
276 Quantum Mechanics: Weak Measurements
it is argued that statistical fluctuations around the
canonical ensemble can give rise to the behavior of
wave-function collapse, of the kind discussed here,
both energy-driven and CSL-type mass-density-driven
collapse so that, with the latter, comes the Born
probability interpretation of the algebra. The Hamil-
tonian needed for this theory to work is not provided
but, as the argument progresses, its necessary features
are delimited.

See also: Quantum Mechanics: Foundations.
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Introduction

In quantum theory, the mean value of a certain
observable Â in a (pure) quantum state jii is defined
by the quadratic form:

hÂii ¼: hijÂjii ½1�

Here Â is Hermitian operator on the Hilbert space
H of states. We use Dirac formalism. The above
mean is interpreted statistically. No other forms had
been known to possess a statistical interpretation in
standard quantum theory. One can, nonetheless, try
to extend the notion of mean for normalized bilinear
expressions (Aharonov et al. 1988):

Aw ¼:
hf jÂjii
hf jii ½2�

However unusual is this structure, standard quan-
tum theory provides a plausible statistical interpre-
tation for it, too. The two pure states jii, jf i play the
roles of the prepared initial and the postselected
final states, respectively. The statistical interpreta-
tion relies upon the concept of weak measurement.
In a single weak measurement, the notorious
decoherence is chosen asymptotically small. In
physical terms, the coupling between the measured
state and the meter is assumed asymptotically weak.
The novel mean value [2] is called the (complex)
weak value.

The concept of quantum weak measurement
(Aharonov et al. 1988) provides particular
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conclusions on postselected ensembles. Weak mea-
surements have been instrumental in the interpreta-
tion of time-continuous quantum measurements on
single states as well. Yet, weak measurement itself
can properly be illuminated in the context of
classical statistics. Classical weak measurement as
well as postselection and time-continuous measure-
ment are straightforward concepts leading to con-
clusions that are natural in classical statistics. In
quantum context, the case is radically different and
certain paradoxical conclusions follow from weak
measurements. Therefore, we first introduce the
classical notion of weak measurement on postse-
lected ensembles and, alternatively, in time-contin-
uous measurement on a single state. Certain idioms
from statistical physics will be borrowed and certain
not genuinely quantum notions from quantum
theory will be anticipated. The quantum counterpart
of weak measurement, postselection, and continuous
measurement will be presented afterwards. The
apparent redundancy of the parallel presentations
is of reason: the reader can separate what is
common in classical and quantum weak measure-
ments from what is genuinely quantum.
Classical Weak Measurement

Given a normalized probability density �(X) over
the phase space {X}, which we call the state, the
mean value of a real function A(X) is defined as

hAi� ¼:

Z
dX A� ½3�

Let the outcome of an (unbiased) measurement of A
be denoted by a. Its stochastic expectation value
E[a] coincides with the mean [3]:

E½a� ¼ hAi� ½4�

Performing a large number N of independent
measurements of A on the elements of the ensemble
of identically prepared states, the arithmetic mean �a
of the outcomes yields a reliable estimate of E[a]
and, this way, of the theoretical mean hAi�.

Suppose, for concreteness, the measurement
outcome a is subject to a Gaussian stochastic
error of standard dispersion � > 0. The probability
distribution of a and the update of the state
corresponding to the Bayesian inference are
described as

pðaÞ ¼ G�ða� AÞh i� ½5�

�! 1

pðaÞG�ða� AÞ� ½6�
respectively. Here G� is the central Gaussian
distribution of variance �. Note that, as expected,
eqn [5] implies eqn [4]. Nonzero � means that the
measurement is nonideal, yet the expectation value
E[a] remains calculable reliably if the statistics N is
suitably large.

Suppose the spread of A in state � is finite:

�2
�A ¼: hA2i� � hAi

2
� <1 ½7�

Weak measurement will be defined in the asympto-
tic limit (eqns [8] and [9]) where both the stochastic
error of the measurement and the measurement
statistics go to infinity. It is crucial that their rate is
kept constant:

�;N !1 ½8�

�2 ¼:
�2

N
¼ const: ½9�

Obviously for asymptotically large �, the precision
of individual measurements becomes extremely
weak. This incapacity is fully compensated by the
asymptotically large statistics N. In the weak
measurement limit (eqns [8] and [9]), the probability
distribution pw of the arithmetic mean �a of the N
independent outcomes converges to a Gaussian
distribution:

pwð�aÞ ! G� �a� hAi�
� �

½10�

The Gaussian is centered at the mean hAi�, and the
variance of the Gaussian is given by the constant
rate [9]. Consequently, the mean [3] is reliably
calculable on a statistics N growing like ��2.

With an eye on quantum theory, we consider two
situations – postselection and time-continuous
measurement – of weak measurement in classical
statistics.
Postselection

For the preselected state �, we introduce postselec-
tion via the real function �(X), where 0 � � � 1.
The postselected mean value of a certain real
function A(X) is defined by

�hAi� ¼:
h�Ai�
h�i�

½11�

where h�i� is the rate of postselection. Postselection
means that after having obtained the outcome a
regarding the measurement of A, we measure the
function �, too, in ideal measurement with random
outcome � upon which we base the following
random decision. With probability �, we include
the current a into the statistics and we discard it
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with probability 1� �. Then the coincidence of E[a]
and �hAi�, as in eqn [4], remains valid:

E½a� ¼ �hAi� ½12�

Therefore, a large ensemble of postselected states
allows one to estimate the postselected mean �hAi�.

Classical postselection allows introducing the
effective postselected state:

�� ¼:
��

h�i�
½13�

Then the postselected mean [11] of A in state � can,
by eqn [14], be expressed as the common mean of A
in the effective postselected state ��:

�hAi� ¼ hAi� �
½14�

As we shall see later, quantum postselection is
more subtle and cannot be reduced to common
statistics, that is, to that without postselection. The
quantum counterpart of postselected mean does not
exist unless we combine postselection and weak
measurement.

Time-Continuous Measurement

For time-continuous measurement, one abandons the
ensemble of identical states. One supposes that a single
time-dependent state �t is undergoing an infinite
sequence of measurements (eqns [5] and [6]) of A
employed at times t = �t, t = 2�t, t = 3�t, . . . . The rate
� =: 1=�t goes to infinity together with the mean
squared error �2. Their rate is kept constant:

�; � !1 ½15�

g2 ¼:
�2

�
¼ const: ½16�

In the weak measurement limit (eqns [15] and [16]),
the infinite frequent weak measurements of A
constitute the model of time-continuous measure-
ment. Even the weak measurements will signifi-
cantly influence the original state �0, due to the
accumulated effect of the infinitely many Bayesian
updates [6]. The resulting theory of time-continuous
measurement is described by coupled Gaussian
processes [17] and [18] for the primitive function
�t of the time-dependent measurement outcome
and, respectively, for the time-dependent Bayesian
conditional state �t:

d�t ¼ hAi�t
dt þ g dWt ½17�

d�t ¼ g�1 A� hAi�t

� �
�t dWt ½18�

Here dWt is the Itô differential of the Wiener
process.
Equations [17] and [18] are the special case of the
Kushner–Stratonovich equations of time-continuous
Bayesian inference conditioned on the continuous
measurement of A yielding the time-dependent
outcome value at. Formal time derivatives of both
sides of eqn [17] yield the heuristic equation

at ¼ hAi�t
þ g�t ½19�

Accordingly, the current measurement outcome is
always equal to the current mean plus a term
proportional to standard white noise �t. This
plausible feature of the model survives in the
quantum context as well. As for the other equation
[18], it describes the gradual concentration of the
distribution �t in such a way that the variance ��t

A
tends to zero while hAi�t

tends to a random
asymptotic value. The details of the convergence
depend on the character of the continuously mea-
sured function A(X). Consider a stepwise A(X):

AðXÞ ¼
X
	

a	P	ðXÞ ½20�

The real values a	 are step heights all differing from
each other. The indicator functions P	 take values
0 or 1 and form a complete set of pairwise disjoint
functions on the phase space:X

	

P	 � 1 ½21�

P	P
 ¼ �	
P	 ½22�

In a single ideal measurement of A, the outcome a is
one of the a	’s singled out at random. The
probability distribution of the measurement out-
come and the corresponding Bayesian update of the
state are given by

p	 ¼ hP	i�0
½23�

�0 !
1

p	
P	�0 ¼: �	 ½24�

respectively. Equations [17] and [18] of time-
continuous measurement are a connatural time-
continuous resolution of the ‘‘sudden’’ ideal
measurement (eqns [23] and [24]) in a sense that
they reproduce it in the limit t ! 1. The states �	

are trivial stationary states of the eqn [18]. It can be
shown that they are indeed approached with
probability p	 for t ! 1.
Quantum Weak Measurement

In quantum theory, states in a given complex
Hilbert space H are represented by non-negative
density operators �̂, normalized by tr �̂= 1. Like the
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classical states �, the quantum state �̂ is interpreted
statistically, referring to an ensemble of states with
the same �̂. Given a Hermitian operator Â, called
observable, its theoretical mean value in state �̂ is
defined by

hÂi�̂ ¼ trðÂ�̂Þ ½25�

Let the outcome of an (unbiased) quantum measure-
ment of Â be denoted by a. Its stochastic expectation
value E[a] coincides with the mean [25]:

E½a� ¼ hÂi�̂ ½26�

Performing a large number N of independent
measurements of Â on the elements of the ensemble
of identically prepared states, the arithmetic mean �a
of the outcomes yields a reliable estimate of E[a]
and, this way, of the theoretical mean hÂi�̂. If the
measurement outcome a contains a Gaussian sto-
chastic error of standard dispersion �, then the
probability distribution of a and the update, called
collapse in quantum theory, of the state are
described by eqns [27] and [28], respectively. (We
adopt the notational convenience of physics litera-
ture to omit the unit operator Î from trivial
expressions like aÎ.)

pðaÞ ¼ G�ða� ÂÞ
D E

�̂
½27�

�̂! 1

pðaÞG
1=2
� ða� ÂÞ�̂G1=2

� ða� ÂÞ ½28�

Nonzero � means that the measurement is nonideal,
but the expectation value E[a] remains calculable
reliably if N is suitably large.

Weak quantum measurement, like its classical
counterpart, requires finite spread of the observable
Â on state �̂:

�2
�̂Â ¼: hÂ2i�̂ � hÂi

2
�̂ <1 ½29�

Weak quantum measurement, too, will be defined in
the asymptotic limit [8] introduced for classical weak
measurement. Single quantum measurements can no
more distinguish between the eigenvalues of Â. Yet,
the expectation value E[a] of the outcome a remains
calculable on a statistics N growing like ��2.

Both in quantum theory and classical statistics,
the emergence of nonideal measurements from ideal
ones is guaranteed by general theorems. For com-
pleteness of this article, we prove the emergence of
the nonideal quantum measurement (eqns [27] and
[28]) from the standard von Neumann theory of
ideal quantum measurements (von Neumann 1955).
The source of the statistical error of dispersion �
is associated with the state �̂M in the complex
Hilbert space L2 of a hypothetic meter. Suppose
R 2 (�1,1) is the position of the ‘‘pointer.’’ Let its
initial state �̂M be a pure central Gaussian state of
width �; then the density operator �̂M in Dirac
position basis takes the form

�̂M ¼
Z

dR

Z
dR0G1=2

� ðRÞG1=2
� ðR0ÞjRihR0j ½30�

We are looking for a certain dynamical interaction
to transmit the ‘‘value’’ of the observable Â onto the
pointer position R̂. To model the interaction, we
define the unitary transformation [31] to act on the
tensor space H�L2:

Û ¼ expðiÂ� K̂Þ ½31�

Here K̂ is the canonical momentum operator
conjugated to R̂:

expðiaK̂ÞjRi ¼ jRþ ai ½32�

The unitary operator Û transforms the initial
uncorrelated quantum state into the desired corre-
lated composite state:

�̂ ¼: Û�̂� �̂MÛy ½33�

Equations [30]–[33] yield the expression [34] for the
state �̂:

�̂ ¼
Z

dR

Z
dR0G1=2

� ðR� ÂÞ�̂G1=2
�

� ðR0 � ÂÞ � jRihR0j ½34�

Let us write the pointer’s coordinate operator R̂ into
the standard form [35] in Dirac position basis:

R̂ ¼
Z

dajaihaj ½35�

The notation anticipates that, when pointer R̂ is
measured ideally, the outcome a plays the role of the
nonideally measured value of the observable Â.
Indeed, let us consider the ideal von Neumann
measurement of the pointer position on the corre-
lated composite state �̂. The probability of the
outcome a and the collapse of the composite state
are given by the following standard equations:

pðaÞ ¼ tr ðÎ � jaihajÞ�̂
h i

½36�

�̂! 1

pðaÞ ðÎ � jaihajÞ�̂ðÎ � jaihajÞ
h i

½37�

respectively. We insert eqn [34] into eqns [36] and
[37]. Furthermore, we take the trace over L2 of both
sides of eqn [37]. In such a way, as expected, eqns
[36] and [37] of ideal measurement of R̂ yield the
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earlier postulated eqns [27] and [28] of nonideal
measurement of Â.
Quantum Postselection

A quantum postselection is defined by a Hermitian
operator satisfying 0̂ � �̂ � Î. The corresponding
postselected mean value of a certain observable Â is
defined by

�̂hÂi�̂ ¼: Re
h�̂Âi�̂
h�̂i�̂

½38�

The denominator h�̂i�̂ is the rate of quantum
postselection. Quantum postselection means that
after the measurement of Â, we measure the
observable �̂ in ideal quantum measurement and
we make a statistical decision on the basis of the
outcome �. With probability �, we include the case
in question into the statistics while we discard it
with probability 1� �. By analogy with the classical
case [12], one may ask whether the stochastic
expectation value E[a] of the postselected measure-
ment outcome does coincide with

E½a� ¼? �̂hÂi�̂ ½39�

Contrary to the classical case, the quantum equation
[39] does not hold. The quantum counterparts of
classical equations [12]–[14] do not exist at all.
Nonetheless, the quantum postselected mean �̂hÂi�̂
possesses statistical interpretation although
restricted to the context of weak quantum measure-
ments. In the weak measurement limit (eqns [8] and
[9]), a postselected analog of classical equation [10]
holds for the arithmetic mean �a of postselected weak
quantum measurements:

pwð�aÞ ! G� �a� �̂hÂi�̂
� �

½40�

The Gaussian is centered at the postselected mean

�̂hÂi�̂, and the variance of the Gaussian is given by the
constant rate [9]. Consequently, the mean [38]
becomes calculable on a statistics N growing like��2.

Since the statistical interpretation of the postse-
lected quantum mean [38] is only possible for weak
measurements, therefore �̂hÂi�̂ is called the (real)
weak value of Â. Consider the special case when
both the state �̂= jiihij and the postselected operator
�̂ = jf ihf j are pure states. Then the weak value

�̂hÂi�̂ takes, in usual notations, a particular form
[41] yielding the real part of the complex weak
value Aw [1]:

f hÂii ¼: Re
hf jÂjii
hf jii ½41�
The interpretation of postselection itself reduces to a
simple procedure. One performs the von Neumann
ideal measurement of the Hermitian projector jf ihf j,
then includes the case if the outcome is 1 and
discards it if the outcome is 0. The rate of
postselection is jhf jiij2. We note that a certain
statistical interpretation of Im Aw, too, exists
although it relies upon the details of the ‘‘meter.’’

We outline a heuristic proof of the central
equation [40]. One considers the nonideal measure-
ment (eqns [27] and [28]) of Â followed by the ideal
measurement of �̂. Then the joint distribution of the
corresponding outcomes is given by eqn [42]. The
probability distribution of the postselected outcomes
a is defined by eqn [43], and takes the concrete form
[44]. The constant N assures normalization:

pð�;aÞ ¼ tr �ð�� �̂ÞG1=2
� ða� ÂÞ�̂G1=2

� ða� ÂÞ
� �

½42�

pðaÞ ¼:
1

N

Z
�pð�; aÞ d� ½43�

pðaÞ ¼:
1

N G1=2
� ða� ÂÞ�̂G1=2

� ða� ÂÞ
D E

�̂
½44�

Suppose, for simplicity, that Â is bounded. When
� ! 1, eqn [44] yields the first two moments of
the outcome a:

E½a� ! �̂hÂi�̂ ½45�

E½a2� � �2 ½46�

Hence, by virtue of the central limit theorem, the
probability distribution [40] follows for the average
�a of postselected outcomes in the weak measurement
limit (eqns [8] and [9]).
Quantum Weak-Value Anomaly

Unlike in classical postselection, effective postse-
lected quantum states cannot be introduced. We can
ask whether eqn [47] defines a correct postselected
quantum state:

�̂?
�̂
¼: Herm

�̂�̂

h�̂i�̂
½47�

This pseudo-state satisfies the quantum counterpart
of the classical equation [14]:

�̂hÂi�̂ ¼ tr Â�̂?
�̂

� �
½48�

In general, however, the operator �̂?
�̂

is not a density
operator since it may be indefinite. Therefore, eqn
[47] does not define a quantum state. Equation [48]
does not guarantee that the quantum weak value
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�̂hÂi�̂ lies within the range of the eigenvalues of the
observable Â.

Let us see a simple example for such anomalous
weak values in the two-dimensional Hilbert space.
Consider the pure initial state given by eqn [49] and
the postselected pure state by eqn [50], where
� 2 [0,�] is a certain angular parameter.

jii ¼ 1ffiffiffi
2
p ei�=2

e�i�=2

� �
½49�

jf i ¼ 1ffiffiffi
2
p e�i�=2

ei�=2

� �
½50�

The probability of successful postselection is cos2 �.
If � 6¼ �=2, then the postselected pseudo-state
follows from eqn [47]:

�̂?
�̂
¼ 1

2
1 cos�1 �

cos�1� 1

� �
½51�

This matrix is indefinite unless �= 0, its two
eigenvalues are 1 	 cos�1 �. The smaller the post-
selection rate cos2 �, the larger is the violation of the
positivity of the pseudo-density operator. Let the
weakly measured observable take the form

Â ¼ 0 1
1 0

� �
½52�

Its eigenvalues are 	 1. We express its weak value
from eqns [41], [49], and [50] or, equivalently, from
eqns [48] and [51]:

f hÂii ¼
1

cos�
½53�

This weak value of Â lies outside the range of the
eigenvalues of Â. The anomaly can be arbitrarily
large if the rate cos2 � of postselection decreases.

Striking consequences follow from this anomaly
if we turn to the statistical interpretation. For
concreteness, suppose �= 2�=3 so that f hÂii = 2.
On average, 75% of the statistics N will be lost
in postselection. We learnt from eqn [40] that
the arithmetic mean �a of the postselected outcomes
of independent weak measurements converges
stochastically to the weak value upto the Gaussian
fluctuation �, as expressed symbolically by

�a ¼ 2	� ½54�

Let us approximate the asymptotically large error �
of our weak measurements by �= 10 which is
already well beyond the scale of the eigenvalues 	1
of the observable Â. The Gaussian error � derives
from eqn [9] after replacing N by the size of the
postselected statistics which is approximately N=4:

�2 ¼ 400=N ½55�

Accordingly, if N = 3600 independent quantum
measurements of precision �= 10 are performed
regarding the observable Â, then the arithmetic
mean �a of the �900 postselected outcomes a will be
2 	 0.33. This exceeds significantly the largest
eigenvalue of the measured observable Â. Quantum
postselection appears to bias the otherwise unbiased
nonideal weak measurements.

Quantum Time-Continuous Measurement

The mathematical construction of time-continuous
quantum measurement is similar to the classical one.
We consider the weak measurement limit (eqns [15]
and [16]) of an infinite sequence of nonideal
quantum measurements of the observable Â at
t = �t, 2�t, . . . , on the time-dependent state �̂t. The
resulting theory of time-continuous quantum mea-
surement is incorporated in the coupled stochastic
equations [56] and [57] for the primitive function �t

of the time-dependent outcome and the conditional
time-dependent state �̂t, respectively (Diósi 1988):

d�t ¼ hÂi�̂t
dt þ gdWt ½56�

d�̂t ¼� 1
8 g�2½Â; ½Â; �̂t�� dt

þ g�1 Herm Â� hÂi�̂t

� �
�̂t dWt ½57�

Equation [56] and its classical counterpart [17] are
perfectly similar. There is a remarkable difference
between eqn [57] and its classical counterpart [18].
In the latter, the stochastic average of the state is
constant: E[d�t] = 0, expressing the fact that classi-
cal measurements do not alter the original ensemble
if we ‘‘ignore’’ the outcomes of the measurements.
On the contrary, quantum measurements introduce
irreversible changes to the original ensemble, a
phenomenon called decoherence in the physics
literature. Equation [57] implies the closed linear
first-order differential equation [58] for the stochas-
tic average of the quantum state �̂t under time-
continuous measurement of the observable Â:

dE½�̂t�
dt
¼ �1

8g
�2½Â; ½Â;E½�̂t��� ½58�

This is the basic irreversible equation to model the
gradual loss of quantum coherence (decoherence)
under time-continuous measurement. In fact, the
very equation models decoherence under the influ-
ence of a large class of interactions, for example,
with thermal reservoirs or complex environments. In
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two-dimensional Hilbert space, for instance, we can
consider the initial pure state hij =: [ cos�, sin�] and
the time-continuous measurement of the diagonal
observable [59] on it. The solution of eqn [58] is
given by eqn [60]:

Â ¼ 1 0
0 �1

� �
½59�

E½�̂t� ¼
cos2 � e�t=4g2

cos � sin �

e�t=4g2
cos � sin � sin2 �

" #
½60�

The off-diagonal elements of this density matrix
go to zero, that is, the coherent superposition
represented by the initial pure state becomes an
incoherent mixture represented by the diagonal
density matrix �̂1.

Apart from the phenomenon of decoherence, the
stochastic equations show remarkable similarity
with the classical equations of time-continuous
measurement. The heuristic form of eqn [56] is
eqn [61] of invariable interpretation with respect
to the classical equation [19]:

at ¼ hÂi�̂t
þ g�t ½61�

Equation [57] describes what is called the time-
continuous collapse of the quantum state under
time-continuous quantum measurement of Â. For
concreteness, we assume discrete spectrum for Â and
consider the spectral expansion

Â ¼
X
	

a	P̂	 ½62�

The real values a	 are nondegenerate eigenvalues.
The Hermitian projectors P̂	 form a complete
orthogonal set: X

	

P̂	 � Î ½63�

P̂	P̂
 ¼ �	
P̂	 ½64�

In a single ideal measurement of Â, the outcome a is
one of the a	’s singled out at random. The
probability distribution of the measurement out-
come and the corresponding collapse of the state are
given by

p	 ¼ hP̂	i�̂0
½65�

�̂0 !
1

p	
P̂	�̂0P̂	 ¼: �̂	 ½66�

respectively. Equations [56] and [57] of continuous
measurements are an obvious time-continuous
resolution of the ‘‘sudden’’ ideal quantum measure-
ment (eqns [65] and [66]) in a sense that they
reproduce it in the limit t ! 1. The states �̂	 are
stationary states of eqn [57]. It can be shown that
they are indeed approached with probability p	 for
t!1 (Gisin 1984).
Related Contexts

In addition to the two particular examples as
in postselection and in time-continuous measure-
ment, respectively, presented above, the weak
measurement limit itself has further variants.
A most natural example is the usual thermodynamic
limit in standard statistical physics. Then weak
measurements concern a certain additive micro-
scopic observable (e.g., the spin) of each constituent
and the weak value represents the corresponding
additive macroscopic parameter (e.g., the magneti-
zation) in the infinite volume limit. This example
indicates that weak values have natural interpreta-
tion despite the apparent artificial conditions of
their definition. It is important that the weak value,
with or without postselection, plays the physical role
similar to that of the common mean hÂi�̂. If,
between their pre- and postselection, the states �̂
become weakly coupled with the state of another
quantum system via the observable Â, their average
influence will be as if Â took the weak value �̂hÂi�̂.
Weak measurements also open a specific loophole to
circumvent quantum limitations related to the
irreversible disturbances that quantum measure-
ments cause to the measured state. Noncommuting
observables become simultaneously measurable in
the weak limit: simultaneous weak values of non-
commuting observables will exist.

Literally, weak measurement had been coined
in 1988 for quantum measurements with (pre- and)
postselection, and became the tool of a certain time-
symmetric statistical interpretation of quantum states.
Foundational applications target the paradoxical
problem of pre- and retrodiction in quantum theory.
In a broad sense, however, the very principle of weak
measurement encapsulates the trade between asymp-
totically weak precision and asymptotically large
statistics. Its relevance in different fields has not yet
been fully explored and a growing number of founda-
tional, theoretical, and experimental applications are
being considered in the literature – predominantly in
the context of quantum physics. Since specialized
monographs or textbooks on quantum weak measure-
ment are not yet available, the reader is mostly referred
to research articles, like the recent one by Aharonov
and Botero (2005), covering many topics of postse-
lected quantum weak values.
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Nomenclature
a
 measurement outcome

�a
 arithmetic mean of measurement

outcomes

Â
 Hermitian operator, quantum observable

A(X)
 real phase-space function

E[ . . . ]
 stochastic expectation value

hf jÂjii
 matrix element

hf jii
 inner product

H
 Hilbert space

L2
 space of Lebesgue square-integrable

complex functions

p
 probability distribution

tr
 trace

Û
 unitary operator

Wt
 Wiener process

�t
 white noise process
�h. . .i�
 postselected mean value

�̂
 density operator

�(X)
 phase-space distribution

�
 direct product

y
 operator adjoint

j . . .i
 state vector

h. . . j
 adjoint state vector

h. . .i�
 mean value
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Introduction

This article concerns the nonrelativistic quantum
mechanics of isolated systems of n particles inter-
acting by means of a scalar potential, what we shall
call the ‘‘quantum n-body problem.’’ Such systems
are described by the kinetic-plus-potential
Hamiltonian,

H ¼ T þ V ¼
Xn

�¼1

jP�j2

2m�
þ VðR1; . . . ;RnÞ ½1�

where R�, P�,�= 1, . . . , n are the positions and
momenta of the n particles in three-dimensional
space, m� are the masses, and V is the potential
energy. This Hamiltonian also occurs in the
‘‘classical n-body problem,’’ in which V is usually
assumed to consist of the sum of the pairwise
gravitational interactions of the particles. In this
article, we shall only assume that V (hence H) is
invariant under translations, proper rotations, par-
ity, and permutations of identical particles. The
Hamiltonian H is also invariant under time reversal.
This Hamiltonian describes the dynamics of isolated
atoms, molecules, and nuclei, with varying degrees
of approximation, including the case of molecules in
the Born–Oppenheimer approximation, in which V
is the Born–Oppenheimer potential. We shall ignore
the spin of the particles, and treat the wave function
� as a scalar. We assume that � is an eigenfunction
of H, H� = E�. In practice, the value of n typically
ranges from 2 to several hundred. Often the cases
n = 3 and n = 4 are of special interest. In this article,
we shall assume that n 
 3, since n = 2 is the trivial
case of central-force motion. The quantum n-body
problem is not to be confused with the ‘‘quantum
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