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Function

Lajos Diési

Abstract Decoherence of massive body wave function under Continuous Sponta-
neous Localization is reconsidered. It is shown for homogeneous probes with wave
functions narrow in position and angle that decoherence is a surface effect. Cor-
responding new surface integrals are derived as the main result. Probe’s constant
density and two completely geometric surface-dependent invariant tensors encode
full dependence of positional and angular decoherence of masses, irrespective of
their microscopic structure. The two surface-tensors offer a new insight into CSL
and a flexible approach to design laboratory test masses.

1 Introduction

Spontaneous decoherence and collapse models, reviewed e.g. by [1, 2] share the
form of modified von Neumann equation of motion for the quantum state p:

dp oA~ A
— =—=[H,pl + Dp, 1
T 5, pl1+Dp ey
where H is the many-body Hamiltonian of masses m,, with positions X, and momenta
P, resp., fora = 1,2, . ... The term of spontaneous decoherence takes this generic
form:
Dp=— [ [ D=l 16w, piarer, @

containing the mass density operator at location r:
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Fig.1 Forashape (e.g. a cuboid) lacking rotational symmetry, both position and angle are localized
since both of them alter the surface (left). For a sphere, angle does not alter the surface, hence
position is localized but angle is not (middle). If we carve N transversal gaps into the cuboid
(right), to multiply the surface then we enhance the localization rate by a factor about N + 1 in the
longitudinal direction (horizontal, in our case).

o(r) =Y " mab(r —R,). 3)

The non-negative decoherence kernel D(r — r’) is model dependent.

In a conference talk [4], I compared some characteristic features of the two leading
proposals, the Continuous Spontaneous Localization (CSL) of Ghirardi, Pearle, and
Rimini, and the model of Penrose and myself [5, 6] called DP-model after the two
independent proponents. I claimed and gave examples (Fig. 1) for CSL in particular
that the surfaces of homogeneous massive bodies are the only subjects of localization.
My observation has been waiting for mathematical formulation until now.

In recent literature, the central mathematical object is the geometric factor of
decoherence:

=Y mae )

defined in the c.0.m. frame, introduced by [7], also discussed by [8] in this volume.
This object is the Fourier-transform of the classical mass density in the c.o.m. frame:

p(r) = mad(r —r,). 5)

Usually, the contribution of the geometric factor is evaluated in the
Fourier-representation. I am going to show that working in the physical space instead
of Fourier’s is not only possible but even desirable.

In Sect.2 we recapitulate the decoherence of c.o.m. motion in terms of the geo-
metric factor. For constant density probes, Sect. 3 derives a new practical expression
of the decoherence in terms of a simple surface integral, the method is applied for
angular (rotational) decoherence in Sect. 4. Possible generalizations towards probes
with unsharp edges and for wider superpositions are outlined in Sect. 5, while Sect. 6
is for conclusion and outlook.
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2 Center-of-mass Decoherence

The standard CSL model [1] introduces two universal parameters, collapse rate
A = 107571, localization ¢ = 107> cm, and it contains the nuclear mass m . The
decoherence kernel D(r — r’) is a Gaussian whose nonlocal effect can be absorbed
by a Gaussian smoothening of the mass density o(r). The key quantity is the
o-smoothened mass distribution operator:

0o () =Y MGyt —Ra), 6)

where G,(r) is the central symmetric Gaussian distribution of width o. Then the
decoherence term (2) becomes a single-integral:

432053
0= -2 [16:@). 10 0. piar )
my

Inserting Eq. (6), Fourier-representation yields this equivalent form:

o3

b=~ 2m32m3;

/ K73 mmy [ [ p1dk. ®)

a,b

We are interested in the c.o.m. dynamics of the total mass M = Y my:

dpem
dt

i~ .
= _7_,L[Hcms Pem] + DemPems 9

where X P will stand for the c.0.m. coordinate and momentum. To derive the c.o.m.
decoherence term (and also the rotational decoherence term later on in Sect. 4),
substitute .

X, =X+r,+¢ xr, (10)

in (8), where r, are the constituent coordinates in the c.o.m. frame in rigid body
approximation; ¢ is the vector of angular rotation, assuming (), Ap < 7. Then Eq.
(8), by taking trace over the rotational degrees of freedom, reduces to the following
c.0.m. decoherence term:

o3

Dempem = T 300
T emy

K252 KK~ kK A
/e Ko |Mk|2 (elkxpcme kX pcm) dk, (11
where we recognize the presence of the geometric factor px. At small quantum

uncertainties, when AX « o, we use the momentum-diffusion equation as a good
approximation:



220 L. Di6si

o3

DemPem = — 75755
2m32my,

f %y PIKK, KX, fom]1d. (12)

This equation describes position-decoherence, together with momentum-diffusion,
both of them being non-isotropic in the general case. We are going to concentrate on
the evaluation of the tensorial coefficient of decoherence on the r.h.s. of (12).

3 Invariant Surface-Tensor for C.0.M. Decoherence

As we see, the geometric factor py itself does not matter but its squared modulus
does. We consider the approximation (12) which allows for a spectacular simple
geometric interpretation of the relevant structure:

/ e K7 |12 (k o K)dk = (27)3 / Vo (r) 0 Vip (r) dr. (13)

We can recognize ji,(r) as the o-smoothened mass density in the c.o.m. frame.' This
latter form becomes amazingly useful if the bulk is much larger than o and possesses
constant density ¢ when averaged over the scale of 0. If, furthermore, we assume the
density drops sharply from p to zero through the surface then Vy,(r) is vanishing
everywhere but in about a o-layer around the surface. Let n stand for the normal
vector of the surface at a given point r and let / be the height above the surface, then

Vit (r + hn) = —ong,(h), (14)

g, (h) is the central Gaussian of width o. The volume integral can be rewritten, with
good approximation, as an integral along 4 and a subsequent surface integral:

Qn)? / Vi (r) o Vi, (r)dr = 27)3 0 ?§ non (f gi(h)dh) ds

3.2
_2me ?g(non)ds. (15)

Y VR

If the prove has cavities in it, and the characteristic sizes of the probe and cavities
keep to be much larger than o, then the surface integral must be extended for the
surfaces of the cavities as well. Using Eqs. (13) and (15), the decoherence term (12)
obtains the attractive form

Previous works, like e.g. [10] and Supplemental Material (S11) of [11], used the double-integral :

7r3/20*3//exp (—\r - r/|2/(402)) Vu(r) oV u(r')drdr,

without deriving the equivalent single-integral as of the r.h.s. of Eq. (13).
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. 2w 0? 5 & A
Dcmpcm = _m—2 [an [IIX, pcm]]dS (16)
N

This is our main result. It shows that the c.0.m. decoherence is completely determined
by the constant density g and the shape of the body, through the surface-tensor

Sem =: ?g(n on)ds. (17)

In CSL, at small quantum uncertainties AX < o, the c.o.m. decoherence of homo-
geneous sharp-edged bulks is a surface effect!

Recall that the main result (16) remains valid if the probe has cavities and we
integrate over the surfaces of the cavities as well. This allows us to multiply the
CSL decoherence by carving cavities inside the otherwise homogeneous probe, CSL
decoherence can be multipled (cf. Fig.1). This explains the reason of enhanced
decoherence in layered structures, proposed by [9].

The heating rate, coming from the decoherence term in (12), is defined by the
Heisenberg derivative I'cpy = Dy (IA’2 /2M). Now easy is to write itin a more explicite
form than before. Reading D], = Dy, off from (16), one immediately obtains

2w Ao S 2w Ao?o S
oS _TATes (18)

.., = = =
o mi, M m3 Vv

where § is the total surface (including cavities’ internal surfaces) and V is the total
volume. Note that ', is the same if we start from the general dynamics (11) not
restricted by AX < o. [It does not matter if we calculate the Heisenberg derivative
of the quadratic P2 by D¢ in (11) or, alternatively, by the X-quadratic approximation
of D¢y in (12).] Interestingly, c.o.m. heating is inverse proportional to the size of the
bulk. Recall the total heating rate

p? hz)\
r= DZ — " M, (19)

always much larger than the c.o.m. heating. For a sphere of radius R we get ', / I =
3(c/R)*.
Examples. Consider the longitudinal motion of a cylinder, Eq. (16) reduces to

. 2mAo2o
DempPem = _m—SJ_[x (X, pcm]] (20)

N

where S is the total surface perpendicular to the motion (i.e.: the area of both faces
of the cylinder). At a given constant density o, the decoherence is independent of the
length of the cylinder. It can be squeezed to become a plate or elongated to become
a rod. This invariance of the decoherence offers a fair guidance when we design
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laboratory probes. However, the same invariance may raise conceptual questions as
well. With increasing length of the rod while decoherence rate remains constant, CSL
might leave the longitudinal superposition of our massive rod with counter-intuitive
long coherence times. An other remarkable feature of the surface-tensor S is that
spontaneous decoherence in one direction can be decreased by tilted edges instead
of perpendicular ones. If the faces of the above cylinder are replaced by cones of
apex angle 6 then the two factors nX in Eq. (16) get a factor sin(f/2) each while
the surface of the cones becomes sin~!(#/2)-times larger than S . The spontaneous
longitudinal decoherence becomes suppressed by the factor sin(f/2). E.g.: sharp
pointed needles become extreme insensitive to longitudinal CSL.

4 Rotational Decoherence

Rotational decoherence of objects under CSL has recently been discussed by [12,
13]. Derivation of our main result (16) on decoherence of lateral superpositions tells
us how to express this time the decoherence of angular superpositions in terms of a
surface integral. We outline the steps, without the details. After substituting X, by
Eq. (10) into Eq. (8), we trace over the c.0.m. motional d.o.f., yielding

)\03 2.2 ; 2 ; 2
A~ _ —k“o ik(r,+pxr, —ik(rp+oxr, A
Diotrot = — 32,2 € E mamy|e Fatd ,[e Eto ", Proc]1dK.
2memy,

a,b
ey
If A(p x ;) < o for all a, we approximate the integral as follows:
/ e 7N " mamye™ T [k, [@kry, frorlld, (22)

a,b

where we define the triple scalar product by abe = a(b x ¢). This integral is equiv-
alent to the following volume integral:

2n)° / (@YY 1o (1), [PV 11y (1), fro]1d. 23)

Applying the arguments and approximations as in Sect. 3, we rewrite this volume
integral as a surface integral:

@em)’e?

s piem. [, s, )

Using this form for the integral in Eq. (21), the rotational decoherence term takes the
following ultimate form:
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. 2o 0? . . .
Drotprot = ————— P lern, [@rn, pry]]1dS. (25)

2
my

The rotational decoherence is determined by the constant density o and the rotational
surface-tensor:

Siot =: fﬁ(r x n) o (r x n)dsS, (26)

where, as before, r is the coordinate of a surface point in the c.o.m. frame and n
is the corresponding normal vector to the surface. Remember, the validity of (25)
was limited by A(p X r,) < o for all a. In terms of the locations r, the condition
becomes A(p x r) < o for all surface points r.

Calculation of the spontaneous heating rate of the rotational degrees of freedom
is straightforward, yielding

2mAo2o
my

Cro = TI'(17 ! Srot) s (27)

where [ = f (r o r)dr is the inertia tensor of the probe.

Examples. Consider the rotation of along cylindric rod of length L andradius R < L,
around a perpendicular axis n;. through its center. All along the rod —except for its
short middle part of size ~ R— the expression rnn;, = r sin(®) is a good approxi-
mation wherer € (—L/2, L/2)isthe axial coordinate and & is the azimuthal angle of
the surface position r. Using this approximation, we can easily evaluate the axial ele-
ment of the rotational surface-tensor S that controls the angular decoherence (25):

7RL?

f(mnmde: o (28)

As another example, consider our cylinder rotating around its axis of symmetry: CSL
predicts zero decoherence (cf. Fig. 1). But we introduce a small elliptical eccentricity
e < 1ofthe cross section. Inleading order, we have rnn,,, = %Re2 sin(2®), yielding
the following contribution of the shape to the strength of angular decoherence:

4
7{ (rnn,y)2dS = %szL, (29)

that is e¢*/4 times the volume of the cylinder. Recall that ¢*> = 2AR/R where AR
is the small difference between the main diameters of the elliptic cross section. The
obtained result may raise the same conceptual problem that we mentioned for the
longitudinal superposition of the massive rod/needle: azimuthal superpositions of
massive cylinders of low eccentricity may become practically insensitive to CSL.
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5 Outlines of Generalizations

That in CSL the c.o.m and rotational decoherences are surface effects for homoge-
neous probes has been explicitly shown in Sects. 3 and 4 for ideal sharp edges and
for spatial superpositions much smaller than o. Both of the latter restrictions can be
relaxed and Dy, still remains a surface integral.

The case of unsharp edges is not much different from the ideal case. Let H(h)o
be the profile of how the density drops from the constant ¢ down to zero through a
thin layer defining the surface where the layer’s thickness is small w.r.t. the sizes of
the probe. Then the following generalization of Eq. (14) helps:

Vi, (r + hn) = on / g, (h — W)dH (h). (30)

The rest of constructing the surface integral is the same as for Eq. (14) which described
the special case where H was the (descending) step function.

The case of not necessarily small quantum positional uncertainties was described
by Eq. (11). It takes an equivalent closed form in coordinate representation:

3

Dempen (X, V) = =577 @) [ [+ Xopa 6+ ¥) = 120) | d e (X, V)
N

73/ 2m
€29
The relevant structure is the integral, which we write as
@0 [ 1ha(e+ X = Y) = o 0] o 1. (32)

As long as the quantum uncertainty |X — Y| is much smaller than the sizes of the
probe, but not necessarily smaller then o, the integral is vanishing everywhere in the
bulk except for a thin layer of thickness ~|X — Y| below the surface. Accordingly,
we incline to anticipate CSL decoherence remains a surface effect and, investing
some harder mathematical work, D.,, as well as D, would take a form of surface
integral, generalizing (16) and (25) beyond their quadratic approximations in X
and .

6 Concluding Remarks

We have discussed CSL for constant density test masses and proved that spontaneous
decoherence of both translational and rotational motion is determined by the density
o and by two invariant surface-tensors of the bodies:

Sem = %(n on)dsS,
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Siot = %(r x n) o (r x n)dsS.

These two fully encode the relevant features of the probe’s geometry. Previously,
these features were encoded by the so-called geometric factor

i = Q/e_ikrdr,

an integral over the probe’s volume and a function of the wave number k. In case
of general heavily inhomogeneous test masses the necessity of using the geometric
factor is certainly doubtless. But for homogeneous probes, the surface-tensors should
take over the role.

Important is the new insight into the physics of CSL in motion of a general
massive bulk as a whole. First, microscopic structure is totally irrelevant, only the
o-smoothened density matters. Furthermore, displacements of homogeneous regions
are not decohered at all. Only the displacements of inhomogeneities are decohered.
The sharper the inhomogeneity, the stronger the decoherence it induces. In a constant
density probe, the only inhomogeneous part is its surface, hence is CSL decoherence
a surface effect for it—that we have here exploited. The same is true for layered
probes where mass density jumps—through surfaces (walls) between the layers—
contribute to the decoherence tensors. Inhomogeneities other than the said two-
dimensional inhomogeneous regions around surfaces may rarely be sharp and fat
enough to contribute to c.o.m. or rotational decoherence. Decoherence of probes
with smooth material inhomogeneities may remain dominated by the said surfaces,
our method of surface-tensors might extend for them!
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