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Abstract. Time-arrow s = ±, intrinsic to a concrete physical system, is associated
with the direction of information loss ∆I displayed by the random evolution of the
given system. When the information loss tends to zero the intrinsic time-arrow becomes
uncertain. We propose the heuristic relationship 1/[1 + exp(−s∆I)] for the probability
of the intrinsic time-arrow. The main parts of the present work are trying to confirm
this heuristic equation.

The probability of intrinsic time arrow is defined by Bayesian inference from the ob-
served random process. From irreversible thermodynamic systems, the proposed heuri-
stic probabilities follow via the Gallavotti-Cohen relations between time-reversed ran-
dom processes. In order to explore the underlying microscopic mechanism, a trivial
microscopic process is analyzed and an obvious discrepancy is identified. It can be
resolved by quantum theory. The corresponding trivial quantum process will exactly
confirm the proposed heuristic time-arrow probability.

1 Introduction

Both experiment and theory confirm that physical processes are time-reversal
invariant in ‘simple’ systems. This invariance may eventually be lost if the sy-
stem is chaotic, singular, of many degrees of freedom, or not isolated [1]. It seems
plausible now that time-reversal asymmetry (irreversibility) is always accompa-
nied by some information loss. Yet, little is known quantitatively. The present
work discusses an elementary informatic mechanism of irreversibility. It leads to
a simple analytic expression for the asymmetric probability of the two possible
directions of time.

Suppose we use reference-time t to label the order of events but we leave open
whether physical-time st is passing with increasing or decreasing t, according to
the respective time-arrow s = ±. We make no a priori (extrinsic) assignment for
s. The ambiguity is to be resolved by analyzing irreversible physical processes.
We consider informatic irreversibility in a sense that the Shannon information
changes by ∆I along the process. We call the resulting a posteriori time-arrow
intrinsic. It belongs to the given irreversible process. It would not exist in ‘empty
space’ at all. In the spirit of the second law of thermodynamics, the physical en-
tropy production s∆I must be positive, hence the intrinsic time-arrow is unique:

s = sign(∆I) . (1)
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This assignment is only valid if the magnitude |∆I| is macroscopic which means
that it is much bigger than 1 bit. If, however, the irreversibility is weak then we
have to be content with a probabilistic intrinsic time-arrow. The main sugge-
stion of our work is that this probabilistic time-arrow is a relevant concept and,
furthermore, the probability P (s) depends on the Shannon information change
∆I under rather general conditions. I will consider the following relationship:

P (s) = 1
1+e−s∆I . (2)

If we change the sign of the reference time (t→ −t) then also the sign of the in-
formation loss will change (∆I → −∆I). Hence the above expression is covariant
against time-reversal of the reference frame. Asymptotically it yields the unique
thermodynamic arrow (1) if the information loss |∆I| is much greater than 1
bit. On the contrary, the two time-arrows become equally probable for a rever-
sible process where ∆I is much less than 1 bit [2]. The suggested relationship
is heuristic and lacks a general proof. It is intimately related to the fluctuation
theorem [3, 4] proved for a particular class of irreversible processes [5]. On the
other hand, it intends to reflect a fundamental meaning of the time-arrow in
terms of information flow. I am going to prove that the relationship (2) fol-
low from elementary statistical considerations provided we assume some further
conditions to fulfill.

Section 2 presents the mathematical steps of Bayesian statistical inference
adapted to the estimation of the time-arrow from the observed data. In Sect. 3
we discuss the inference from irreversible thermodynamic process, in Sect. 4 from
microscopic process. The time-arrow is derived from quantum irreversibility in
Sect. 5. The Appendix offers a short proof of the fluctuation theorem.

2 Bayesian Time-Arrow

Given a statistical system, let X denote a certain random process in a given
interval of reference-time t. Let X̃ denote the time-reversal of X. Assume that
from the principles of statistical physics we can calculate the probability P(X) in
physical-time! We also introduce the probability distribution P̃(X) of the same
random process seen from a reference frame with reversed time,

P̃(X) ≡ P(X̃) . (3)

The conditional probability distribution of X takes the form

P (X|s) =
{P(X) s = +
P̃(X) s = − , (4)

where s is the a priori time-arrow. Prior to the irreversible process X, the dis-
tribution of s is symmetric: P0(s) = 1/2. Hence the joint distribution of X and
s is the following,

P (X, s) = P (X|s)P0(s) = 1
2

{P(X) s = +
P̃(X) s = − . (5)
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According to the Bayes rule, the conditional a posteriori distribution of the
time-arrow reads

P (s|X) = 1
P(X)+P̃(X)

×
{P(X) s = +
P̃(X) s = − , (6)

which can be cast into the following covariant form:

P (s|X) = 1
1+e−sD(X) , (7)

where
D(X) = − log P̃(X)

P(X) . (8)

This Bayesian estimate means that if 1) we know the a priori distribution P(X)
of the random processX in physical-time but 2) experimentally we observe either
X or X̃ with equal probability since we have no a priori information regarding
the relationship of our reference-time to the physical-time then 3) learning X in
the reference-time will lead us to the Bayesian probabilistic estimate P (s) of the
times-arrow.

Let us calculate the mean fidelity of the estimated time-arrow: from (4-8) we
shall obtain the following closed form:

F ≡
∑
X

P (+|X)P (X|+) =
〈

1
1+e−D(X)

〉
P
. (9)

The expectation value should refer to P(X) which is the distribution in the
physical frame. We can easily derive an ultimate covariant expression of the
average Bayesian estimate,

P (s) =
〈

1
1+e−sD(X)

〉
, (10)

where the average refers already to the observed statistics and the form is valid
in time-reversed reference frames as well.

3 Thermodynamic Case

Let X be a coarse-grained macroscopic random process in a given statistical
system in the period [−T,+T ] ≡ [t1, t2] and let X̃ be the same process seen
from the time-reversed reference frame,

X = {X(t); t1 ≤ t ≤ t2} ,
X̃ = {X(−t); t1 ≤ t ≤ t2} . (11)

Typically, X can be an irreversible thermodynamic process X(t). Assume that
we know the irreversible entropy ∆I(X) produced by the process X. Obviously,
the time-reversed process ‘produces’ the same entropy with the opposite sign,

∆I(X̃) = −∆I(X) . (12)
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Let us introduce the following conditional distributions:

P (X|ξ) = P(X)/P1(ξ) ,
P (X̃|η) = P̃(X)/P2(η) , (13)

where P1(ξ), P2(η) are the probability distributions of the extreme values ξ =
X(t1) and η = X(t2), respectively. In the Appendix the reader finds an ele-
mentary proof of the fluctuation theorem [3–5] encoding the asymmetry of the
time-reversal X ↔ X̃ into covariant equation,

P (X̃|η) = e−∆I(X)P (X|ξ) . (14)

Accordingly, the violation of the time-reversal symmetry is exponentially increa-
sing with the magnitude |∆I| of the irreversible entropy. We are going to show
that, via the Bayesian statistics of Sect. 2, the relationship (14) reproduces the
heuristic probabilities (2) for the thermodynamic time-arrow.

Let us express the r.h.s. of (8) from (13,14),

D(X) = ∆I(X)− log P2(η)
P1(ξ) . (15)

For long enough periods, the r.h.s. is dominated by the information loss ∆I(X),
the second (boundary) term can be ignored (cf. [5]). In this limit we can write
the covariant Bayesian estimate (7) into this form,

P (s|X) = 1
1+e−s∆I(X) , (16)

which on average leads to the covariant distribution

P (s) =
〈

1
1+e−s∆I(X)

〉
. (17)

Finally, this yields the heuristic form (2) provided we can ignore the statisti-
cal fluctuations of the entropy production around its expectation value ∆I =
〈I(X)〉. This is justified for common macroscopically irreversible processes where
|∆I| � 1.

4 Microscopic Case

Let us consider a statistical ensemble of n � 1 independent d−state systems
characterized by the probability distribution ρi, i = 1, 2, . . . , d. Let X be an
abstract random process as trivial as the transition from an initial microscopic
ensemble state ξ into a final one η, the time-reversed process X̃ will be the
opposite transition,

X = (ξ, η) ,
X̃ = (η, ξ) . (18)
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Let ρi1 and ρi2 be the probability distributions of the systems within the ensembles
ξ and η, respectively. Then the change of Shannon information along the process
X reads:

∆I ≡ nI2 − nI1 = −n
d∑
i=1

ρi2 log ρi2 + n
d∑
i=1

ρi1 log ρi1 . (19)

The process X is irreversible if ∆I �= 0 and we should assign the time-arrow s
so that s∆I be positive (1). The point is that the two samples ξ and η may, by
chance, not realize the asymmetry especially when the shapes of their probability
distributions ρi1 and ρi2 do not much differ from each other.

Let us characterize the two constituting configurations of X = (ξ, η) by the
multiplicities ni1 and ni2,

ξ = (ni1; i = 1, 2, . . . , d) ,
η = (ni2; i = 1, 2, . . . , d) , (20)

which follow independent multinomial distributions with the respective mean
values

〈ni1〉 = nρi1 ,

〈ni2〉 = nρi2 . (21)

For large n we can approximate the multinomial distributions by Gaussian fun-
ctions,

P(ξ, η) = C exp

(
−

d∑
i=1

[ni
1−nρi

1]2

2nρi
1
−

d∑
i=1

[ni
2−nρi

2]2

2nρi
2

)
,

P(η, ξ) = C exp

(
−

d∑
i=1

[ni
2−nρi

1]2

2nρi
1
−

d∑
i=1

[ni
1−nρi

2]2

2nρi
2

)
. (22)

We substitute these expressions into (8) to calculate D(ξ, η), then we calculate
the mean value,

D = −n2
d∑
i=1

(
(ρi2)2 − (ρi1)2) ( 1

ρi
2
− 1

ρi
1

)
. (23)

Suppose that D(ξ, η) is, for very large n, dominated by the mean value D and
fluctuations will thus be ignored. Hence the average Bayes estimate (10) reads

P (s) = 1
1+e−sD . (24)

This could become equivalent with our heuristic proposal provided D = ∆I
which is apparently not true in general. I was looking for further conditions at
least to achieve the asymptotic equivalence of D and ∆I. I concluded to the
following elementary assumptions. First, the shapes ρi1 and ρi2 must be close to
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each other so that the lowest nontrivial order in ∆ρi = ρi2− ρi1 will be sufficient.
Second, the statistics of either ξ or η must be totally random. This sets the
a priori time-arrow for s = − or s = +, respectively. For concreteness, I consider
the case s = + and adopt flat distribution for η [6],

ρi2 = 1
d . (25)

This second assumption is a necessary one, otherwise ∆I contains a linear term
in ∆ρi while D does not. From (19) and (23) the above two assumptions lead to
the following results:

∆I = nd
2

d∑
i=1

(∆ρi)2 , (26)

and

D = nd

d∑
i=1

(∆ρi)2 . (27)

The result is surprising: D has come out twice the information loss.
Mathematically, D is the Kullback divergence between two neighboring en-

sembles ξ and η and it should asymptotically coincide with the information loss
between them. The reason of the anomalous factor 2 is that we happened to
use the Kullback divergence between the composite ensembles (ξ, η) and (η, ξ)
instead of ξ and η. This gives a hint how the factor 2 would go away. It is
interesting to note that the physical resolution has a typical quantum mechani-
cal motivation. In microphysics it is conceptually impossible to observe the full
quantity X = (ξ, η). If, e.g., the time-arrow is positive (s = +) then η is testable
and ξ is not because its observation would significantly perturb the initial prepa-
ration. And vice versa, when s = − then η is testable and ξ is not. Accordingly,
we are going to change the concept of experimental data. In the concrete case,
we forbid the observation of ξ. In this sense, we have to redefine the distribution
of the observed quantities,

P(ξ, η)→ P(η) ≡
∑
ξ

P(ξ, η) ,

P̃(ξ, η)→ P̃(η) ≡
∑
ξ

P̃(ξ, η) . (28)

Repeating the calculation of the Kullback divergence in the leading order, ins-
erting the flat values (25) for ρi2, D turns out to be half of the previous value
(26). Thus in the given approximation we have obtained the identity

D = ∆I , (29)

and confirmed the heuristic relationship (2).
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5 Quantum Case

Let us consider the statistical ensemble of n� 1 independent d−state quantum
systems where each one has the same density matrix ρ̂. Let X be an abstract
random process as trivial as the transition from an initial ensemble ξ̂ into a final
one η̂, the time-reversed process X̃ will be the opposite transition,

X = (ξ̂, η̂) ,

X̃ = (η̂, ξ̂) , (30)

where

ξ̂ = ρ̂1 ⊗ ρ̂1 ⊗ . . .⊗ ρ̂1 ≡ ρ̂⊗n
1 ,

η̂ = ρ̂2 ⊗ ρ̂2 ⊗ . . .⊗ ρ̂2 ≡ ρ̂⊗n
2 , (31)

if ρ̂1 and ρ̂2 stand for the density matrices of the systems within the ensembles ξ̂
and η̂, respectively. The change of von Neumann information during the process
X reads

∆I ≡ nI2 − nI1 = −nTr (ρ̂2 log ρ̂2) + nTr (ρ̂1 log ρ̂1) . (32)

The process X is irreversible if ∆I �= 0 and we should assign the time-arrow s so
that s∆I be positive (1). In order to ∆I have a definite sign the two ensembles
ξ̂ and η̂ should display experimentally significant asymmetry.

Quantum theory says that if the reference-time is the physical time (s = +)
then we cannot test the ensemble ξ̂ but the ensemble η̂. And in the opposite
case (s = −) the ensemble ξ̂ is testable and η̂ is not. We see that the estimation
of the time-arrow s boils down to the statistical decision whether the actually
observed ensemble is ξ̂ = ρ̂⊗n

1 or η̂ = ρ̂⊗n
2 whereas both alternatives have equal

a priori likelihoods.
We can mechanically follow the Bayes method of the previous chapters. Note,

however, the typical quantum informatic arguments: this is the way I approached
the issue originally.

The two collective states (31) reside in a Hilbert space of dimension dn.
According to the quantum counterpart of Shannon’s code theory [7], in the
large n limit such collective states become asymptotically equivalent with totally
random states restricted for given subspaces. Our states (31) become random
states in subspaces Ê1 and Ê2,

ξ̂ = ρ̂⊗n
1 ∼ e−nI1Ê1 ,

η̂ = ρ̂⊗n
2 ∼ e−nI2Ê2 , (33)

where Ê1 and Ê2 are Hermitian projectors of dimensions enI1 and enI2 , respec-
tively. The dimensions depend on the von Neumann entropies. We are interested
in the situations where the experimental distinguishability of the above two
ensembles would exclusively depend on the difference ∆I = nI2 − nI1 of the
informations. This is obviously not true in general because the distinguishability
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will depend e.g. on the overlap Tr(Ê1Ê2). Nonetheless, the asymptotic forms (33)
suggest simple conditions to achieve our goal. Suppose that one of the ensembles,
say η̂, is of minimal information,

ρ̂2 = 1̂
d , (34)

which means that I2 = log d and Ê2 = 1̂⊗n. The ensemble η̂ is totally random
over the whole collective Hilbert space of dimension dn. The overlap between
Ê1 and Ê2 becomes trivial. The information loss is always positive and the true
time-arrow is thus s = +. But we have to find it by deciding whether we have
tested the ensemble ξ̂ or η̂ which are of equal a priori likelihoods.

Now the experimental distinguishability of ξ̂ and η̂ is already trivial. All we
have to do is to define Ê1 as observable and to observe it! If the tested ensemble is
ξ̂ itself then we get 1 with certainty since Tr(Ê1ξ̂) = 1. If the observed ensemble
is the fully random η̂ then we get 1 with probability Tr(Ê1η̂) = e−∆I and we
get 0 with the complementary probability. As we see, the complete experimental
statistics is determined by the information loss ∆I.

Let us turn to the Bayes method of Sect. 2 to estimate the time-arrow s. As
we suggested above, the observed data is the value E1 = {0, 1} of the quantum
observable Ê1. The probability P(E1) stands for its distribution in the reference
time with time-arrow s = + and P̃(E1) stands for its distribution in the reversed
time s = −. In the preceding paragraph we established their values,

P(E1) = E1e
−∆I + (1− E1)(1− e−∆I) ,

P̃(E1) = E1 . (35)

Applying the steps of Sect. 2 mechanically, first we write (8) into this form:

e−D(E1) = P̃(E1)
P(E1) , (36)

which is then substituted into the expression (9) of the mean fidelity, yielding

F =
〈

1
1+P̃(E1)/P(E1)

〉
P

= 1
1+e−∆I (37)

We have used (35) to calculate the average. The result implies exactly the form
(2) for the probability of intrinsic time-arrow in function of the information loss.

6 Concluding Remarks

I proposed a heuristic probability distribution (2) for the time-arrow intrinsic to
a given irreversible process. The proposed probability is solely a function of the
information loss ∆I. The idea itself comes from the phenomenological fluctua-
tion theorem. Indeed, the concrete form of my proposal can easily be confirmed
for the intrinsic time-arrow of standard irreversible processes, at least in the
limit of macroscopic entropy production ∆I � 1. My basic goal, however, was
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the construction of whatever trivial microscopic process which could underly
the proposed dependence on ∆I. I analyze the irreversible process of the sim-
plest possible structure in classical and quantum versions. The quantum version
confirmed the proposed probabilistic time-arrow. Let me summarize this central
result.

1) Suppose we know that (in physical time) a quantum ensemble ξ̂ of n� 1
identical systems of given (also known to us) state transforms into an ensemble
η̂ of n totally random systems. 2) Suppose we do not know at all whether our
reference-time is the physical-time or not, and whether the ‘resulting ensemble’
of the above process has been η̂ or ξ̂. 3) We test the ‘resulting ensemble’ and
Bayesian inference will give us the time-arrow with fidelity

F = 1
1+e−|∆I| .

An infite number of conceptual issues could be raised against the presented
ideas. I mention and discuss only two. First, the assignment of a non-trivial
intrinsic time-arrow to a local irreversible process is a speculation. Nature might
retain the same universal time-arrow for the whole Universe independently of the
measure or direction of local information flows. Yet, we do not know if Nature
is that conservative indeed. We learned from Einstein that Nature delegates
the issues of local geometry to local physical systems. I adopted the hypothesis
that this happens with time-arrow as well. Second, the proposed confirmation
of the time-arrow probability includes Bayesian inference. Many would say that
inference is subjective. The obtained probability is also subjective. Nonetheless,
famous arguments using inference have been used earlier to confirm objective
statistics of quantized fields [11]. It is, furthermore, a common knowledge that
the maximum-likelihood inference of the intensive thermodynamic parameters
confirms their true equilibrium fluctuations in Gibbs ensembles.

The present work is an attempt to find universal expressions for the hypo-
thetic intrinsic time-arrow. There is a hint of the information loss to play the
key role. This does not mean that we can already claim an experimental signifi-
cance which should, of course, be inevitable after all. But theory of intrinsic time
opens a series of natural questions to study in the future and there is apparently
a promise of further analytic results.
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Appendix

Let X(t) denote a thermodynamic variable of equilibrium value X̄, where λ is
the relaxation rate, and γ is the Onsager kinetic coefficient. The time-dependent
fluctuations of X(t) are governed by the phenomenological Langevin equation,

dX(t)
dt = −λ(X(t)− X̄) +

√
2γ w(t) (38)

with the standard white-noise w(t). The expression

dI
dt = λ

γ (X̄ −X)dXdt (39)

will be the local rate of irreversible entropy production (information loss) along
the process X(t) (see, e.g., in Landau-Lifshitz [8], or in [9]). According to On-
sager and Machlup [10], the conditional probability distribution of the process
X = {X(t);−T ≤ t ≤ T} at fixed initial value ξ = X(−T ) and for equilibrium
value X̄ takes this functional Gaussian form,

P (X|ξ; X̄) = exp
(
− 1

4γ

∫ T

−T

[
dX(t)
dt + λ(X(t)− X̄)

]2
dt
)
. (40)

We shall consider driven thermodynamic processes which can be described by the
(38-40) with time-dependent equilibrium values {X̄(t);−T ≤ t ≤ T}. For conve-
nience of forthcoming calculations let us write down the distribution functional
of the driven process,

P (X|ξ; X̄) = exp
(
− 1

4γ

∫ T

−T

[
dX(t)
dt + λ(X(t)− X̄(t))

]2
dt
)
. (41)

Obviously the above equations assume physical time t. Let us express the con-
ditional distribution of the time-reversed process X̃ starting from X̃(−T ) = η,
driven by the time-reversed function ˜̄X. Namely, we replace X, ξ, X̄ in (41) by
X̃, η, ˜̄X, respectively,

P (X̃|η; ˜̄X) = exp
(
− 1

4γ

∫ T

−T

[
dX̃(t)
dt + λ(X̃(t)− ˜̄X(t))

]2
dt
)
. (42)

Now we change the variable t in the integrand for −t and insert the relations

X̃(t) ≡ X(−t) ,
˜̄X(t) ≡ X̄(−t) , (43)

leading to

P (X̃|η; ˜̄X) = exp
(
− 1

4γ

∫ T

−T

[
dX(t)
dt − λ(X(t)− X̄(t))

]2
dt
)
. (44)

(Recall that this expression would be the conditional distribution of the process
had we observed it in the time-reversed frame.) The logarithm of the physical
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distribution (41) over the time-reversed one (44) will result in a remarkable
expression,

log P (X|ξ;X̄)
P (X̃|η; ˜̄X)

= λ
γ

∫ T

−T
(X̄(t)−X(t))dX(t) . (45)

It follows from (39) that the r.h.s. is equal to the total entropy production
(information-loss) of the driven process,

∆I(X; X̄) = λ
γ

∫ T

−T
(X̄(t)−X(t))dX(t) . (46)

This and the preceding equation yield the fluctuation theorem [3–5],

P (X̃|η; ˜̄X) = e−∆I(X;X̄)P (X|ξ; X̄) . (47)
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