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Abstract

As a general mission, reduced dynamics and master equatierasivo-
cated as alternative method and philosophy instead of Gueetions, Kubo
theory and the like. A smart reduction of the Lorentzian opgstem to the
Ohmic one (Imam@lu, 1994) is presented in simple terms.

The original paper appeared in HungarianNew Results in Quantum
Optics and Electronics, eds.: Zsuzsanna Heiner and K. Osvay (University of
Szeged, Szeged, 2006) p147.

1 Introduction: open=reduced

Numerous physical phenomena can be modeled as open dyhagstams. Typi-
cally, the very system S under investigation is interactifitty a reservoir R anthis
makes S dynamically open. Its dynamics changes, becomesera irreversible,
dissipative, and non-Markovian. The total composite sys$&-R can be treated as
a closed dynamical system. Its statg; evolves reversibly. In interaction picture,
the unitary evolution opgr is generated by the interaction Hamiltoni&iy z:

d

EpSR(t) = —i[Hgr(t) , psr(t)] - 1)

From it, we can derive the so-called reduced state of thesySt
ps(t) = trrpsr(t), 2

and its reduced dynamics as well. If the reservoir's seffadigics and its cou-
pling to the system are of simple structure then the redugedrdics will be well
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calculable. Suppose the system and the reservoir arellingiitime ¢ = 0 un-
correlated, so the system’s reduced dynamics can be deddriba homogeneous
non-Markovian master equation [1]:

d t
— = de'Kct -t d 3
dtpS(t) /0 Kt —1)ps(t), (3)

which is in principle solvable if we know the initial statg;(0) of the system.
However, the closed analytic form of the memory kerkiét — ¢) can be found
in special cases only. If the self-dynamics of the systentois sompared to the
characteristic time of the said memory kernel then the dea&arkovian approx-
imation turns the master equation into the much simpler form

S pslt) = Lps). (4)

That is a remarkable limit case. It was applied for classiawnian motion,

as well as to quantum physics, for spontaneous atomic emijssaiuclear spin-
relaxation, transport phenomena, the whole of quantunegdtiom quantum elec-
tronics to molecules, actually for any quantum system siligethermal dissipa-
tion (or to decoherence, in novel approach) [2].

2 Do weneed master equations?

The number and literature of phenomena that we can modektsydtem-reservoir
paradigm is unconceivable. A tendency is, however, searlgleMost applica-
tions avoid the explicite use of the reduced dynamics antefiaster equations
(3,4). Rather they concentrate directly on the phenomendre tdescribed. Typi-
cal examples are Kubo'’s theory of response functions, thatioutput formalism
in qguantum optics, numerous applications of scatteringrihand Green function
techniques. These are presumably the optimum methodsd@oticrete phenom-
ena. Yet, the common divisor of all techniques must be theaed dynamics, i.e.,
the master equation that evolves the staté) of the open system. If we point out
this explicitely we can deepen our understanding the alemimniques and we can
remember the common divisor. We help transitions betweerent applications.
We help discovery.

Consider, e.g., the problem of electric conductance in imeldhe Markovian
master equation (4) of the classical phase space distibofithe electron is the
classical Boltzmann-Fokker-Planck equation. If we knasvsiblution in external
electric field we can derive Ohm'’s Law and the conductance th@rother hand,
the widely used modern treatment is based on the Kubo equdttus establishes
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a relationship between the external field and the inducetkryrand it derives
conductance directly from the equilibrium correlation dtian of the current. It
circumvents the explicite determination of the reducedadlyics and it only con-
centrates on the phenomenon of electric conductance irigunedNot too often,
however, we see the conscious parallel mention of the Baltarmand Kubo equa-
tions [3].

The Markovian approximation of the reduced dynamics ansh@ster equation
(4) are well known concerning the mathematical structuietf®e corresponding
physics [2], as well as concerning the methods of solutiofike clearest con-
ceptual basis of the Markovian approximation must be thetena&gjuation even
if in practice some other serviceable techniques are appliéhen, however, the
Markovian approximation is not justified then we cannot makeh a categoric
declaration about the credit of master equations. Thetsteiof non-Markovian
master equations (3) has not been exhaustively studiedt idosMarkovian mas-
ter equations are difficult and practically unsolvable. ke cannot say that the
explicite use of reduced dynamics would always be more adgaous compared
to the current technigues of non-Markovian phenomena. imdifficult topics,
the goal of this talk will be limited to flash a genuine smarttinoel for the master
equation treatment of some special non-Markovian redugadrdics.

3 Non-Markovian

Let the reservoir R consist of harmonic modes with spectealsdy D (w), with
emission and absorption operators b, respectively. Let R couple linearly to a
certain quantityy” of the system S:

dw

_ t t aw
Hsp /gw (V by + wa) D(w) 5 (5)
Assume the uncorrelated initial state:

psr(0) = ps(0)pr(0), (6)

where the system’s initial state is arbitrary while the resig’s is the canonical
Gibbs equilibrium state. For the sake of simplicity, wedallup the case of zero
temperature. We are looking for the reduced dynamics{he.exact master equa-
tion, to evolveps(t). Consider the field quantity’ = [ g,,b,D(w)dw/27 of the
reservoir, that couples linearly to the system’s quaritity In interaction picture

this field reads d
F(t) = [ gubue ' D(w) 32 (7)

o’

3



Its expectation value vanishes in the reservoir’s initiates The following corre-
lation function will, however, play a role:

a(r =) = tre (F()F1(s)pr(0) ) ®)

It is known thatthe reduced dynamicsin interaction picture will depend but un this
correlation function! We can add that this correlation function is the Fouriensra
form of g2 D(w), i.e., of the reservoir spectral density weighted by thepting
strengths.

In general, the above correlation function is complicated the explicite form
it determines the requested dynamics (3) requires appaigirmethods. An ex-
ception is when the system S is simple, e.g., a two statermy@tdeing itself, too,
a harmonic oscillator. In such cases the master equatidak83 tractable analytic
forms. The most relevant special case is the Markovian dreguwse.

4 Markovian

Often the spectrum of the reservoir R is broad, smooth anddiapared to the
relevant transition frequencies of the system S. In othed&icdhe reservoir corre-
lation function (8) is characterized by a memory time and thimuch shorter than
the characteristic time scales of the system’s self-dyosamirhat is the Marko-
vian limit. In this case therefore the spectrum (weightedcbypling strengths)
will be considered flat and the correlation function of thédfieill be considered
delta-function:

g2 D(w) = f? = const, ot —s) = f25(r — s). 9)

Note that the spectradnergy density wD(w) can alternatively be used, the form
g?wD(w) = f%w, linear in frequency, is called the Ohmic spectrum with a ref
erence to the pioneering theory of electric conductancas khown that in the
Markovian limit (9) the master equation (4) becomes:

%Ps = f? (VpsVT —WiVpg - %psVTV) : (10)
Many times, the solution of such a simple equation is araiti possible. If not,
then a peculiar Monte-Carlo method applies [5], partidulauitable for solutions
of Markovian master equations.

Let us consider an elementary Markovian example which wd tager. Let the
system S itself be ang-frequency harmonic oscillator and let its emission opmrat
V' = a couple to a Markovian (Ohmic) reservoir. If the coupling stamt isf then
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we get the master equation of the damped oscillator whichteraction picture
reads:

d
pa=1? (apsaT — ta'aps — %psa*a) : (11)

The ground state4 = |0; A)(0; A| is stationary. In it the expectation value of
the emission and absorption operator vanish. We can deterthe ground state
correlation function ofi(t) anda’(¢) in interaction picture:

exp|—iwg (T — 8) — %fz‘T —s|]. (12)

5 Reducing Non-Markovian to Markovian

Now, we tear ourselves away from the Markovian limit and adasa definitely
non-Markovian case which keeps, nonetheless, an intrie$ationship with the
Markovian ones. Let the spectrum be Lorentzian:

2 D(w) = ¢2 7 . 13
A P R TP &)

The corresponding correlation function is exponentiatiynghed:
o1 — s) = g% exp[—iwg (T — 5) — Iyt —s]]. (14)

It can be shown that the reduced dynamics of the system indtentzian reservoir
is exactly identical with the reduced dynamics of a fictii@ystem in a Markovian
reservoir [6].

Let us first consider a fictitious reservoir consisting ofreyle wy-frequency os-
cillator (ancilla). Let us couple the system S to this aaditistead of the Lorentzian
reservoir:

Hsa=g (VTa + VaT) . (15)

This, too, is a system-reservoir interaction just the naserconsists of a single
oscillator. Otherwise we can do everything like for the cab68+R, just we use
the notation S+A this time. The coupled field (7) is simply= ga. In interaction
picture we calculate the correlation function (8) of thedijel is trivial:

(0; A|F (1) F(s5)|0; A) = gPe w0(m=9), (16)

If his correlation functionwere identical with the Lorentzian damped correlation
function (14) then, according to our previous considergtalso the reduced dy-
namicstr 4ps4(t) would be identical with the reduced dynamics emerging from a
Lorentzian reservoir. But the correlation function of timeidla A is not Lorentzian.



Yet it can easily be made so! Indeed, we saw that if we placarik@la-oscillator
into an Ohmic reservoir (and choogé = ~) then the ancilla’s correlation function
will obtain exactly the desired exponential damping fa¢i@). It is thus clear that
the influence of the Lorentzian reservoir can exactly beaega by the influence
of an ancilla-oscillator which itself is damped by a Markavi(Ohmic) reservoir.
Let us summarize the method. Consider the composite syStemi with an
uncorrelated initial state:
ps(0)[0; A)(0; Al. (17)

Assume an interactiot/s 4 (15). Let the ancilla-oscillator A be damped by an
Ohmic reservoir. Hence the composite state (¢) evolves according to the fol-
lowing Markovian master equation:

d .

qPsa =iy Via+Val, PSA] +7 (CLPSACLT — talapsa — %PSAGTG) , (18)
wherea and V' are time-dependent operators in interaction picture. Ifhaee
solved the above initial value problem then we trace ovemtilla-oscillator A

and this way we obtain the system’s current state:

ps(t) = trapsa(t). 19)

Using this method, the non-Markovian influence of a Loreamzieservoir has been
reduced to the influence of a Markovian (Ohmic) reservoirthwhe insertion of a
single ancilla-oscillator.

The relevance of Lorentzian reservoir may perhaps not gchribeyond the
high-frequency (Drude-) regularization of the Ohmic onen t@e other hand, the
above method is not restricted to the Lorentzian resemtdigs been suggested for
the so-called fotonic band gap materials as well since rsimgly, the method of
ancilla-oscillator applies, with minor modification, to apside-down Lorentzian
spectrum as well, i.e., to a Lorentzian forbidden band inQhenic spectrum.

6 Closingremarks

It was my studying basic quantum structures and phenomeika tHe nowa-
days popular decoherence or the even more fashionableupianformation -
which lead me to open quantum systems and master equatiadsittedly miss
my overview of the corresponding vast literature. Neithad h felt necessary
to disperse the audience’s attention by flashing the iryatstins where | tried to
contribute myself. Rather | thought to pick up and presenhigue smart non-
Markovian method. Also the cited references are selectiwet suitable to direct



the interested toward the relevant discussions of a fevesssm non-Markovian
open system dynamics.
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