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Abstract
We discuss hybrid master equations of composite systems, which are hybrids of classical and
quantum subsystems. A fairly general form of hybrid master equations is suggested. Its
consistency is derived from the consistency of Lindblad quantum master equations. We
emphasize that quantum measurement is a natural example of exact hybrid systems. We derive a
heuristic hybrid master equation of time-continuous position measurement (monitoring).
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1. Introduction

The notion of hybrid systems—consisting of quantum and
classical subsystems—arises in different contexts (e.g., refs.
[1–18]). We are interested in those works which are using the
notion of hybrid density explicitly, or implicitly at least, with
a standard statistical interpretation. Hybrid dynamics in the
narrow sense means dynamical coupling between a quantum
and a classical dynamical system. Sometimes the latter is just
another quantum subsystem described in classical phase space
variables, but in all versions the coupling results in irrever-
sibilities [1, 3, 7, 9, 12]. Hybrid formalism of quantum
measurement means the irreversible interaction between a
quantum dynamical system and the classical pointer of the
measuring device cf, e.g., [2, 12, 15, 16]. Hybrid dynamics in
the general sense means any—not necessarily canonical,
unitary, or even reversible—dynamics of coexisting quantum
and classical states and variables cf [10, 11].

The mathematical representation of hybrid systems unifies
the mathematical representations of classical and quantum
systems, respectively. The notion of hybrid density ρ̂ x( ), to
represent the hybrid state, follows from the notions of classical
density ρ x( ) and quantum density matrix ρ̂ in a straightforward
way. (See section 2 for the rigorous definition.) An exact
application of hybrid formalism is no doubt the action of
quantum measurement (section 3). The hybrid dynamical
equation, or master equation (ME), is an open issue. One can
profit from the generic Pauli and Lindblad MEs of separate
classical and quantum systems, respectively. We shall offer a
partial solution as to the general structure of hybrid MEs
(sections 4, 5). The lessons are applied in section 6 to construct
the hybrid ME of time-continuous measurement (monitoring).

2. Hybrid density

As we mentioned, the general hybrid system consists of a
quantum system and of any—not necessarily dynamical—
classical system, including discrete as well as continuous
classical systems. For example, let us, consider a classical
system described by a discrete variable x of probability den-
sity ρ x( ), together with an independent quantum system of
state ρ̂. To model their coexistence, we form their hybrid
system, whose hybrid state must be

ρ ρ ρˆ = ˆx x( ) ( ) . (1)

The general, correlated, hybrid state must be positive semi-
definite:

ρ̂ ⩾ ∀x x( ) 0, (2)

and normalized:

∑ ρ̂ =xTr ( ) 1. (3)
x

The conditions (2, 3) are necessary and sufficient for ρ̂ x( ) to
be a legitimate hybrid density.

We define the reduced state (density matrix) of the
quantum subsystem by

∑ρ ρˆ = ˆ x( ), (4)
x

the reduced state (density) of the classical subsystem by

ρ ρ= ˆx x( ) Tr ( ), (5)

and the conditional state (density matrix) of the quantum
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subsystem by

ρ ρ ρˆ = ˆ x x( ) ( ). (6)
x

Note that the conditional state of the classical subsystem is
pointless, since the quantum subsystem does not feature
conditions unless we perform a quantum measurement on it
(table 1).

The statistical interpretation of the hybrid density is
straightforward from the statistical interpretation of density

matrices and classical densities. Let ˆ = ˆ †⎡⎣ ⎤⎦O x O x( ) ( ) stand

for the generic hybrid observable. Its expectation value can be
calculated as follows, cf. e.g., [7]:

∑ ρˆ = ˆ ˆ
ρ̂

O O x x( .) Tr ( ) ( ). (7)
x

( .)

Having outlined the abstract features, letʼs see an occa-
sional list of very different hybrid systems with their
respective hybrid densities. In molecular physics, ρ̂ refers to
quantized electrons and (r, p) stands for classical nuclear
positions and momenta yielding ρ̂ r p( , ) [3]. In quantum

optics ρ̂ refers to quantized electrons and ⋆a a, stand for the
complex amplitudes of classical e.m. field modes yielding

ρ̂ ⋆( )a a, [7]. In nanophysics ρ̂ refers to the quantum dot and

n stands for the charge count yielding ρ̂ n( ). Last but not least,
in quantum measurement ρ̂ refers to the measured quantum
system and x stands for the measurement outcome yielding
ρ̂ x( ) [12], as discussed below.

3. Measurement

What happens to the quantum state ρ̂ of a quantum system,
under measurement of the complete set of orthogonal pro-

jectors ˆ{ }Px ? We argue that hybrid formalism and inter-

pretation are exact alternatives to the standard ones in
textbooks. Textbook formalism says that the pre-measure-
ment state ρ̂ jumps randomly to the post-measurement con-
ditional quantum state ρ̂

x
:

ρ ρ
ρ

ρˆ ⟶ ˆ = ˆ ˆ ˆ
x

P P
1

( )
(8)

x x x

with probability ρ ρ= ˆ ˆ ˆ( )x P P( ) Tr x x .

In hybrid formalism, we say that ρ̂ jumps deterministi-
cally into the post-measurement hybrid state:

ρ ρ ρˆ ⟶ ˆ = ˆ ˆ ˆx P P( ) . (9)x x

The randomness of the outcome x is now expressed through

the statistical interpretation (7), as well as (4–6), of the hybrid
state.

In complete generality, hybrid formalism is convenient
for general (unsharp) quantum measurements defined by

Kraus operators M̂x instead of projectors P̂x, satisfying com-

pleteness ∑ ˆ ˆ = ˆ†
M M I

x x x but without orthogonality or hermi-

ticity. In hybrid formalism, measurement is fully represented
by the jump of the pre-measurement quantum state ρ̂ into the
post-measurement hybrid state:

ρ ρ ρˆ ⟶ ˆ = ˆ ˆ ˆ †
x M M( ) . (10)x x

The statistical interpretation of ρ̂ x( ) reproduces the common
rules (8) of measurement.

A remarkable example is the Gaussian unsharp position
measurement whose Kraus operators are

πσ
σ

ˆ = ˆ = −
ˆ −† −

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥( ) ( )

M M
q x

2 exp
4

, (11)x x
2 1 4

2

2

i.e., the square roots of unsharp ‘projectors’ labeled by their
central positions x (which are continuous classical variables
this time). Their measurement in hybrid formalism (10) reads:

ρ ρ

πσ σ
ρ

σ

ˆ ⟶ ˆ

= −
ˆ −

ˆ −
ˆ −⎡

⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

( ) ( )
x

q x q x

( )

1

2
exp

4
exp

4
. (12)

2

2

2

2

2

This is the key to the time-continuous position measurement
(monitoring) theory [19, 20]. (For a heuristic derivation of the
corresponding hybrid ME, see section 6). We study general
hybrid MEs first.

4. Hybrid dynamics

All Markovian classical MEs must have the Pauli form [21]:

∑ρ
ρ ρ= −[ ]

d x

dt
T x y y T y x x

( )
( , ) ( ) ( , ) ( ) , (13)

y

where ⩾T x y( , ) 0 is an arbitrarily given transition rate from
y to x. Note for completeness that also a drift term

ρ−∂ v x x( ) ( )x of arbitrarily given drift velocity v(x) can be
added to the r.h.s. when x is a continuous variable. In this
case, the transition rates T x y( , ) can be smooth non-negative
functions, but the particularly important diffusion process
requires the singular ones:

τ
π τ τ

= −
−

τ→

⎡
⎣⎢

⎤
⎦⎥T x y

D

x y

D
( , ) lim

1

4
exp

( )

4
. (14)

0

2

Substituting this form into the ME (13) yields the standard
diffusion ME:

ρ ρ= ∂d

dt
D x( ) (15)x

2

with the diffusion coefficient D.
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Table 1. States and dynamics in classical, quantum, and hybrid
systems.

Classical Quantum Hybrid

Density: ρ x( ) ρ̂ ρ̂ x( )
Master equation: Pauli Lindblad ?
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All Markovian quantum MEs must have the Lindblad
form [22]:

∑ρ ρ ρ ρˆ = − ˆ ˆ + ˆ ˆ ˆ − ˆ ˆ ˆ
α

α α α α
† †⎡⎣ ⎤⎦ ⎡

⎣⎢
⎤
⎦⎥{ }d

dt
i H L L L L,

1

2
, , (16)

where H is the Hamiltonian and ˆ
αL are arbitrarily given

Lindblad operators (transition amplitudes). In a particularly
simple case, we have a single Hermitian Lindblad operator
proportional to the position operator q̂ of a particle:

ˆ = ˆ = ′ ˆ†
L L D q2 . This yields

ρ ρ ρˆ = − ˆ ˆ − ′ ˆ ˆ ˆ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦[ ]d

dt
i H D q q, , , , (17)

which describes momentum diffusion and, equivalently,
position decoherence with coefficient ′D . Note this quantum
ME governs the particleʼs quantum state under time-con-
tinuous unsharp position measurement; i.e., when position
measurements (12) of infinite unsharpness σ → ∞2 are
repeated at infinite frequency ν → ∞ while ν σ = ′D8 2 is
kept fixed (cf. e.g. [19]).

The most generic form of the Markovian hybrid ‘Pauli-
Lindblad’ME is not known, see table 2. (For particular results
in very different contexts see, e.g., [5, 12, 14], among many
others.) We guess a large class can be of the following
structure:

∑ρ
ρ ρ

ρ

ˆ
= − ˆ ˆ + ˆ ˆ ˆ

− ˆ ˆ ˆ

α
α α

α α

†

†

⎡⎣ ⎤⎦ ⎡⎣
⎤
⎦⎥{ }

d x

dt
i H x x L x y y L x y

L y x L y x x

( )
( ), ( ) ( , ) ( ) ( , )

1

2
( , ) ( , ), ( ) (18)

y,

with completely arbitrary hybrid Pauli-Lindblad transition

amplitudes ˆ
αL x y( , ).

We learned before that the classical system can be dis-
crete or continuous, and in the latter case the transition rates
T x y( , ) can be smooth or singular as well. Similar features
can occur to the hybrid transition amplitudes αL x y( , ). For a
δ′ −x y( ) singularity, we shall consider a particular example,
quantum position monitoring, in section 6. In the forth-
coming section, however, we prove the consistency of (18) in

the special case of discrete functions ˆ
αL x y( , ).

5. Derivation of the hybrid master equation

We are going to embed the hybrid ME (18) into the Lindblad
ME (16) of a bigger quantum system by formal re-quantiza-
tion of the classical subsystem. To this end, the Hilbert space
spanned by the basis vectors x is introduced. Then we
upgrade the hybrid state, Hamiltonian, and transition gen-
erators into composite operators on the big Hilbert space:

∑ρ ρ ρˆ → = ˆ ⊗x x x x( ) ( ) (19)
x

∑ ρˆ → = ˆ ⊗H x H x x x( ) ( ) (20)
x

∑ˆ → = ˆ ⊗α α α
L x y L L x y x y( , ) ( , ) . (21)

x y,

Now we consider the following Lindblad ME:

∑ρ ρ ρ ρ= − + −
α

α α α α
† †⎡⎣ ⎤⎦ ⎡

⎣⎢
⎤
⎦⎥

       { }d

dt
i H L L L L,

1

2
, . (22)

It is consistent, as we know. By construction, it ascribes
autonomous dynamics to the block-diagonals ρ̂ x( ) in (19).

So, if we multiply both sides by ˆ ⊗ ⋯I x x and take the

partial trace on both sides, we get exactly the hybrid ME (18).
Therefore the consistency of the latter is guaranteed by the
Lindblad ME (22). This a central result of our work.

6. Quantum monitoring

We are going to construct the phenomenological hybrid
equations of quantum monitoring. Suppose we are con-
tinuously measuring (monitoring) the position q̂. The classical
variable X will encode the monitored value, so we introduce

the hybrid density ρ̂ ( )X to represent the joint statistics of the

particle quantum observables and the monitored value of q̂.

We are looking for the dynamics of ρ̂ ( )X .

The hybrid ME that evolves ρ̂ ( )X should contain a

coupling between q̂ and X. Heuristically, we take the fol-
lowing naive ME:

ρ
ρ ρ

ˆ
= − ˆ ˆ − ∂ ˆ ˆ⎡⎣ ⎤⎦ { }( )

( ) ( )
d X

dt
i H X q X,

1

2
, . (23)X

The coupling term yields the following relationship:

= ˆd X

dt
q . (24)

So far so good: the statistics of X provide relevant and
transparent information on the potential values of the position
q̂ . Our heuristic model seems to work.

There is a problem, however. The structure

ρ− ∂ ˆ ˆ{ }( )q X,X
1

2
is known to violate the positivity of ρ̂ ( )X

[12]. Our naive hybrid ME is not correct. Nonetheless, we can
find the correct one. Invoking the method of section 5, we
postulate the Lindblad ME (22) on the big Hilbert space with
a careful choice of a single Lindblad operator:

∫= ˆ ⊗ ˆ + ˆ ⊗ ∂ ( )L q D I D I X X dX8 2 . (25)X

Substitute this into (22), multiply both sides by
ˆ ⊗I X X , and take partial trace on both sides. The result

is a correct hybrid ME of position monitoring:

ρ
ρ ρ ρ

ρ

ˆ
= − ˆ ˆ − ∂ ˆ ˆ + ∂ ˆ

− ˆ ˆ ˆ

⎡⎣ ⎤⎦
⎡⎣ ⎡⎣ ⎤⎦ ⎤⎦

{ }( )
( ) ( ) ( )

( )

d X

dt
i H X q X D X

D
q q X

,
1

2
,

1

16
, , . (26)

X X
2

Note the appearance of two additional diffusion terms on the
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r.h.s. which cure the defect of the naive ME (23). The crucial
relationship (24) between the classical variable X and the
monitored position q̂ survives, whereas a diffusive noise is
superposed on the measured signal X as well as on the
momentum of the particle. Observe the exact reciprocal trade
between the signal noise and momentum diffusion (i.e.,
position decoherence).

Letʼs integrate both sides over X. We find that the
reduced quantum state ρ̂ obeys the simple Lindblad ME (17)
with ′ =D D1 16 . A more complex derivative of the hybrid
ME of monitoring is the following non-autonomous Fokker-
Planck equation for the reduced classical density:

ρ
ρ ρ= −∂ ˆ + ∂

( )
( ) ( )

d X

dt
q X D X , (27)X X X

2

where ρˆ = ˆ ˆ( )q qTrX X
is the conditional expectation value of

q̂. This equation expresses the diffusive noise superposed on
the measured signal X at diffusion coefficient D.

The hybrid ME (26) is equivalent to the standard theory
of quantum monitoring [19], which prescribes two coupled
Ito stochastic differential equations for the conditional state ρ̂

X

and the measured signal X, respectively, instead of the hybrid

ME for ρ̂ ( )X . The proof of equivalence of the two Ito

equations with the hybrid ME is straightforward and will be
shown elsewhere.

7. Summary, outlook

We gave a short introduction into the concept of hybrid
systems. We emphasized that quantum measurement has a
natural hybrid formalism. We have proposed a novel general
structure of hybrid ME to unify the Pauli and Lindblad
structures. This approach demonstrates an application to
quantum continuous measurement (monitoring).

Ad hoc hybrid theories often fall short. Certain ad hoc
MEs violate the positivity of the hybrid density. This failure is
abandoned by our class of hybrid MEs. Certain ad hoc hybrid
theories donʼt pass the ‘free will test’ [24]. The measurement-
related theories, where the classical variable is the measured
outcome, do pass it. Nonetheless, the consistency of hybrid
theories is currently under discussion. There can be a number
of further consistency tests [25].

The present work is a deliberate outline of certain
important features of hybrid systems, with an emphasis on
quantum measurement. Some novel results, including the

general structure of hybrid ME and the hybrid ME of quan-
tum monitoring, will be detailed and further clarified in
forthcoming works [26].
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