL theory, this scaled generator
constitutes the dynamics of the physical fields.
However, the above rescaling is not standard in field

theory. The unscaled generator (26) described (the limit
N → ∞ of) the standard reduced dynamics of the “par-
ticular collective variables,” legitimate in field theory at
least formally. The rescaled generator is problematic. It
corresponds no more to the subdynamics of collective
observables and it is unknown what the new observables
could be. CWL theory postulates that the rescaled gen-
erator generates the correlations of the physical fields.
Apparently, this interpretation is used in applications as
well [11].
Just for comparison, let the generator functional repre-

sentation of the CCW theory (Sec. II) stand here:

ZCCW½J� ¼ lim
N→∞

I
eiNSG½g�Z1½g; J�ðZ1½g; 0�ÞN−1Dg: ð28Þ

This is equivalent to the reduced dynamics (18) up to the
limit N → ∞ (the irrelevant −1 after N is kept for full
conformity). This generator functional formalism offers an
alternative way to see and prove how the infinite power of
Z1½g; 0�≡ hΨΣ; g0jΨΣ; gi under a ring integral will make the
metric g classical.
The CCW theory is the N → ∞ limit of field theory of N

cloneworlds (N-CCW) of quantized matter in the same
quantized spacetime. The physical world is a standard

reduction to one of these replica worlds. The CWL theory is
the field theory of the uncorrelated composition of all
N-CCW from N ¼ 1 to N ¼ ∞. The physical world is a
postulated dynamics that does not follow from standard
field theory. CCW yields exact semiclassical gravity and it
contains the remarkable self-attraction, best illustrated by
the solitons of the nonrelativistic Schrödinger-Newton
equation [4]. Self-attraction is a known mechanism of
what is considered a key feature of “path bunching” in
CWL. Path bunching and semiclassical self-attraction are
not exactly the same, but they are very similar. This is not
too surprising since CCW and CWL are based on related
concepts and operate on similar mathematical structures.

IV. SUMMARY

We showed that the semiclassical gravity can be derived
within standard quantum field theory of infinitely many
copies of the quantized matter in common quantized space-
time, which we call (gravitationally) CCWs. In the reduced
dynamics of a single copy, the quantumness of spacetime
vanishes exactly andweobtain the equations of semiclassical
gravity. Before his work with an infinite number of copies
[7], De Filippo discussed the Newton interaction with a
single mirror of the quantized system, leading to entangle-
ment between the physical world and its mirror [12]; see also
Refs. [13,14]. The case of an infinite number of clones is
remarkable in that the entanglement between the clones
disappears asymptotically: we get the semiclassical Einstein
(or Schrödinger-Newton) equation for the single physical
world. The model requires cloneworlds, which is a rather
unnatural technical assumption. Yet, the merit of CCW
stands: the semiclassical equations are not mere approximate
equations, but rather exact consequences of standard quan-
tum theory. This raises questions immediately since semi-
classical gravity has long been known to be inconsistent [15].
A closer look shows that it is inconsistent with quantum
measurements and the statistical interpretation of the wave
function [16]. And, indeed, the CCW theory cannot accom-
modate measurements. The random measurement outcomes
make the cloneworlds different, and hence the postmeasure-
ment derivation of the semiclassical equations breaks down.
Nevertheless, it is thought provoking whether nonselective
measurements, or instead Everett’s branchings [17], could
have some status in CCW, and thus in semiclassical gravity.
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