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From Statistical Distances to
Minimally Dissipative Processes

L. Di6si
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ABSTRACT. A quantitative notion of statistical distinguishability led R.
A. Fisher to his idea of statistical distance which has since been developed
into Riemannian geometries on the space of statistical ensembles. Paral­
lel to, though independently, of this progress, Riemannian geometries were
being proposed on spaces of quantum states and also of thermodynamic
states. Riemannian geometries in various fields have found various appli­
cations as different as population dynamics and fractional distillation, just
to mention the first and the most recent ones. For decades, however, lit­
tle attention was paid to the common theoretical basis of these geometric
methods.
This chapter intends to fill the gap. We present an elementary introduc­
tion to the concept and mathematics of statistical distance in order to help
understand the emergence of Riemannian geometrical structures. While we
put more emphasis on the thermodynamical aspects, the main goal is still
the interpretation of different applications on equal footing and using a
unified framework.

11.1 Introduction

The Riemannian metric structure of thermodynamic theory, initiated by
Weinhold [1] and Ruppeiner [2], contains important and hitherto barely
tapped information concerning a physical system. The structure runs deep;
its presence can be felt at all levels of physical description. The Riemannian
metric of thermodynamics is, as shown first by Diosi et al. [3], in fact a
realization of R. A. Fisher's concept of statistical distinguishability [4]. He
had applied it in 1922 to measure genetic drift and later it became the basis
for the mathematical theory of information geometry. The corresponding
notion of statistical distance has since been introduced for various statisti­
cal systems. At the quantum level the distance measures the reliability of
experiments designed to optimally distinguish between the two states along
a one-parameter family of density operators [5]. At the statistical mechani­
cal level, distance is the number of statistically distinguishable intermediate
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states as we transform one state into another [6]. This leads to a natural
Riemannian metric on the space of distributions in the thermodynamic
limit of Gibbs' statistical ensembles. Numerous authors have speculated
about the meaning of the curvature defined by this geometry as a mea­
sure of stability or interaction strength (cf. Ruppeiner's recent review [7]).
The requirement of covariance with respect to this geometry can be used
to give an important correction to thermodynamic fluctuation theory [7].
Finally, at the macroscopic level, the square of this same distance between
two equilibrium states of a thermodynamic system equals the minimum
entropy produced in a process that transforms one state into the other,
multiplied by the number of relaxations during the transformation [8], [9].
This result has become known as the horse-carrot theorem.
In this chapter, we recapitulate basic ideas and results concerning the

Riemannian metric structure of thermodynamics while we attempt to shed
light on the underlying concept of statistical distance used in a much
broader context.

11.2 Empirical Statistical Distance

The class of continuous variables spans from typical continuous quantities of
physics to approximate continuous quantities, e.g., in population statistics.
Consider a continuous variable corresponding to a measurement of a real
number x to a certain precision L\x. The true value of x lies in the confidence
interval (x - L\x, x + L\x) with a probability that amounts to 68% when
L\x is, as we generally assume, the standard deviation of x.
The values L\x provide a measure of distinguishability between different
values of x. Two values, say x and x', are statistically indistinguishable if
Ix - xii < L\x + L\x' . In the opposite case they are well distinguishable. By
convention, we shall say that x and x' are statistically distinguishable if the
equality holds

Ix - xii = L\x + L\x' . (11.1)

To illustrate continuous variables with nonconstant precision we consider
an example taken from statistics itself. Let x be the relative frequency of
a certain event from a large sample N. As is well known, its variance is
inversely proportional to the square root of N. The exact expression would
be JX(l- x)/N. For simplicity's sake, we restrict our considerations to
small values of x and we use an approximate l expression

L\x = Jx/N == c/VN, (11.2)

where, for later purposes, we introduce the square root c of the relative
frequency x.

1See, however, footnote 3 on p. 293
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Well distinguishable:
x ( x' )• •

Not distinguishable:

x ( x' )• ) .

Distinguishable:

f K x' )•

FIGURE 11.1. The two values x and x' are, by convention, distinguishable when
their confidence intervals contact each other.

11.2.1 Optimum Calibration

An immediate application of the notion of statistical distinguishability oc­
curs when we calibrate a scale of a measuring apparatus. We shall assume
that the precision Llx of the measuring apparatus is known for all measured
values of x. Let XQ be the first point of calibration. Where shall we put the
next mark Xl? Obviously, the reasonable choice is such that XQ and Xl be
distinguishable: Xl = XQ + LlxQ + LlXI. The subsequent calibration marks
satisfy the distinguishability condition (11.1):

Xv+l = Xv + Llxv + LlXv+I (v = 0, 1, ... ). (11.3)

Hence, the resolutions of measurements and calibration marks will match.
These calibration marks are not equidistantly distributed on the scale

x. We can, nevertheless, reparameterize the scale by a new variable x such
that its standard deviation is constant

Llx:= 1. (11.4)

Then the calibration marks are thus located at the equidistant steps Xv =
v for v = 0,1,2, .... The natural scale x defines the so-called statistical
length [4]. By construction, the statistical lengths of the confidence intervals
equal 1, according to (11.4). The statistical length of a bigger interval
(Xi, X f) is equal to the maximum number of nonoverlapping confidence
intervals between Xi and X f, which turns out to be

(11.5)

We can formulate the principle of optimum calibration in such a way: the
neighboring marks should be separated by unit statistical lengths from each
other.
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FIGURE 11.2. The natural scale x replaces x in such a way that the statistical
lengths of the confidence intervals become equal to 1. The optimum calibration
marks are separated by 1 on the new scale x.

Let us derive the natural scale x of the relative frequency x. From the
(11.2), (11.4) and from the (asymptotic) relation D.x = (dx/dx)D.x we
obtain

x= 2..JNc, (11.6)

where c = yX. The I/'th optimum calibration point is xQ + 1/. This will
correspond to Xv = (xQ + 1//V4N)2 on the scale of relative frequencies.
Equation (11.5) yields the statistical length of an interval (Xi, Xf):

(11.7)

11.2.2 Naive Optimum Control

We turn to another application of the concept of statistical length in the
field of optimum control in a noisy environment. A system with a single
continuous parameter X is to be driven from an initial state Xi into a given
final state Xf. The standard deviation D.x of the parameter may depend
on the current value x. Initially, the minimum significant change is just
D.xi' So, a cautious strategy might consist of a sequence of minimum, yet
significant, steps from Xi to Xt= each step is equal to the local value of D.x.
Thus the steps must correspond to the optimum calibration marks (11.3)
starting from Xi = XQ.

On the natural scale x, each step will have unit length, according to
(11.4). If, furthermore, we perform a constant number v of steps per unit
time, then

D.x
D.t == v. (11.8)

This is the principle of constant statistical speed which seems to be a kind
of cautious control in noisy environments.
Imagine, for instance, the inflation rate X in an economy whose finan­

cial policy is to decrease X from a higher value Xi to the lower one Xf.
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Well distinguishable:

~C!)
Not distinguishable:

Distinguishable:
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'

x •.
FIGURE 11.3. Two vectors x and x' are considered statistically distinguishable
if their confidence ellipsoids contact each other.

To minimize the risk of uncontrolled changes, one can exert minimum sig­
nificant perturbations to the current economical system. For instance, the
inflation rate can be decreased by .6.x each year, where .6.x is the variance
of the given annual inflation x. This is a strategy at unit statistical speed.
If necessary, the process can be made more intensive if we choose a higher
constant velocity Ivl > 1, i.e., we perform Ivl such steps per year.
The ad hoc principle of constant statistical speed and similar "cautious
control schedules" will be formulated analytically in Section 11.5. We will
see that such controls yield a powerful tool in various tasks of process
optimization.

11.2.3 More Parameters

We can easily extend the above statistical concepts to the case with more
continuous parameters x = (Xl, X2, ... , Xk, . .. ) to characterize the given
system. The simultaneous standard deviations .6.Xk are correlated and the
role of confidence intervals are played by multidimensional ellipsoidal con­
fidence volumes. Two vectors x and x' are, by our convention, statistically
distinguishable if their confidence ellipsoids contact each other.
The optimum calibration of a curve in the multidimensional parameter
space invokes considerations similar to the single parameter scale. Neigh­
boring calibration marks should be distinguishable. Their confidence vol­
umes, centered along the curve, will contact each other. The statistical
length of the curve will be equal to the number of such confidence volumes.
This length may completely depart from any apparent length of the curve.
The statistical length depends largely on the variability of the ellipticities
and orientations of the confidence volumes along the curve. The statistical
length of a curve connecting two points Xi and x f will depend on the curve
itself. The minimum length can, as usual in geometry, be called the sta-
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tistical distance between Xi and XJ. The minimizing curve will correspond
to a geodesic curve in the analytic theory. For the time being, however, we
are discussing the empirical concepts. Of course, the naive optimum control
at constant statistical speed, suggested for a single variable, applies easily
to the simultaneous control of parameters x = (Xl, X2, ...) at a constant
statistical speed along a given curve. A new feature of the optimization is
the choice of the shortest path (geodesic) to connect the initial and final
parameters Xi, XJ .
We recall the rescaling procedure which led to uniform confidence inter­

vals (11.4) for a single variable x. In perfect analogy, one would attempt
to use new variables x = (XI,X2,"') such that their confidence volumes
be hyperspheres of unit radii. Hence, in these natural variables x, the sta­
tistical lengths of curves are equal to the ordinary lengths. Consequently,
statistical distances coincide with the corresponding Euclidean distances2 :

(11.9)

Minimum lengths curves, i.e., geodesics, are straight lines in X.
The existence of the above natural parameterization is a delicate prob­

lem. Even at an empirical level we can see that sometimes the natural
parameters xmay not exist. The variation of the confidence ellipsoids from
site to site may paralyze our attempts at constructing the natural param­
eterization. This problem, with all its complexity, is part of a paradigm. If
one goes beyond the empirical considerations, it turns out [10], [11] that
the parameter space X of statistical ensembles constitutes a manifold of
Riemannian geometry. If, in particular, this geometry is Euclidean then,
and only then, will the natural parameters xexist.
Previously we considered, as an example, the relative frequency X of a

single event in a large sample N. Now we are going to generalize the exam­
ple for the relative frequencies Xl, X2, ... of a number of mutually exclusive
events from the same large sample N. When the frequencies are small, their
variances LlXk are independent and given by the same equation (11.2), re­
spectively, for each Xk. The k'th axis of the confidence ellipsoid is parallel
to the coordinate axis Xk and its half-length is equal to

(11.10)

with the notation Ck = -JXk. Introducing the natural parameters x by
(11.6), we achieve that all tlxk are of unit length: the confidence volumes
become unit spheres in the parameter space X. Consequently, one can apply
(11.9) to write the statistical distance between arbitrary two parameters
Xi and xJ:

(11.11)

2The squared Euclidean norm of a vector x is defined as IIxll2 = I:k xi.
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11.3 Theory of Statistical Distance

The concept of statistical distinguishability, considered on intuitive grounds
in the previous section, implies a natural geometry on the space of statis­
tical ensembles. In the present section we give an insight into the general
structure of this geometry for classical as well as quantum ensembles.

11.3.1 Classical Statistics

We consider discrete classical statistical ensembles. They are parameterized
by normalized probability distributions p = (Pl, P2, ... ,Pk, ...) correspond­
ing to a complete set of mutually exclusive events. The parameter space is
a hyperplane

(11.12)

We can introduce an alternative parameterization e = (Cl, C2, ...) where
the components of the vector e are the square roots of the probabilities:
Ck = yPk for k 1,2, .... Then the parameter space (11.12) becomes
spherical

lIell = 1, Ck ~ 0, (11.13)

i.e., a sector on the surface of the unit hypersphere [11].
We note that in practice the theoretical probabilities Pk appear as relative

frequencies Xk of the corresponding events in a given sample. Regarding the
statistical distinguishability of our ensembles, the probabilities (11.12) will
be treated as relative frequencies in a large sample of size N. Then we can
apply the equations and considerations of the previous section. We know
from (11.6) that in natural parameterization x = 2VNe the confidence
volumes are just the unit spheres. In this parameterization the statistical
distance is identical to the Euclidean distance (11.11). One would conclude
that the geometry of the parameter space of discrete ensembles is Euclidean.
This is not exactly the case! Nevertheless, the true geometry is amazing as
we will see below.
There has been a loophole in our derivation of (11.11). We assumed
that the events and the corresponding relative frequencies Xl, X2, ... were
independent and this holds indeed for small values of the relative frequen­
cies. If, however, we identify them by the normalized probabilities (11.12)
then the very constraint of normalization puts constraint upon them. The
Euclidean geometry (11.11), when extended deliberately3 for all possible
values of Xk = Pk = (Ck)2, induces a non-Euclidean (spherical) geometry

30ur derivation is illustrative. Rigorous calculations [12] confirm the distance
(11.14).
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on the parameter space (11.13):

iif = 2~ arccos(cicf) (11.14)

which is just 2VN times the angle4 between the two unit vectors Ci and
cf [11], [6].
This result is remarkable! From purely classical considerations we have

found something very similar to the quantum mechanical formalism. We
found that the natural parameters of statistical ensembles are unit vec­
tors C= (CI I C2, .. .). The ensemble's usual parameters, i.e" the normalized
probabilities PI, P2, ... are equal to the square of the vector's components

(11.15)

(11.16)

The resemblance to quantum mechanics is puzzling! Note, however, that
the analogy is not perfect: our state vectors C are always real [6].
We close this section with an interesting relation between the statistical

distance and the entropy function s(p) = - L Pk logPk. Eq. (11.14), and
(11.15) yield the following result for the squared statistical distance di
between two infinitesimally close distributions p and p + dp:

di2=N ~)dCk)2 =N L (dpk)2.
k k Pk

Anticipating the formalism of Riernannian geometry (Section 11.4), we
mention that the metric tensor, yielding this infinitesimal statistical length,
turns out to be the second derivative of the entropy function times -1:

(11.17)

11.3.2 Quantum Statistics

The concept of distinguishability can be interpreted for quantum ensembles
as well. The same considerations that we have applied to classical ensembles
extends to them. The result is a unique notion of statistical distance. We are
not going to present the details of specific problems which make, as usual,
the quantum case more subtle than the classical one. We only present the
resulting equations.
The so-called pure quantum ensembles are characterized by normalized

complex state vectors c. Wootters [6] pointed out first that the statistical
distance between pure quantum ensembles

(11.18)

4The angle "y between two vectors a, b is defined via their scalar product
ab = Lk akbk = cos-yllalillbll·
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coincides with the statistical distance (11.14) between classical ensembles,
apart from the fact that the state vector components are now complex
numbers.
General quantum ensembles are described by Hermitian positive definite

density matrices P == {Pk,}. The statistical squared distance between two
ensembles Pi, Pi has the following form:

02 _ 8N (1 _t . / A1/2 A A1/2)
~i! - ry Pi P!Pi

which was, with a different prefactor, suggested by Bures [13]. (It can be
proved that the distance remains the same if we interchange the two density
matrices.)
It is instructive to study the distance between two ensembles whose den­

sity matrices commute with each other. In this case they have a common
canonical basis where they are both diagonal. The nested square roots
largely simplify

ii! =2V2NVI - trJpiP!· (11.20)

Recall that the diagonals of the density matrices serve as classical probabil­
ity distributions Pi and p!, respectively. This means that we can formally
apply the classical distance (11.14) to our commuting density matrices,
yielding5

i~;1) = 2.Jii arccos (tr JP:Pj) .
Let's compare this to the quantum distance (11.20):

o ( lcl) )~i! . i!
4.Jii =sm 4.Jii .

(11.21)

(11.22)

The quantum and classical distances tend to coincide for neighboring en­
sembles. For distant ensembles the quantum distance is always smaller.
This is not surprising geometrically. Quantum states are usually harder to
distinguish from each other due to their overlap in Hilbert space. Further­
more, the shortest path between the two endpoints goes through commuting
density matrices in the case of the classical distance while it may find a
shorter way through non-commuting matrices in the quantum case.
One can calculate the distance between infinitesimally close density ma­

trices P and P+ dp. For convenience, we use the canonical basis where
Pkl = bklPk. It is important to note that, while Pkl is now diagonal, its in­
crement dPkl may be nondiagonal. The squared statistical distance (11.19)
yields the following:

di2 = 2N L Idpkl1
2

.

k,l Pk + PI

5We apply the identity PiP! = tr(PiPJ).

(11.23)
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The proof that this distance is in fact a measure of the Fisher statistical
distinguishability (Section 11.2) has been carried out by Braunstein and
Caves [5]. Their proof shows that the Bures distance (11.19) is really the
Fisher statistical distance applied this time to quantum statistical ensem­
bles.

11.4 Riemannian Geometry

We have shown in the previous section that the natural geometry, reflect­
ing statistical distinguishability of ensembles (probability distributions) is
non-Euclidean. In various fields of applications, we are dealing with cer­
tain subclasses of probability distributions. Here we restrict ourselves to
the case where the probability distributions are parameterized by a finite
number of parameters. Gibbs distributions in statistical physics are par­
ticularly relevant: they underlie the statistical geometry of thermodynamic
parameter space.

11.4.1 Parameterized Statistics

Consider, for simplicity, discrete statistical ensembles whose probability
distributions P are parameterized by a finite number of parameters6 Y =
(yl, y2, ... , yn). These probability distributions constitute an n-dimensional
submanifold of the spherical hypersurface (11.13) and this hypersurface in­
herits a Riemannian geometry from the enveloping space. The resulting
curvature and metric will, in general, change with y.
We can no longer write the statistical distance between two distant el­

ements p(Yi) and P(Yi) in simple angular form as in (11.14), sir::e now
the distance must be measured along a path staying entirely ",:thin the
submanifold of distributions described by our parameters y. Fortunately,
the distance d£ between infinitesimally close elements of parameter values
Y and Y+ dy remains the same. In particular, (11.11) holds:

d£ = 2VNlldell,
where

~ oe k
de = LJ 0 k dy .

k=l Y

If we introduce the following Riemann metric gik(Y)
space Y [10]:

(11.24)

(11.25)

on the parameter

(11.26)

6We use coordinates with superscripts following the traditional notation in
Riemannian geometry and tensor analysis.
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then we can write the infinitesimal statistical distance (11.24) in the stan­
dard Riemannian form

n n

df = L L gik(Y) dyi dyk.
i=1 k=1

(11.27)

(11.28)

(11.29)

These equations define a Riemannian geometry on the manifold of parame­
terized discrete distributions p(y). Common Riemannian expressions will
yield the statistical lengths/distances between two arbitrary distributions
of respective parameter values Yi and Yf.

It is straightforward to extend the above considerations beyond discrete
probability distributions. Invoking the relation (11.15), we write the statis­
tical metric (11.26) as follows:

'"' {)Cr {)Cr
gik(Y) = 4N L... {)yi {)yk

r

_ N '"' {) In Pr {) In Pr
- L... Pr {)yi {)yk'

r

This has the following compound forms:

. ( ) _ N ( {) In p(y) {) InP(y)) __N ( {)2 In p(y) )
g, k Y - {)yi {)yk - {)yi {)yk '

where (...) denotes expectation value calculated with p(y). These equa­
tions apply to continuous distributions as well. Let per; y) be the proba­
bility distribution of the continuous random variables r, depending on the
continuous parameters y. The probability distributions are normalized

Jp(r;y) dr = 1.

Equation (11.29) takes the following form:

J{)2Inp(r; y)gik(y) = -N {)yi{)yk per; y) dr.

(11.30)

(11.31)

This metric tensor is, apart from the scale factor N, identical to Fisher's
information matrix [14]. It plays a particular role in mathematical statis­
tics, namely in the theory of parameter estimation. This metric was also
used by Amari [15] as the metric for his information geometry (see also
Chentzov [16]).

11.4.2 From Gibbs Statistics to Thermodynamics

Phenomenological thermodynamics can, as is well known, be derived from
the statistical physics of dynamical systems. Let us start with a large dy­
namical system consisting of M moles of molecules. If the system is in
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equilibrium then, according to Gibbs, its phase point r follows the proba­
bility distribution

p(r;y) = exp(-¢>(y) - yF(r)) , (11.32)

(11.33)

(11.34)

where y = (yl, y2, ... , yn) are the entropic intensive parameters of the equi­
librium state, and F(r) = (F1(r), F2(r), ... ,Fn(r)) are the conjugated
conserved dynamic quantities. The function ¢>(y) assures the normaliza­
tion (11.30). When the size M of the dynamic system goes to infinity, the
ratio ¢>(y) /M converges to the phenomenological thermodynamic potential
(per moles) <p(y) of the system

¢>Z) -+ <p(y).

This thermodynamic limit is at the heart of the Gibbs theory.
Let us calculate the statistical metric of the Gibbs ensembles (11.32)! On

substituting (11.32) into the rightmost expression in (11.29), we get

{)2¢>(y)
gik(y) = N {)yi {)yk'

Assuming that the system is large enough to take the thermodynamic limit
(11.33), we can replace the function ¢> in (11.34) by M<p. Now, this leaves
us with a factor N M on the right-hand side of the above equation. Recall
that, in the theory of statistical distance, N was the sample size. In the
present case it would mean the number of M -mole thermodynamic systems
in the same equilibrium state. It makes no difference if we unify them into
a single N M -mole system. Finally, we simply absorb the factor M into the
number N characterizing the overall size (in moles) of the thermodynamic
system. So we obtain

{)2<p(y)
gik(y) = N {)yi {)yk' (11.35)

This metric, generating the statistical distance between the Gibbs ensem­
bles at various thermodynamic parameters y, can be expressed by the sec­
ond derivative of the thermodynamic potential. Note an important aspect
of this result: the concept of statistical distance has induced a notion of
distance between thermodynamic states. This is the thermodynamic dis­
tance anticipated by Weinhold [1] and turned by Ruppeiner [2] into the
corresponding Riemannian geometry on thermodynamic state space.

It is rather instructive to derive the Riemannian metric if we use extensive
parameters7 Xk = -{)<p/ {)yk for k = 1,2, ... , n, instead of the intensives.

7In thermodynamics we alter the traditional covariant notation of Riemannian
geometry in a particular way. By our convention, the intensive parameters yk bear
upper labels but the extensive parameters Xk bear lower ones. Consequently, the
covariant metric tensor will have lower labels in intensive, and upper labels in
extensive coordinates.
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The result reads

(11.36)

(11.37)

Here s(x) is the specific entropy function, related to the specific thermo­
dynamic potential !p(y) by the Legendre transformation s = xy - !po
Note that the forms of our metric in (11.36) can be termed macroscopic

since now our metric matrix is just the matrix of second partial derivatives
of the macroscopic entropy with respect to the extensive variables of the
macroscopic system. It is interesting to note that the metric matrix is the
second derivative in both (11.35) and (11.36). We note that this holds only
for the entropy and its complete Legendre transform and not for any partial
Legendre transforms [17], [18].
Another surprise is the fact that the metric matrix is the second deriva­

tive of the entropy in both macroscopic description (11.36) and in a mi­
croscopic description (11.17). This is surprising in light of the fact that
metric matrices and second derivative matrices transform differently under
a change of coordinates [19].
For our discussion of multiphase systems of variable composition, it is

convenient to have an expression for our metric in terms of the macroscopic
extensive variables X k = N Xk, k = 1 ... , nand X n +l = N instead of the
specific extensive parameters8 s, Xl, ... , X n . This transforms our thermody­
namic metric (11.36) into the following form9 :

ik(X) = _ a2
S(X)

g aXi aXk'

where S(X) = N s(x) is the extensive entropy function of the system. Since

(11.38)

it follows that gik(X) is degenerate, i.e., there exist directions along which
the metric measures a zero distance. Such directions always correspond to
scaling one phase of the system. If the scale of the system is not fixed, the
structure is only semi-Riemannian. Null directions result from the linear
growth of the entropy as we scale anyone phase. This linearity makes the
second derivative, i.e., the components of the metric tensor, vanish along
such directions. As remarked in Weinhold's original papers [20], forming an

8We refer to an extensive quantity divided by the mole number as specific
extensive. A related terminology is the extensive density which is the extensive
quantity divided by the volume. For simple equilibrium systems the number of
independent extensive quantities exceeds the number of specific extensive quan­
tities by 1.
9We use the same letter 9 and adopt the functional notation g(X) to indicate

the fact that the actual matrix will depend on our choice of parameters.
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appropriate combination of such null directions by simultaneously scaling
two phases of a pure substance can represent a phase transition. We will
return to a discussion of the use of such null directions in the following
sections.

11.5 Relevance of Riemannian Geometry
in Thermodynamics

For macroscopic thermodynamics, the use of a closely related metric

Gik(Z) = 8
2
U(Z)

8Zi 8Zk

introduced by Weinhold [1) preceded the use of the metric described above.
Here U is the internal energy and Z = (5, V, N I , N2 , ... ) E IRn+1 is the
vector of extensive variables of the system in the energy representation for
which U = U(Z) constitutes complete information [21). Weinhold's papers
used the geometry only locally to conveniently express relationships among
differential changes in our state variables. He also suggested its possible use
as a Riemannian metric. Soon thereafter, Salamon et al. [22) recognized that
distances computed for the ideal gas using the metric G represented known
expressions for the changes in the kinetic energy of the molecules in a gas
resulting from the passing of a shock wave. This led to the recognition of
the connection between geometry and dissipation as developed below.
At about the same time, Ruppeiner introduced the use of the metric 9

in (11.36) for extending the scales accessible to thermodynamic fluctua­
tion theory. While the metrics 9 in (11.36) and G in (11.39) are confor­
mally equivalent lO [18), the metric 9 turns out to be more fundamental.
Similar to the role of the energy representation elsewhere in thermody­
namics, G serves mainly as a convenient device for calculating g(X), with
X = (U, V, N l , N 2 , ... ) E IRn+l the vector of extensive variables in the en­
tropy representation for which 5 = 5(X) constitutes complete information
[21].
We begin our treatment of macroscopic applications of the Riemannian

structure with a discussion of fluctuations since this follows most closely
from the arguments in the previous section. We will then turn our atten­
tion to dissipation and a discussion of several horse-carrot theorems which
relate the dissipation associated with coaxing a system to traverse a given
sequence of states. The applications depend on the second-order expansion
of the entropy and thus on the identity between the metric and the second
derivative of entropy.

lOTwo metrics are conformally equivalent iff the squares of the length elements
differ by a (possibly position dependent) scale factor.
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11.5.1 A Covariant Fluctuation Theory

Consider the traditional expression for a fluctuation in a system of sizell

V inside a system of infinite size Vo = 00 with densities xo. The likelihood
of the subsystem having densities x is given by the Einstein-Smoluchowski
theory as

(11.40)

where C is a normalization constant, k B is Boltzmann's constant, and
S(x, xo) is the total entropy of the reservoir at extensive densities xo con­
taining the subsystem of finite volume V at state x. This expression is valid
for small fluctuations (i.e., at large volumes V) but it turns out that, in
a subtle way, it also contains the statistics of larger fluctuations (i.e., at
smaller volumes V).
At infinite volume there are no fluctuations at all

P(x, oolxo, 00) dnx = 6(x - xo). (llA1)

For large finite volumes (11.40) leads to the Gaussian approximation:

(
V", 02s(xo) )

P(x, Vlxo, 00) = Cexp 2k
B

LJ OXiOXk (x - XO)i(X - xoh
I,k

Cexp (-+2:gik (xo)(x - xo);(x - xOh),
2 B 'k

I,

(1l.42)

where the exponent becomes proportional to the square of the statistical
(or thermodynamic) distance measured from the equilibrium value. Re­
call that this length element is the natural scale for measuring the size of
fluctuations.
Ruppeiner's important observation [2] was that although (11.40) depends

on which parameters x we use to define our state, by way of the volume
form dnx, its Gaussian approximation (11.42) is invariant under reparam­
eterization12 and thus avoids this unphysical dependence. Hence, we must
restore this invariance when we extend its validity for smaller volumes V.
Ruppeiner [23], [24] and Di6si and Lukacs [25] used the Gaussian fluc­

tuation theory as a starting point for an improved covariant theory of
fluctuations, valid also for smaller volumes.
The physical intuition leading to the improved theory comes by consid­

ering a nested sequence of systems. We begin with an equilibrium system

11 Here we follow Ruppeiner [23], [24] in using the volume to set our scale.
12In this approximation, the Jacobian matrix of a coordinate transformation

can be taken as constant for x sufficiently near xo.
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in the thermodynamic limit V = 00 at the state Xo. As the volume of the
subsystem we consider gets smaller, its fluctuations depend on the state of
its immediate surroundings. In this way we get a Markov process for fluctu­
ations inside fluctuations inside fluctuations .... It is worth noting that the
Gaussian approximation (11.42) provides the exact transition rates. The
corresponding Chapman-Kolmogorov equation describes how a particular
fluctuation in a system of size V depends on the state of the system at
slightly larger size V' = V + dV.
Note that the role of time in the Chapman-Kolmogorov equation is

played by l/V which starts at 0, where the distribution is the delta-function
(HAl), and then takes on small values, where the Gaussian distribution
(11.42) still holds, and then tends to infinity as the system size becomes
small. This is the newly explored regime where a covariant description of
fluctuations emerges.
The Chapman-Kolmogorov equation takes the form of a covariant Fokker­
Planck equation. Its ultimate form, assuring all conservation laws, was de­
rived by Di6si and Lukacs [25). Here, to abandon using covariant differential
calculus, we present the equation in extensive (density) parameters

o 1 '"(02
ik )OV-l P(x, V!xo, 00) = kB LJ OX; OXk g(x) P(x, Vlxo, 00) .

',k
(11.43)

From the initial distribution (HAl) at V- 1 = 0, this Fokker-Planck equa­
tion evolves the distribution function of thermodynamic fluctuations at
all finite volumes V. By construction, the equation provides initiallly the
Gaussian distribution (11.42), and preserves normalization and the mean
values of the extensive variables x. This latter assures the fulfillment of the
conservation laws.
For small fluctuations, Gaussian fluctuation theory does well. It seems
that it also yields an overall covariant formalism which improves the match
with experiment for fluctuations of moderate size [7). This is especially use­
ful for understanding system behavior near the critical point where fluctu­
ations become large.
Requiring covariance of such partial differential equations along with

some hypotheses connecting the Riemannian curvature and the free energy
yields equations of state connecting the critical exponents [7).

11.5.2 Entropy Production

At the macroscopic level, the Riemannian structure introduced above is
intimately connected with entropy production. Let X = (U, V, N 1 , N 2 , ... ) E
JRn+l and X = (U, if, N1, N2 , ... ) E JRn+l be the vectors of extensive
variables of systems A and A, respectively. In an interaction between these
two systems, in which the infinitesimal vector of flows dX moves from A
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to A, the entropy production is

n

dSu = dSA + dS;. = I)Yi - Y;) dXi
i=1

(11.44)

where Y = as/ax = (I/T,p/T,J1.dT,J1.2/T, ), and we have made use
of the conservation laws dXi = -dXi , i = 1, , n. Equation (11.44) is the
familiar flow-times-force expression for entropy production and, as we will
see, bears a close resemblance to the length element d/2 in our Riemannian
geometry. To emphasize this' similarity, we rewrite (11.44) in the form

n

dSu =- L6.Yi dXi =-6.y. dX,
i=1

(11.45)

where the 6.Y =Y- Y. Note that this sum must be positive by the second
law.

11.5.3 The Metric as a Symmetric Product

We now express our length element

n n

d/2 = L L g(X)ij dXi dXj
j=1 i=1

as a symmetric product. Since

dY. =~ aYj dX.
) LJ ax- I

i=1 I

n a2s
- " dXi- LJ ax- ax·i=1 I )

n

= - L g(x)i j dXi,
i=1

we can write the length element as

d/2 = -dY dX.

(11.46)

(11.47)

(11.48)

(11.49)

(11.50)

Note the similarity between this expression and (11.45). Note also that
while dY and 6.Y look similar, they represent very different quantities:
dY is an infinitesimal change in the state of system A, while 6.Y is the
difference Y - Y.
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From the symmetric product -dY dX in (11.50), it is easy to obtain the
conformal equivalence between the metrics G and g(X). On substituting

n

dX1 = dU = TdS +I:Wi dZi ,
i=2

au
Wi = aZ

i
= -TY;, i =2, ... , n,

Zi=Xi , i=2, ... ,n,

into (11.50) we obtain on, rearrangement,

(11.51)

(11.52)

(11.53)

dP = -dYdX =
dWdZ

T
dL2
y.

(11.54)

(11.55)

Equations (11.54) and (11.55) are the infinitesimal form of the Gouy­
Stodola theorem [26] expressing the well-known relationship between loss
of availability at a temperature T and the associated entropy production.
This fact will become more apparent after our discussion of the discrete
horse-carrot theorem.

11.5.4 The Group of Transformations

The conformal equivalence of the geometries defined by the second deriva­
tives of U, S, and ¢ leads naturally to the question of what other potential
functions p one might consider with the property that the metric g(X) is
a multiple of the second derivative matrix of p with respect to p's natural
variables. The question is elegantly posed using the formalism introduced
by Hermann [27]. Define an n degree of freedom thermodynamic system as
a maximal integral submanifold of a contact form13 w on a space of dimen­
sion 2n +1. In usual coordinates this takes the form w = dS - E~= 1 Y; dXi ·
Asking for a maximal integral submanifold is asking for an n-dimensional
surface on which the differential expression of the first law, w = 0, holds.
The additional structure implied by the symmetric two-form 1] = dY dX
gives an interesting class of manifolds [28], [29], [30]. It turns out that there
are very many potentials p. The set of such potentials can be characterized
by considering the group of coordinate transformations which preserve w

and 1] up to scale factors. The group turns out to equal the semidirect prod­
uct of the integers modulo 2, Z2, the multiplicative group of nonzero real
numbers, JR., the general linear group, GI(n), and the Heisenberg group,
H(n). If we ask that 1] be preserved without scaling, the group shrinks to

13A nowhere vanishing differential form of maximal rank.
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just the semidirect product GI(n)0aH(n) but which excludes the transfor­
mation from S to either U or ¢.
While this shows there are many possible such potentials, they have

not been extensively applied. Di6si and Lukacs showed that the action
of the renormalization operator belongs to this group [25]. See also the
recent work by Brody and Ritz [31]. Mrugala [28] has applied these contact
transformations to find laws of corresponding states. More recently, Eu [32]
has used them to study Pfaffian formulations of uncompensated heat.

11.5.5 Dissipation in a Small Equilibration

There is an important special case for which there is a close relationship
between LlY and dY in (11.45) and (11.50). This is the case of a small
equilibration with a bath. Let us take A sufficiently large that any changes
in its intensive variables Y can be neglected. Furthermore, we allow A to
equilibrate to A so the final values of Y equal Y. Integrating to equilibrium
gives

LlSu =JdSu =J-LlY dX

which in light of (11.49) becomes

LlSu = JLlXt g(X) dX

(11.56)

(11.57)

to first order in LlX = Xo- X where X o is the vector of extensive variables
of system A after equilibration with the bath A. To this order we may
take the metric matrix g(X) to be constant in which case (11.57) can be
integrated to give

LlSu = ~ LlX t g(X) LlX
_ 1 A 02
- '2 LU .

11.5.6 The Discrete Horse-Carrot Theorem

(11.58)

(11.59)

The discrete horse-carrot theorem follows at once from the general ex­
pression (11.59) expressing the relationship between the length of a small
equilibration and the corresponding entropy production. Consider a path in
the state space of system A, and the process whereby we select the states of
k baths to match the system's intensive variables Y at k points along this
path. The discrete horse-carrot theorem answers the question: How should
the states be chosen so as to minimize the total entropy produced in the k
successive equilibrations which bring the system to equilibrium with the k
successive baths along the path? For large k the answer is simply that one
should place the baths equidistant in the geometry given by g(X). This
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follows by noting that the total entropy production is given by

k 1 k

6.Su = L 6.ISu = 2 L 6.11.
2

1=1 1=1

which is to be minimized while fixing the total length

k

I. = L6.II..
1=1

(11.60)

(11.61)

This minimization is easily handled using Lagrange multipliers to give

I.
6.,1. = constant = k' (11.62)

(11.63)

Substituting this back into (11.60) gives the horse-carrot inequality

6.S > 6.smin = !!.-.
u - u 2k

A more thorough analysis including the dynamics of incomplete relaxation
is possible [9]. For large times the analysis tells us to allocate the same num­
ber of relaxation times to each equilibration. Thus the minimum entropy­
producing way, to bring the system in a finite time along a given path
using a fixed number k of intermediate equilibrations, is to make the steps
equidistant with a constant number of relaxation times alloted for each step.
This is the origin of the idea of constant thermodynamic speed v = dl./d~,

where d~ = dt/f., t is time, and f. is the relaxation time of the system. The
optimality of constant thermodynamic speed for a k-step process is hereby
established. The optimality of this control in other contexts has led to some
confusion as we discuss further below.

Some Comments on Loss of Availability

An expression entirely analogous to our equation (11.59) can be derived
for the loss of availability 6.Au in a small equilibration

6.Au = ~ 6.Z t C 6.Z
- 1 AL2
- 2 ~ .

(11.64)

(11.65)

We can now see more clearly why we referred to the conformal equivalence
of the two metrics given by the second derivatives of Sand U expressed in
(11.55) as the differential form of the Gouy-Stodola theorem

6.Au =-Ta 6.Su , (11.66)

where Ta is the temperature of the atmosphere. For the infinitesimal pro­
cess in (11.55), the role of the large bath is played by A rather than by the
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atmosphere. The ambiguity of where the heat equivalent of the lost avail­
ability ends up severely limits the usefulness of the analogous horse-carrot
inequality for ~Au,

L2
~Au > -. (11.67)- 2k

For isothermal processes the two inequalities (11.63) and (11.67) are equiv­
alent. For nonisothermal processes the lengths given by f and L are not
simply related. Although the lengths given by L can be of interest for sys­
tem control in certain circumstances [33], dL 2 is more often useful as a
device for calculating df2 using (11.55) as we illustrate below.

11.5.7 The Continuous Horse-Carrot Theorem

In this section we treat the continuum version of the discrete control consid­
ered above. The problem is now as follows: Given that system A traversed
the path X(t), t E [0, T]' how much entropy production had to occur? For
sufficiently large T, this question has a very similar answer to what we
found for the discrete process although the optimal control turns out to be
a constant entropy production rate rather than constant thermodynamic
speed. We assume that we can control system A reversibly and that sys­
tem A is affected only indirectly through its contact with A. Our argument
proceeds from the integral form of (11.45) for the total entropy production

~Su = iT dSu =-iT ~Y dX.

Some Basic Expressions Connecting Dissipation and Geometry

There are a number of interesting rearrangements of (11.68) for the to­
tal dissipation which reveal connections between this dissipation and our
geometry. Define X e by the formula

-cY - Y) = g(X)(Xe - X). (11.69)

Since g(X) is not necessarily invertible, the scale of different homogeneous
phases in X e must be set separately by specifying how these scales of A
evolve. Then for X e close to X, we can interpret X e as the state of A
which would minimize the entropy production rate in contact with the
current state ofA subject to the constraint of keeping A's state on the line
through X in the direction dX. On substituting (11.69) into (11.68) and
replacing dX by (dX/df)df we have

r dX
~Su = Jo (Xe - X)tg(X) de df. (11.70)

Recall that a metric on a vector space defines a dot product [34]. The inte­
grand in (11.70) is the dot product using the metric g(X) of the deviation
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X e - X and the unit tangent vector dX/df. Thus we may interpret this in­
tegrand as the distance between our current state and the state the system
is trying to reach, projected onto the direction of dX. We call this projected
lag distance D = dSu/ df and see by the mean value theorem that we can
write the total dissipation as

(11.71)

This gives an expression for the total entropy production as the product of
the mean distance to equilibrium and the total distance traversed.
A second interesting relation can be found by considering the quantity

dSu/dt
( = (df/dt)2' (11.72)

Note that ( has the units of time. In fact, for a sufficiently slow process
with separable time scales, ( is just the relaxation time. We can see this by
writing

dX
dt = (X e - X)/f. (11.73)

Note that by our definition of X e , dX/dt and X e - X must be in the same
direction and hence must be proportional. If our dynamics is sufficiently
slow and the time scales are separable, then all but the slowest mode of our
system must equilibrate essentially instantaneously and thus X o - X must
be proportional to dX/dt, i.e., X e = Xo. With or without our assumptions
of slow process and separable time scales, the definition in (11.72) allows
us to express the total entropy production as

r dX
t

dX r (df)2
~Su =10 (dt g(X) dt dt =10 ( dt dt. (11.74)

We can again apply the mean value theorem, to give the alternative form

r dX t dX r (df) 2
~Su = (1

0
dt g(X) dt dt =(1

0
dt dt. (11.75)

A third interesting expression for ~Su results if we change parameters
along the path X(t) and express our dissipation integral in terms of the
number of relaxations ~. Recall that d~ = dt / ( and so our integral becomes

where

r=- dX t dX r=- (df) 2
~Su = 10 d[ g(X) d[ d~ = 10 d~ d~,

3= r d~= r dt
.10 10 (

(11.76)

(11.77)
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All our expressions in this section are valid generally. Nevertheless, with­
out our hypotheses of a sufficiently slow process with separable time scales,
in which A and A are near equilibrium with each other at each instant, the
physical meaning of D and f are merely formal [35].
For our fourth and final version of the integrated dissipation fj,S... , we

start from the Onsager-Prigogine-type of linearized flux-force relationship

dX
dt = ,fj,Y, (11.78)

where, is the matrix of kinetic coefficients [36]. Note that, must be
symmetric and positive definite. If we solve this for fj,Y and substitute
into (11.68) for the entropy production, we get

17' dxt dX 17' (d>.)2
fj,S... = a dt ,-1 dt dt = a dt dt, (11.79)

which can again be interpreted as the integral of a speed squared. This
time, the lengths). are given by yet another metric (/-1). There is a fun­
damental difference between this metric and the ones which we have so far
considered. The coefficients in , are kinetic as opposed to equilibrium quan­
tities. Stated another way, the metric coefficients in g(X) are covariances
while the coefficients in , are time correlations.

A Simple Lemma from Optimization

We now pause our development for a simple result which will show us
how to minimize the entropy production and how to obtain a number of
inequalities corresponding to the various expressions for fj,S... derived in
the previous subsection. While these inequalities can be obtained from the
Cauchy-Shwartz inequality [8], [9], we use a variational argument here to
emphasize their connection to optimal process control.
To minimize an integral of the form

(11.80)

with given values of x(O) and x( r), the first-order necessary conditions of
Euler-Lagrange for our autonomous Lagrangian, f{,

(11.81)

glve

f{ _ dx of{ =constant. (11.82)
dt o(dxjdt)

Substituting our expression for f{ in (11.81) into (11.82), we find that for
optimality, the Lagrangian f{ should be constant.
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An immediate and useful corollary follows for the special case of (11.80)
with f == 1. For this case

implies

I< = (~;) 2 = constant (11.83)

dx
dt =constant = t:1x/r. (11.84)

The minimum value of the integral then simplifies to the right-hand side of

(11.85)

This special case takes on particular importance when x is the arc length
with respect to some metric M. In this case, letting X represent the coor­
dinates in this space, the inequality becomes

1
T

dXt dX (1 T

-M-dt>
o dt dt - 0

dX
t
M dX dt) 2/1"

dt dt
(11.86)

This general inequality leads directly to the fact that extremal curves for
the speed squared coincide with extremal curves for the length (geodesics),
a fact that is the starting point for Morse theory [37].

Applications of the Lemma

Applying the lemma to (11.74) or (11.79) tells us that to minimize entropy
production, we should proceed at a constant entropy production rate

. (d£) 2
Su ={ dt (

d>.)2
dt = constant. (11.87)

Applying the corollary for squared speed to (11.75) and (11.76) leads to
the continuous versions of the horse-carrot inequality

t:1Su ~ (£2/1',

t:1Su ~ £2/3.

(11.88)

(11.89)

These inequalities bound the dissipation by the squared thermodynamic
distance £2 divided by the number of relaxations. As such, they bear a
strong resemblance to our discrete horse carrot inequality (11.63). Despite
some confused claims in the literature, these generally valid inequalities
do not say anything useful about how to minimize the entropy production
in a given time. The averaging process that goes into ( and 3 for fixed
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total time14 hides a dependence. For the process with a fixed number :=:
ofrelaxations, inequality (11.89) becomes sharp and the minimum entropy
production strategy is to drive the process with constant thermodynamic
speed df/d~. Thus constant thermodynamic speed is optimal for a given
number of relaxations in both the discrete and the continuous case. This
fact was only recently elucidated independently by [38] and [39].
The factor of ~, present in the discrete but not in the continuous case,

is real and comes from the fact that in the discrete case we repeatedly
relax (almost all the way) to equilibrium, while in the continuous case we
maintain an approximately fixed distance. It follows that in the discrete
case we are on the average about half as far from equilibrium and thus by
(11.71) should expect about half the dissipation.
Finally we note that our corollary about the integral of the squared speed

also applies to (11.79) and gives an alternative route to the last part of our
minimum entropy production condition (11.87) for fixed time. It also gives
an associated inequality

(11.90)

The implications of the geometry of time correlations given by 1-1 is left
for another chapter. For preliminary results in this direction, the interested
reader is referred to [38], [39], and [40].

11.5.8 Cooling Rates for Simula~\"d Annealing

The above formalism has been applied to the control of the temperature in
simulated annealing-an algorithm for solving global optimization problems.
Here the idea is to associate a (usually fictitious) physical system with
the optimization problem by identifying the objective function with the
energy of such a system. We then simulate relaxations to equilibrium at a
decreasing sequence oftemperatures by a random walk over states using the
Metropolis algorithm [41]. Much has been written about the ideal cooling
rate [42], [43], [44]. Several authors have advocated a constant statistical
velocity cooling schedule which keeps df/dt constant based on arguments
along the lines of Section 11.2.2. In fact, this schedule has been incorporated
in the popular simulated annealing package known as Timberwolf [45], [46].
Although no direct connection has been established between entropy pro­

duction and performance of the algorithm, such conjectures are tantalizing
[47], [48]. Motivated by these conjectures, both constant thermodynamic
speed and constant entropy production rate schedules have been tried. Em­
pirically, it seems that the constant thermodynamic speed schedule outper­
forms others [42], [49], [50] but the difference for most systems is small.
The argument in favor of constant thermodynamic speed for these prob­
lems runs along the same lines as the argument already presented in Sec-

14 Note that by (11.77) we can consider :=: as a time weighted harmonic mean f.
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tion 11.2.2 in favor of constant statistical velocity: We cool as fast as possi­
ble consistent with the constraint of never being too far out of equilibrium
[51]. The distance to equilibrium is measured by the metric g(X) and this
argument leads to keeping the distance D between the system and the bath
constant. The role of the bath is played here by the parameter T used in the
Metropolis algorithm. For this (thermodynamically one degree of freedom)
system, the metric, g(X) = -d2S/dE2, leads to the length element

df = J- d
2
S dE2

dE2
(11.91)

(11.92)

(11.93)

(11.94)

where IJE is the standard deviation of the energy and we have used the fact
that the heat capacity dE / dT is equal to IJVT2 [52]. Letting Eo stand for
the equilibrium energy of the system at the current temperature T, in the
Metropolis algorithm, we get that D = (E - EO)/IJE gives our distance
measure of disequilibrium.
Keeping D constant keeps the system moving with its own time scale. If

the cooling is sufficiently slow and the time scales are separable, the system
moves with its own relaxation time. This gives one popular way to imple­
ment what has been called constant thermodynamic speed schedules. Alas,
time scales are not separable in typical problems of simulated annealing
interest; physically these systems act like glasses. Accordingly, keeping the
lag distance constant is not equivalent to constant thermodynamic speed.
A constant D schedule does share an attractive feature with constant ther­
modynamic speed annealing: both schedules measure energy and time on
natural scales of the system. Their "optimality" thus follows from an old
meta-theorem of applied mathematics: the more one exploits the structure
of the problem the better.
There exist several other means of implementing constant thermody­

namic speed. One popular technique for well-studied problems, that gets
around the difficulty associated with adaptive algorithms, is to model or fit
the constant speed schedule obtained by laborious adaptive analysis and
then use a rescaled version of this schedule for other similar problems [53].
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F -41-

FIGURE 11.4. A schematic distillation column with flows: feed F, distillate D,
and bottoms B. The close up shows two adjacent trays including overflow tubes
for downward flow of liquid L and bubble caps for upward flow of vapor V.

11.6 Staged Steady Flow Processes

Most recently [54], the connection between dissipation and geometry has
been extended to treat a staged steady-flow process of considerable indus­
trial interest: fractional distillation. The example involves some surprises
which hint at the existence of other applications of horse-carrot-type anal­
yses. The first surprise is that the scale of the process is set by the flow
rates rather than the states along the process. The second surprise is that
the null directions for our semi-Riemannian metric turn out to be useful.

11.6.1 Dissipation in a Distillation Column

Fractional distillation is a process for separating a mixture of compounds
based on the differences in the boiling points of the components. Fractional
distillation is performed within a vertical column divided into trays that
constitute the k stages for the process. The mixture to be separated is
introduced near the middle of the column at the feed tray, and the separated
components are removed at the top as distillate D and at the bottom as
bottoms B (see Figure 11.4). Boiling occurs on each tray resulting in the
formation of vapor which is then bubbled through the liquid at the next
higher tray. Similarly, each tray is equipped with an overflow tube which
returns excess liquid to the next lower tray.
We treat a binary mixture at constant pressure. i5 For steady-state opera­
tion, the net difference between the upward flow of vapor and the downward
flow of liquid must equal D at each tray-tray interface above the feed and

15More components and a pressure differential along the column can be handled
similarly, albeit at a significant cost in complexity.
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B at each interface below the feed. Formally, numbering the trays from
the top of the column (see Figure 11.4), and letting Vm and Lm stand for
the number of moles of vapor and liquid leaving tray m, the mass balance
equations at the interface between trays m and m + 1 are

Vm +1 _ Lm = {D
-B

above feed,

below feed,
(11.95)

above feed,

below feed,
(11.96)

where x and yare the mole fractions of the first component in the gaseous
and liquid phases, respectively. In the limit of an infinite number of trays
this becomes

V_L={D
-B

above feed,

below feed,
(11.97)

above feed,

below feed,
(11.98)

with x, y, V, and L now smooth functions of T except at the feed plate
where we switch between the appropriate balance conditions. The whole
process becomes a continuous, piecewise smooth path in the state space of
the two-phase binary system by including a rescaling branch at the feed
plate which contributes length zero. This path is known in the literature
[55] as the minimum reflux values of V and L at each T. This is also the
path we will dissect into k equal length pieces for a discrete horse-carrot
process.
In the conventional operation of the column, a heat source is connected
at the bottom tray and a heat sink is connected at the top tray creating
a temperature gradient along the column. This results in the net upward
motion of low-boiling component and downward motion of high-boiling
component. We depart from the conventional design and use additional
heat sources (sinks) along the column to adjust the temperature at each
plate. We then ask for the sequence of temperatures which minimizes the
total dissipation inside the column. We take the transport of heat and
matter between the column and its surroundings as reversible.
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314 11. From Statistical Distances to Minimally Dissipative Processes

Since we assume that each stage is in equilibrium, the losses occur as
the upward flow of vapor and downward flow of liquid equilibrate at the
next trays. For concreteness, consider the bubble of vapor going up-the
analysis for the downward flow of liquid proceeds similarly. The losses can
be counted by a conceptual rearrangement of what occurs. We consider the
bubble of vapor to be isolated except for the exchange of heat and p dV work
with the two-phase fluid in the tray above. Accordingly, this fluid acts as a
bath with a certain temperature and pressure. In this manner, the bubble is
brought to equilibrium at the temperature and pressure of the next tray by
a horse-carrot process whose entropy production is given by the distance
squared, A£2. This squared distance is an extensive quantity; the scale is set
by the number of moles of material moving per unit time. In the final state
of each bubble, some of the vapor has condensed to liquid, but each phase
is exactly at the composition in the next tray and we can reversibly mix
the bubble and its surroundings. Our conceptual rearrangement of events
is justified since in either case the net effect is the complete equilibration
between the bubble of vapor and the equilibrium system in the next tray.
Since we assume constant pressure, the form of the metric in (11.55) is

the most convenient since only one term in the sum is nonzero.

AS = 1.(A£)2 = ~ ATAS = ~ C,r(AT)2
u 2 2 T 2 T2 '

where Co is the constant pressure saturation heat capacity of the two-phase
mixture in equilibrium [56]. We get the same expression for the liquid,
although AT has the opposite sign. Since the dissipation only depends on
(AT)2, we would get the same entropy production if the liquid flow were
reversed and also went up the column.
We have hereby established that the dissipation of small relaxation steps

along this path equals the squared length of the corresponding displace­
ment. Therefore, the discrete horse-carrot theorem applies and we can
conclude that, to minimize total entropy production in the column, the
tray temperatures should be adjusted to equalize the thermodynamic dis­
tance between trays. To find the optimal temperature profile, we need to
find temperatures Tj such that

(j+l rc: dT= ~ fTk rc: dT, j=O, ... ,k-1.
iTj VT k iTo VT

This derivation shows an application of the discrete horse-carrot theorem
to the steady-state operation of a separation process. The results express
the dissipation in terms of the length of a path in the equilibrium state
space of the mixture and show how to optimally control the temperatures
of the stages along such a separation. The procedure is readily adapted
to any staged steady flow process in the limit of many stages. We start
from the flow vectors along the process. Since these flows equilibrate at the
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next stage, the entropy produced by such small relaxations is the square
of a length element. For the purpose of counting dissipation, all flows can
be taken unidirectional and summed exactly as for distillation. The corre­
sponding path consists of the flows for the process in the limit of infinitely
many stages. This should have implications for the control of many real
processes.

11.7 Conclusions

This chapter presented a review of the geometry of distinguishability in
all its guises ranging from the quantum to the macroscopic. We tried to
present a thorough overview of the results and applications along with the
connections to related geometries.
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